KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Physics and Astronomy
    • Physics and Astronomy Scholarly Works
    • View Item
    •   KU ScholarWorks
    • Physics and Astronomy
    • Physics and Astronomy Scholarly Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Auroral ion precipitation at Jupiter: Predictions for Juno

    Thumbnail
    View/Open
    Cravens_et_al_Juno.pdf (1.059Mb)
    Issue Date
    2013-08-28
    Author
    Cravens, Thomas Edward
    Publisher
    American Geophysical Union
    Type
    Article
    Article Version
    Scholarly/refereed, publisher version
    Metadata
    Show full item record
    Abstract
    The spatially localized and highly variable polar cap emissions at Jupiter are part of a poorly understood current system linking the ionosphere and the magnetopause region. Strong X-ray emission has been observed from the polar caps and has been explained by the precipitation of oxygen and sulfur ions of several MeV energy. The present paper presents results of an extended model of the ion precipitation process at Jupiter. Specifically, we add to a previous model a more complete treatment of ionization of the atmosphere, generation of secondary electron fluxes and their escape from the atmosphere, and generation of downward field-aligned currents. Predictions relevant to observations by the upcoming NASA Juno mission are made, namely the existence of escaping electrons with energies from a few eV up to 10 keV, auroral H2 band emission rates of 80 kR, and downward field-aligned currents of at least 2 MA.
    Description
    This is the publisher's version, also available electronically from http://onlinelibrary.wiley.com/doi/10.1002/grl.50812/abstract;jsessionid=66B03862AE875776878700852033C5EF.f03t02
    URI
    http://hdl.handle.net/1808/14414
    DOI
    https://doi.org/10.1002/grl.50579
    ISSN
    0094-8276
    Collections
    • Physics and Astronomy Scholarly Works [1530]
    Citation
    Edberg et at. (2013). Extreme densities in Titan’s ionosphere during the T85 magnetosphere encounter. Geophys. Res. Lett. 40:2879. http://www.dx.doi.org/10.1002/grl.50579

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps