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Abstract 

A Langmuir (electrostatic) probe was designed and constructed to 

measure the average electron energy (<ε>), electron temperature (kTe) 

and electron density (Ne) in He, N2, BCl3, and BCl3/N2 capacitively coupled 

plasmas (CCPs). Helium, N2, and BCl3 plasmas were used to calibrate and 

validate the new probe system; BCl3/N2 plasmas were investigated. 

Previously described small increases in Ne when N2 is added to BCl3 

plasmas cannot fully explain the substantial increase in gallium arsenide 

(GaAs, 13.3× @ 60% N2) and copper (Cu, 7.5× @ 30% N2) etch rate. Though 

it was hypothesized that <ε> increased with N2 addition leading to 

increased etch rates, probe measurements show that <ε> decreases when 

N2 is added to BCl3 plasmas (4.52 eV @ 0% N2, 3.69 eV @ 60% N2, 4.14 eV 

@ 30% N2). Increases in negative ion densities were observed with N2 

addition (15.6× @ 60% N2, 10.3× @ 30% N2, maximum: 20.8× @ 40% N2) 

that correlate with both GaAs and Cu etch rates. These findings are 

consistent with two reaction pathways. The most likely pathway suggests 

N2 metastables create Cl neutrals that ionize and become active etch 

species that etch the substrate or that recombine and dissociate into Cl− 

ions. 
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Chapter 1. Motivation 

1.1. Background 

The current proliferation of integrated devices in electronics results 

directly from the invention of the transistor. The transistor alone, 

however, cannot be wholly credited with the increase in device density 

that Gordon Moore predicted in 1965 [1]. The increase in device density 

and miniaturization of integrated chip (IC) devices is a testament to the 

unique properties of plasma processing, and in particular, plasma etching 

to create anisotropic features.  

Today, plasma technology is critical to many different parts of the 

integrated chip manufacturing process. Engineers in industry and 

research employ plasma processing both to accomplish the mundane (e.g., 

removal of excess photoresist) and to push the limits of research (e.g., 

creation of microscopic features in micro-electro-mechanical systems—

MEMS). 

Despite the overwhelming use of plasma etching in industry, research 

in plasma technology continues unabated for at least two reasons. First, 

silicon (Si), the most common substrate used in the microchip industry, is 

not suitable for all applications, particularly in electro-optics and more 

environmentally demanding situations because of its narrow bandgap, 
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and the resultant low resistance to external radiation. This makes 

controlling and characterizing the plasma etching process in III-V 

materials such as Gallium Arsenide (GaAs) and Gallium Nitride (GaN) as 

well as other unique substrates such as Silicon Carbide (SiC) and Zinc 

Oxide (ZnO) extremely appealing. Second, while plasmas are commonly 

used, the process of selecting the correct plasma parameters for a 

particular job remains highly experiential. There is a need, therefore, for a 

theoretical framework to explain why etch rates reach maxima and how 

etch rates vary with plasma parameters such as included power, pressure, 

and chemical composition. Because of the lack of a complete framework, a 

body of experimental evidence characterizing several often used plasmas 

is desirable and testable hypotheses based on this body allow research to 

take the next steps forward. 

1.2. Etching as a Function of both Plasma and Substrate 

Plasma etching involves interplay of both physical and chemical 

processes. While the results of an etch process are a function of the 

physical characteristics of the semiconductor being etched (crystal 

structure, orientation, bond energy, etc.) and the physical characteristics 

of the plasma in which it is etched (electron energy—kTe, electron 

density—Ne, chemical composition, pressure, etc.), the chemical reactions 

of the active plasma species and the substrate must produce products that 
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are sufficiently volatile to evaporate and expose a new layer to be etched. 

These product volatilities are often used to predict whether an active 

etchant (such as F or Cl) will etch a given substrate (such as SiC or GaAs) 

and are valuable tools in selecting plasmas that will selectively etch 

through one layer of a substrate and not another. Still, understanding the 

plasma parameters allows one to predict (and then experimentally test) 

the ability of a certain plasma to effectively etch a particular substrate. 

Thus, an understanding of these characteristic quantities, as well as 

studies on multiple substrates is an important and worthy scientific and 

engineering endeavor.  

