Structural colouration of avian skin: convergent evolution of coherently scattering dermal collagen arrays

View/ Open
Issue Date
2003-07Author
Torres, Rodolfo H.
Prum, Richard O.
Publisher
COMPANY OF BIOLOGISTS LTD
Type
Article
Metadata
Show full item recordAbstract
Structural colours of avian skin have long been hypothesized to be produced by incoherent (Rayleigh/Tyndall) scattering. We investigated the colour, anatomy, nanostructure and biophysics of structurally coloured skin, ramphotheca and podotheca from 31 species of birds from 17 families in 10 orders from across Aves. Integumentary structural colours of birds include ultraviolet, dark blue, light blue, green and yellow hues. The discrete peaks in reflectance spectra do not conform to the inverse fourth power relationship predicted by Rayleigh scattering. The dermis of structurally coloured skin consists of a thick (100-500 mum) layer of collagen that is usually underlain by a layer of melanin granules. Transmission electron micrographs (TEMs) of this colour-producing dermal collagen layer revealed quasi-ordered arrays of parallel collagen fibres. Two-dimensional (2-D) Fourier analysis of TEMs of the collagen arrays revealed a ring of peak spatial frequencies in the spatial variation in refractive index that are the appropriate size to make the observed ultraviolet-yellow colours by coherent scattering alone. One species, Philepitta castanea (Eurylaimidae), has exceptionally ordered, hexagonal arrays of collagen fibres that produce a hexagonal pattern of spatial frequency peaks in the power spectra. Ultraviolet, blue, green and yellow structural colours of avian skin are produced by coherent scattering (i.e. constructive interference) by arrays of collagen fibres in the dermis. Some yellow and orange skin colours are produced with a combination of structural and pigmentary mechanisms. These combined colours can have reflectance spectra with discrete peaks that are more saturated than hues produced by carotenoid pigments alone. Bluish facial skin from two species of Neotropical antbirds (Thamnophilidae) are nanostructurally too small to produce visible light by coherent scattering, and the colour production mechanism in these species remains unknown. Based on the phylogenetic distribution of structurally coloured skin in Aves, this mechanism of colour production has evolved convergently more than 50 independent times within extant birds.
Collections
Citation
Prum, RO; Torres, R. Structural colouration of avian skin: convergent evolution of coherently scattering dermal collagen arrays. JOURNAL OF EXPERIMENTAL BIOLOGY. July 2003. 206(14) : 2409-2429
Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.