KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    On the development of a GroEL based platform for identifying pharmacological chaperones

    Thumbnail
    View/Open
    Naik_ku_0099D_12619_DATA_1.pdf (29.87Mb)
    Issue Date
    2013-05-31
    Author
    Naik, Subhashchandra
    Publisher
    University of Kansas
    Format
    277 pages
    Type
    Dissertation
    Degree Level
    Ph.D.
    Discipline
    Biochemistry & Molecular Biology
    Rights
    This item is protected by copyright and unless otherwise specified the copyright of this thesis/dissertation is held by the author.
    Metadata
    Show full item record
    Abstract
    Many protein misfolding diseases are due to changes in protein homeostasis. This might lead to protein misfolding and possibly intra- or extracellular aggregation, causing loss of protein function or gain of toxic function. In several cases, the cellular clearance mechanism is sometimes inhibited and unable to degrade the aggregated forms leading to cell injury and death. This is frequently observed in misfolding diseases like Parkinson's disease, Cystic fibrosis, Alzheimer's, etc. These diseases account for nearly 30-50 % of all known human diseases afflicting millions and have a significant economic impact. However, there are currently few treatments to counteract these diseases. Thus, there is a pressing need to develop strategies to treat these diseases. One strategy is to develop small molecule ligand drugs that prevent the initial protein misfolding reaction. Proteins are somewhat metastable and naturally exist in dynamic equilibria between native fold and an ensemble of partially unfolded forms. This makes the misfolded forms moving targets and thus difficult to stabilize. This difficulty is compounded while developing high throughput assays to screen for stabilizing ligands for these moving protein targets. Consequently, these assays depend on detecting secondary misfolding events such as aggregation or removal of misfolded species, thus increasing the duration of the assays (hours-days). Additionally, in most instances specific cell-based assay systems have to be developed for each misfolding protein. This inhibits the development of broad based assays and complicates rapid screening of the huge compound libraries developed by rational drug design and combinatorial chemistry. In this dissertation, the development of a broad based high throughput assay for identifying novel stabilizers for protein misfolding diseases has been presented. The bacterial chaperonin GroEL binds to proteins that are partially unfolded or exist in a folded to partially folded dynamic equilibrium. Based on this property, the development of a generic broad based assay to probe a multitude of protein substrates based on changes in hydrophobic character was hypothesized and carried out. Using the chaperonin as a detection platform will enable the extension of this detection platform to identify potential stabilizers of the native fold that prevent or inhibit protein misfolding.
    URI
    http://hdl.handle.net/1808/12179
    Collections
    • Dissertations [4475]
    • Molecular Biosciences Dissertations and Theses [270]

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps