Loading...
Robust numerical analysis of fibrous composites from X-ray computed tomography image data enabling low resolutions
Auenhammer, Robert M. ; Jeppesen, Niels ; Mikkelsen, Lars P. ; Dahl, Vedrana A. ; Blinzler, Brina J. ; Asp, Leif E.
Auenhammer, Robert M.
Jeppesen, Niels
Mikkelsen, Lars P.
Dahl, Vedrana A.
Blinzler, Brina J.
Asp, Leif E.
Citations
Altmetric:
Abstract
X-ray computed tomography scans can provide detailed information about the state of the material after manufacture and in service. X-ray computed tomography aided engineering (XAE) was recently introduced as an automated process to transfer 3D image data to finite element models. The implementation of a structure tensor code for material orientation analysis in combination with a newly developed integration point-wise fibre orientation mapping allows an easy applicable, computationally cheap, fast, and accurate model set-up. The robustness of the proposed approach is demonstrated on a non-crimp fabric glass fibre reinforced composite for a low resolution case with a voxel size of 64 μm corresponding to more than three times the fibre diameter. Even though 99.8% of the original image data is removed, the simulated elastic modulus of the considered non-crimp fabric composite is only underestimated by 4.7% compared to the simulation result based on the original high resolution scan.
Description
Date
2022-06-16
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Collections
Research Projects
Organizational Units
Journal Issue
Keywords
Computational mechanics, Composite materials, X-ray computed tomography, Structure tensor, Finite element modelling
Citation
Auenhammer, R.M.; Jeppesen, N.; Mikkelsen, L.P.; Dahl, V.A.; Blinzler, B.J.; Asp, L.E.: Robust numerical analysis of fibrous composites from X-ray computed tomography image data enabling low resolutions, Composites Science and Technology, V. 224, No. 109458, 2022. ISSN 0266-3538. https://doi.org/10.1016/j.compscitech.2022.109458.