As testing numerous materials and plasma parameters could result in 

years of study, this work is limited to evaluating the changes in the 

plasma characteristics but will include etch results from previous 

studies [2-6]. Further, this thesis will limit its discussion to those plasmas 

used for etching III-V or wide bandgap semiconductors. For our studies, 

the plasmas will be low density, Capacitively Coupled Plasma (CCP) 

discharges. They give rise to Reactive Ion Etching (RIE) where reactive 

ions are created by electron collisions and other mechanisms and are then 

accelerated across a strong electrostatic sheath into the target substrate.  
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While RIE plasma parameters are controlled externally by varying 

pressure, chemical composition, and electrode power (which induces a self 

bias on the powered electrode), the physical plasma parameters that are 

affected within the bulk plasma are electron and ion density as well as 

electron and ion energy (sometimes referred to as electron and ion 

temperature). As the electrons in plasmas are much more mobile than the 

ions because of their much lower mass, they are responsible for the 

majority of interactions (collisions, attachment, etc.) that result in 

dissociation and excitation reactions. Thus, by examining the electron 

temperature, electron density, and electrode DC bias one can attribute the 

effect that changes in external parameters have on etch rate to these more 

intrinsic plasma parameters.  

More modern techniques such as Inductively Coupled Plasmas (ICPs) 

are now used rather than CCPs for some of the higher bond strength 

(wider bandgap) materials, since they allow independent control of ion 

production and ion impact energy. The same physical processes, however, 

occur in ICPs and CCPs to produce ions and we believe that our 

experimental results can be extrapolated to ICPs. Specifically, if we are 

able to show how the various external conditions affect trends in kTe and 

Ne in CCP discharges, the effects should be extendable to ICP discharges 

with similar kTe and Ne values or using similar etching chemistries. 
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1.3. Plasma Chemistry—Reactive, Inert, and Inhibiting Species 

 Previous work in the University of Kansas Plasma Research 

Laboratory (KU PRL or KU Plasma Research Lab) has focused on reactive 

ion etch rates in wide bandgap semiconductors such as GaAs, InGaAsP, 

SiC, and GaN [2, 4-6]. Reactive species such as chlorine are commonly 

used to etch gallium based substrates because chlorine reacts with the 

substrate resulting in gallium chloride (GaClx) which is volatile and 

quickly sublimates into the plasma atmosphere. In these situations, boron 

trichloride (BCl3) is often used as the donor molecule. While inert species 

such as argon (Ar) or helium (He) do not react with the substrate and only 

etch by physically colliding with the substrate and knocking the substrate 

atoms out of their crystal matrix, both research and industry experience 

shows that a small percentage of an inert gas can stabilize the discharges. 

Finally, fluorine acts as an inhibiting species for gallium and aluminum 

based substrates because gallium fluoride (GaFx) and aluminum fluoride 

(AlFx) are not sufficiently volatile to sublimate and expose new layers of 

the substrate to the etching plasma making pure sulfur hexafluoride (SF6) 

unsuitable for etching GaAs or GaN. Furthermore, when even a small 

amount of SF6 is added to a BCl3 plasma it can completely prevent the 

plasma from etching AlGaAs or AlAs. Because of this unique property, SF6 

is added to plasmas to halt the etching process at a buried AlAs or AlGaAs 
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layer. Counterintuitively, that same addition of SF6 to BCl3 drastically 

increases the etch rate in GaAs [5]. This initial inconsistency raises 

interesting questions and has inspired research into mixed gas plasmas at 

the KU PRL and elsewhere.  

Investigation into mixed gas plasma chemistries has raised questions 

about the effect of adding what were initially considered either diluent or 

inhibitory gases (Ar, He, N2, SF6 etc.) to active etching gases. Since 

plasmas consisting of only diluent or inhibitory gases are not effective 

reactive ion etchants and can only etch through brute force sputtering if 

at all, intuition holds that adding them to an active gas should decrease 

the overall etch rate. Many investigators have found this not to be the 

case, and in fact the opposite is often true [2-5, 7, 8]. 

Individual KU PRL investigations [4, 5] revealed that BCl3/N2 and 

BCl3/SF6 plasmas etch GaAs and GaN faster than pure BCl3 plasmas. 

Similarly, SF6/He plasmas etch SiC faster than pure SF6 plasmas. These 

discoveries prompted electron density measurements using microwave 

interferometry with the hope of explaining the increased etch rate. These 

inquiries had mixed results. Electron density in SF6/He plasmas increased 

with increasing He and displayed a direct correlation with the increase in 

etch rate; electron density increased with increasing N2 in BCl3/N2 
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plasmas but not sufficiently to fully explain the increase in etch rate, and 

electron density actually decreased with increasing SF6 in BCl3/SF6 

plasmas though the etch rate increased. This recent research into these 

critical plasma parameters suggests that quantifying just electron density 

while controlling for DC bias is not sufficient to predict etch rate.  

Because it is clear that N2 and He effect a palpable change in etch 

rates, electron density, and perhaps electron energy/temperature when 

added to BCl3 and SF6, this thesis will refer to BCl3/SF6, BCl3/N2, and 

SF6/He as mixtures. This is in contrast to previous papers that sometimes 

refer to admixtures or diluted plasmas. The exception to this will be when 

the thesis discusses N2, He, or Ar as inactive in their own right, rather 

than in combination with SF6 or BCl3. 



