KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Development of Computer-Aided Molecular Design Methods for Bioengineering Applications

    Thumbnail
    View/Open
    Roughton_ku_0099D_13152_DATA_1.pdf (5.188Mb)
    Issue Date
    2013-12-31
    Author
    Roughton, Brock Charles
    Publisher
    University of Kansas
    Format
    306 pages
    Type
    Dissertation
    Degree Level
    Ph.D.
    Discipline
    Bioengineering
    Rights
    This item is protected by copyright and unless otherwise specified the copyright of this thesis/dissertation is held by the author.
    Metadata
    Show full item record
    Abstract
    Computer-aided molecular design (CAMD) offers a methodology for rational product design. The CAMD procedure consists of pre-design, design and post-design phases. CAMD was used to address two bioengineering problems: design of excipients for lyophilized protein formulations and design of ionic liquids for use in bioseparations. Protein stability remains a major concern during protein drug development. Lyophilization, or freeze-drying, is often sought to improve chemical stability. However, lyophilization can result in protein aggregation. Excipients, or additives, are included to stabilize proteins in lyophilized formulations. CAMD was used to rationally select or design excipients for lyophilized protein formulations. The use of solvents to aid separation is common in chemical processes. Ionic liquids offer a class of molecules with tunable properties that can be altered to find optimal solvents for a given application. CAMD was used to design ionic liquids for extractive distillation and in situ extractive fermentation processes. The pre-design phase involves experimental data gathering and problem formulation. When available, data was obtained from literature sources. For excipient design, data of percent protein monomer remaining post-lyophilization was measured for a variety of protein-excipient combinations. In problem formulation, the objective was to minimize the difference between the properties of the designed molecule and the target property values. Problem formulations resulted in either mixed-integer linear programs (MILPs) or mixed-integer non-linear programs (MINLPs). The design phase consists of the forward problem and the reverse problem. In the forward problem, linear quantitative structure-property relationships (QSPRs) were developed using connectivity indices. Chiral connectivity indices were used for excipient property models to improve fit and incorporate three-dimensional structural information. Descriptor selection methods were employed to find models that minimized Mallow's Cp statistic, obtaining models with good fit while avoiding overfitting. Cross-validation was performed to access predictive capabilities. Model development was also performed to develop group contribution models and non-linear QSPRs. A UNIFAC model was developed to predict the thermodynamic properties of ionic liquids. In the reverse problem of the design phase, molecules were proposed with optimal property values. Deterministic methods were used to design ionic liquids entrainers for azeotropic distillation. Tabu search, a stochastic optimization method, was applied to both ionic liquid and excipient design to provide novel molecular candidates. Tabu search was also compared to a genetic algorithm for CAMD applications. Tuning was performed using a test case to determine parameter values for both methods. After tuning, both stochastic methods were used with design cases to provide optimal excipient stabilizers for lyophilized protein formulations. Results suggested that the genetic algorithm provided a faster time to solution while the tabu search provides quality solutions more consistently. The post-design phase provides solution analysis and verification. Process simulation was used to evaluate the energy requirements of azeotropic separations using designed ionic liquids. Results demonstrated that less energy was required than processes using conventional entrainers or ionic liquids that were not optimally designed. Molecular simulation was used to guide protein formulation design and may prove to be a useful tool in post-design verification. Finally, prediction intervals were used for properties predicted from linear QSPRs to quantify the prediction error in the CAMD solutions. Overlapping prediction intervals indicate solutions with statistically similar property values. Prediction interval analysis showed that tabu search returns many results with statistically similar property values in the design of carbohydrate glass formers for lyophilized protein formulations. The best solutions from tabu search and the genetic algorithm were shown to be statistically similar for all design cases considered. Overall the CAMD method developed here provides a comprehensive framework for the design of novel molecules for bioengineering approaches.
    URI
    http://hdl.handle.net/1808/12992
    Collections
    • Dissertations [4475]
    • Engineering Dissertations and Theses [1055]

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps