KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Dissertations and Theses
    • Theses
    • View Item
    •   KU ScholarWorks
    • Dissertations and Theses
    • Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Dissolved inorganic carbon in soil and shallow groundwater, Konza Prairie LTER Site, NE Kanas, USA

    Thumbnail
    View/Open
    Tsypin_ku_0099M_11897_DATA_1.pdf (22.95Mb)
    Issue Date
    2011-12-31
    Author
    Tsypin, Mikhail
    Publisher
    University of Kansas
    Format
    121 pages
    Type
    Thesis
    Degree Level
    M.S.
    Discipline
    Geology
    Rights
    This item is protected by copyright and unless otherwise specified the copyright of this thesis/dissertation is held by the author.
    Metadata
    Show full item record
    Abstract
    Sources and seasonal trends of dissolved inorganic carbon (DIC) in a shallow limestone aquifer were studied for 1 year at the Konza Prairie LTER (Long-Term Ecological Research) Site in northeastern Kansas, from spring 2010 to spring 2011. Annual cycles of soil air CO2, groundwater DIC, and isotope characteristics showed a strong dependency on weather conditions and soil respiration. Soil air CO2 reached its annual maximum in the middle of the growing season, when moisture was not limiting to soil respiration. Following the maximum, the CO2 decreased because of moisture deficiency in the late summer and temperature decline in the fall and winter. The decrease began first in the shallowest part of the soil and last in the deepest part. Groundwater CO2 reached its annual maximum in October; this lag-time between the soil and groundwater CO2 maxima of 2-3 months may correspond to the travel time of soil-generated CO2 to the water table. The time-variable CO2 caused an annual carbonate-mineral saturation cycle, intensifying limestone dissolution, thus soil CO2 and carbonate minerals are the two main sources of DIC in soil and groundwater. The stable carbon isotope composition of soil air CO2 and DIC exhibited primarily C4 plant signature and were similar to that of soil organic matter, suggesting that both root and bacterial respiration are sources of CO2. DIC was enriched in 7-10 per mil PDB relative to the CO2 source due to isotope fractionation in a system open to soil CO2; the enrichment was smallest under highest pCO2. For this reason, d13CDIC was out of phase with DIC, the lightest in the late growing season. The carbon flux from the unsaturated zone to the unconfined aquifer during the year was variable depending on respiration and precipitation regimes, and had two main pathways. Transport of soil CO2 in the dissolved form with diffuse flow of recharge water was the most effective during the entire growing season. Downward movement of gaseous CO2 and equilibration with groundwater at the water table was possible in July to August. Storm rainfall events rapidly recharged the aquifer through preferential flow and stream-groundwater interaction. Rather than forcing soil gases downward because of water-saturated pores, the main effect of these events was dilution of groundwater. The calculated flux was about 0.3 M/m2/yr of C, which is less than 1% of the CO2 that is released by soil to the atmosphere via efflux. However, the climate prediction of increased respiration rates, temperature, and frequency of extreme rainfall events has the potential to cause higher carbon flux to the saturated zone, intensifying weathering and groundwater acidification.
    URI
    http://hdl.handle.net/1808/10386
    Collections
    • Geology Dissertations and Theses [232]
    • Theses [3768]

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    Login

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps