Loading...
Thumbnail Image
Publication

Rate of convergence and asymptotic error distribution of Euler approximation schemes for fractional diffusions

Hu, Yaozhong
Liu, Yanghui
Nualart, David
Citations
Altmetric:
Abstract
For a stochastic differential equation(SDE) driven by a fractional Brownian motion(fBm) with Hurst parameter H>12, it is known that the existing (naive) Euler scheme has the rate of convergence n1−2H. Since the limit H→12 of the SDE corresponds to a Stratonovich SDE driven by standard Brownian motion, and the naive Euler scheme is the extension of the classical Euler scheme for Itô SDEs for H=12, the convergence rate of the naive Euler scheme deteriorates for H→12. In this paper we introduce a new (modified Euler) approximation scheme which is closer to the classical Euler scheme for Stratonovich SDEs for H=12, and it has the rate of convergence γ−1n, where γn=n2H−1/2 when H<34, γn=n/logn−−−−√ when H=34 and γn=n if H>34. Furthermore, we study the asymptotic behavior of the fluctuations of the error. More precisely, if {Xt,0≤t≤T} is the solution of a SDE driven by a fBm and if {Xnt,0≤t≤T} is its approximation obtained by the new modified Euler scheme, then we prove that γn(Xn−X) converges stably to the solution of a linear SDE driven by a matrix-valued Brownian motion, when H∈(12,34]. In the case H>34, we show the Lp convergence of n(Xnt−Xt), and the limiting process is identified as the solution of a linear SDE driven by a matrix-valued Rosenblatt process. The rate of weak convergence is also deduced for this scheme. We also apply our approach to the naive Euler scheme.
Description
Date
2016-03-22
Journal Title
Journal ISSN
Volume Title
Publisher
American Meteorological Society
Research Projects
Organizational Units
Journal Issue
Keywords
Fractional Brownian motion, Stochastic differential equations, Euler scheme, Fractional calculus, Malliavin calculus, Fourth moment theorem
Citation
Hu, Yaozhong; Liu, Yanghui; Nualart, David. Rate of convergence and asymptotic error distribution of Euler approximation schemes for fractional diffusions. Ann. Appl. Probab. 26 (2016), no. 2, 1147--1207. doi:10.1214/15-AAP1114. https://projecteuclid.org/euclid.aoap/1458651830
Embedded videos