 
8 

Chapter 2. Literature Review and Basis 

2.1. Indicators—Common Ground 

When striking a plasma discharge, the most notable parameters are 

external or extrinsic—chemistry, incident RF power, chamber pressure, 

chamber geometry, etc. Thus, these, along with the target substrate, are 

naturally what most engineers use to describe a process plasma. However, 

when one varies chamber geometry, substrate, or the technology used to 

strike the plasma, things get muddled quickly. How can one compare CCP 

to ICP to other novel plasma generation techniques? The answer lies in 

intrinsic or internal parameters such as electron density, ion density, 

electron temperature, ion temperature, etc. While these parameters still 

depend on the external parameters used to create them, they also provide 

a window into suggesting common ground among similar, but not directly 

comparable, plasmas.  

For all its quantitative precision, absolute etch rate is not necessarily a 

good indicator as it is highly dependent on the factors mentioned above 

and it is not an intrinsic plasma parameter. Relative etch rate, however, is 

a good starting point in this research. Let us be clear—a controllable, very 

selective etch rate that produces clean features is the ultimate goal. In the 

process of finding that target etch rate, however, we hope to learn 
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something important about how the more basic internal parameters 

influence etch rate. Our interest is further piqued by etch rate trends that 

are counterintuitive when only external parameters are considered. 

Specifically, why would diluting a known etchant with a noble (and 

theoretically inert) or other inert, non-etching gas result in an increase in 

etch rate?  

2.2. Mixed Chemistry Plasmas 

Mixed chemistry plasmas have long garnered interest because they 

can show enhanced etch rates, selectivity, and surface profiles over single 

constituent plasmas. The mundane nature of the first patent using a 

mixture of CF4 and O2 to etch silicon (filed in 1969), however, shows that 

the potential advantages of mixed chemistry plasmas are rarely seen in 

their first applications. Over the years, the idea of adding a second or 

third parent molecule to plasmas gained traction, and both plasma 

enhanced deposition and plasma etching benefited from this advance. For 

industry, this increased the complexity of plasma processes, and made the 

process parameters a way to compete with one another. For researchers, it 

opened new avenues to gain further understanding about plasma physics, 

chemistry, and its applications.  
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Because industrial process plasma parameters are almost always held 

as industrial trade secrets interested in etch and deposition rates as well 

as surface morphology, the literature contains few meaningful examples of 

plasma process recipes. Nonetheless, some chemistries (such as 

SiCl4 + H2 + Ar) are well explored and characterized both from an effect-

based as well as a mechanistic standpoint. Mechanistically, these 

explorations document dissociation into active components through 

radical-molecule (e.g., SiCl4 + H2), ion-molecule (e.g., SiCl4 + Ar), and 

electron-molecule interactions [9]. Unfortunately, most explorations are 

incomplete and indicate that the target effect (be it deposition or etching) 

scales non-linearly with concentrations and other parameters [2-6, 9-11]. 

This means that most explorations first characterize the mixture from the 

point of view of the target effect, and only later characterize its 

mechanism. Simply put, the technology of mixed chemistry plasma 

etching advances faster than 1) is reported in the literature and 2) the 

science that explains how or why it works.  

In his thesis in 1993 and later as a paper in 1994, B. Howard described 

a chemistry (i.e., BCl3/N2) that etched copper faster as a mixture than a 

plasma of only its active parent ingredient, BCl3 [3, 12]. The study 

described several “response models for copper etch rate behavior” and 

showed that the etch rate of copper peaked at 75% BCl3/25% N2 in a 50 
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mTorr, -300 V DC Bias, 250°C plasma (See Figure 2.1). The models 

correlated various external parameters such as temperature, pressure, 

and DC bias with copper etch rate. Ion density measurements were also 

taken, but the results did not fully explain the increase in etch rate with 

N2 addition and so Howard did not attempt to posit a causative 

mechanism. 

This study, as well as previous work by K. Nordheden [5, 10] inspired 

studies into BCl3/N2 discharges for etching III-V semiconductors at the 

KU PRL. J. Sia and K. Nordheden not only focused on etch rate 

Figure 2.1: The etch rate of copper as a function of % BCl3 in BCl3/N2 
( ) and BCl3/Ar ( ), (50 mTorr, -300 V bias, 250°C) [3, 12]. 
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comparisons, but attempted to explain the increase in etch rate using Cl 

concentrations and electron density increases. The etch rate findings 

mirrored those of Howard, though the maximum appeared at 40% N2, and 

a sharper peak was noted. (See Figure 2.2.) The mechanistic findings were 

not as promising: though Cl concentrations and energy density were 

clearly contributory, these factors did not fully explain the increase in etch 

rate.  
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Figure 2.2: The etch rate of GaAs as a function of % BCl3 in BCl3/N2 ( ) 
and the DC Bias as a function % BCl3 in BCl3/N2 ( ) (15 mTorr, 50 W 
RF power) [4, 6]. 
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2.3. Diagnostic Methods 

