KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Evaluation of Loss Factor Estimation Techniques for Free Hanging Flat Panels Excited Mechanically

    Thumbnail
    View/Open
    Dande_ku_0099D12589_DATA_1.pdf (7.881Mb)
    Issue Date
    2013-05-31
    Author
    Dande, Himanshu Amol
    Publisher
    University of Kansas
    Format
    203 pages
    Type
    Dissertation
    Degree Level
    Ph.D.
    Discipline
    Aerospace Engineering
    Rights
    This item is protected by copyright and unless otherwise specified the copyright of this thesis/dissertation is held by the author.
    Metadata
    Show full item record
    Abstract
    To establish the "best" technique to estimate a damping loss factor for mechanically-excited panels, three loss factor estimation techniques--PIM, IRDM, and RDT--are compared. In experimental and computational analyses, panels with two damping levels and three sizes were tested. The loss factor estimates from each of the three techniques are then evaluated in four distinct frequency bands centered at one-third octave frequencies of 500 Hz, 1000 Hz, 2000 Hz and 4000 Hz (for computational analysis only). Unlike IRDM and RDT, the quality of PIM-based loss factor estimates have presented a strong correlation between the region of response measurement and it is distance from the excitation location. PIM-based loss factors were significantly underestimated when responses are measured inside the direct field. PIM-based loss factors are relatively accurate only if the measurements are made from wide-spread response locations. For a lightly damped panel, loss factor estimates using PIM, IRDM and RDT with direct averaging agree within reasonable accuracy. For intermediately to highly damped panels, IRDM and RDT with direct averaging under-predicted the loss factor; RDT with an autocorrelation function averaging approach slightly over-predicted the loss factor. Both RDT approaches might be used to set a bound on panel loss factor. Even when significantly fewer response locations are considered, it is evident that loss factor estimates from RDT are as reliable as IRDM and more reliable than PIM especially for highly damped panels. For the analysis of freely hanging plates, excitation "close to an edge", especially for PIM, is not recommended. When analyzing the panel loss factor, arbitrary or central excitation is acceptable.
    URI
    http://hdl.handle.net/1808/11681
    Collections
    • Dissertations [4623]
    • Engineering Dissertations and Theses [1055]

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    Login

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps