Wing Shape of Four New Bee Fossils (Hymenoptera: Anthophila) Provides Insights to Bee Evolution

View/ Open
Issue Date
2014-10-29Author
Dehon, Manuel
Michez, Denis
Nel, André
Engel, Michael S.
De Meulemeester, Thibaut
Publisher
Public Library of Science
Type
Article
Article Version
Scholarly/refereed, publisher version
Rights
© 2014 Dehon et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Metadata
Show full item recordAbstract
Bees (Anthophila) are one of the major groups of angiosperm-pollinating insects and accordingly are widely studied in both basic and applied research, for which it is essential to have a clear understanding of their phylogeny, and evolutionary history. Direct evidence of bee evolutionary history has been hindered by a dearth of available fossils needed to determine the timing and tempo of their diversification, as well as episodes of extinction. Here we describe four new compression fossils of bees from three different deposits (Miocene of la Cerdanya, Spain; Oligocene of Céreste, France; and Eocene of the Green River Formation, U.S.A.). We assess the similarity of the forewing shape of the new fossils with extant and fossil taxa using geometric morphometrics analyses. Predictive discriminant analyses show that three fossils share similar forewing shapes with the Apidae [one of uncertain tribal placement and perhaps near Euglossini, one definitive bumble bee (Bombini), and one digger bee (Anthophorini)], while one fossil is more similar to the Andrenidae. The corbiculate fossils are described as Euglossopteryx biesmeijeri De Meulemeester, Michez, & Engel, gen. nov. sp. nov. (type species of Euglossopteryx Dehon & Engel, n. gen.) and Bombus cerdanyensis Dehon, De Meulemeester, & Engel, sp. nov. They provide new information on the distribution and timing of particular corbiculate groups, most notably the extension into North America of possible Eocene-Oligocene cooling-induced extinctions. Protohabropoda pauli De Meulemeester & Michez, gen. nov. sp. nov. (type species of Protohabropoda Dehon & Engel, n. gen.) reinforces previous hypotheses of anthophorine evolution in terms of ecological shifts by the Oligocene from tropical to mesic or xeric habitats. Lastly, a new fossil of the Andreninae, Andrena antoinei Michez & De Meulemeester, sp. nov., further documents the presence of the today widespread genus Andrena Fabricius in the Late Oligocene of France.
Collections
Citation
Dehon M, Michez D, Nel A, Engel MS, De Meulemeester T (2014) Wing Shape of Four New Bee Fossils (Hymenoptera: Anthophila) Provides Insights to Bee Evolution. PLoS ONE 9(10): e108865. http;/dx.doi.org/10.1371/journal.pone.0108865
Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.
Except where otherwise noted, this item's license is described as: © 2014 Dehon et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.