Plasma diagnostics seek to measure plasma parameters or to obtain 

other information about the state of the plasma. The most common 

diagnostic methods are mass spectrometry, electrostatic probes, optical 

emission spectroscopy, and microwave phase measurements. Each has its 

advantages and disadvantages depending on the target parameter, and 

for this reason, different diagnostic methods are used in different 

situations. On one end of the diagnostic spectrum, mass spectrometry can 

identify the mass to charge ratio and relative number of molecules, ions, 

or other species present in the molecular spectrometer, but cannot 

guarantee that those are the actual species present in the plasma because 

of the recombination reactions that the species potentially undergo in 

transit to the detector. The upside of the ex situ nature of this method is 

that it does not perturb the plasma. On the opposite end of the spectrum, 

electrostatic (or Langmuir) probes do not directly shed any light on the 

chemical nature of plasmas but can find various relevant physical 

parameters (e.g., electron temperature and electron density) which are 

measured within the plasma itself. The downside to this in situ, intrusive 

technique is that it must perturb the plasma to measure the parameters, 

and therefore the plasma must be large enough to screen out the local 

perturbation so as not to affect the bulk of the plasma. [9] 
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Both J. Sia and R. Alapati employed almost the entire gamut of 

diagnostic techniques in various attempts to ferret out the parameters 

that were responsible for the increased etch rate in the mixtures of 

BCl3/N2 and SF6/He, respectively [2, 4, 6]. These included microwave 

phase change measurements, optical emission spectroscopy (OES), and 

quadrupole mass spectrometry (QMS). These methods elucidated that 

increases in the DC bias and electron density (Ne) could completely 

explain the increases seen SF6/He plasmas. However, the results could not 

fully explain the significant rise in etch rate in BCl3/N2 plasmas, either 

chemically, because of increased DC bias, or because of electron density 

increases. In her work [4, 6], Sia did see an increase in Cl species, but 

neither Ne nor DC bias could explain it, therefore she posited that either 

kTe or energy transfer from N2 metastables were the most likely 

mechanisms behind Cl species production. Electrostatic probes, therefore, 

became the next logical step to understanding these plasmas since they 

could measure additional information about electron energy distributions 

that microwave phase measurements could not. This thesis seeks to 

develop a viable electrostatic (Langmuir) probe system at the KU PRL, 

develop a framework to analyze BCl3/N2 plasmas using He, N2, and BCl3 

as bases, and to provide results from various BCl3/N2 plasmas that can be 

further interpreted to explain the etch rate increases. 
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2.4. Langmuir Probes 

Langmuir (electrostatic) probes have a long history of use in analyzing 

simple plasma discharges. Unfortunately, both their apparent simplicity 

and cost effectiveness are mitigated by disparity in measured parameters 

under “similar” conditions. To further complicate issues, Langmuir probes 

have rarely been used to measure anything but single constituent plasmas 

under actual processing conditions, though a quick search of the literature 

will find many different studies that employ electrostatic probes. The 

fastidious cleaning required prior to each probe sweep also limits their use 

in common processing gases. Nonetheless, they are able to measure, albeit 

with increasing difficulty, Vf, Vp, kTe and Ne if the distribution of electrons 

is Maxwellian, a good estimate of the EEPF and EEDF, a good estimate of 

<ε> (or of an effective kTe), Ne, I+, Ie, I–, the exact EEPF and EEDF, and 

<ε>. 

Several previous papers have examined the EEDF of N2 plasmas using 

Langmuir probes, particularly because of an interesting feature that is 

missed unless the EEDF is examined [13-15]. Other papers have looked at 

the effects of RF generated plasmas on basic Langmuir probe theory, and 

still others have critiqued some of the underlying assumptions that have 

been made in the case of electronegative plasmas such as those containing 

BCl3 or SF6 [16-26]. This shows that the literature is still evolving and 
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that problems are still often encountered, particularly when diagnosing 

real-world processing plasmas.  

The closest any studies have come to using a Langmuir probe under 

similar conditions are when Howard used a Langmuir Probe in his 

research to find the positive ion density and what was reported as kTe for 

a select number of BCl3/N2 concentrations and when G. Hebner and 

C. Fleddermann [27] attempted to use a Langmuir probe to measure the 

electron characteristics of N2 addition to BCl3 plasmas in an ICP. Howard 

did not, however, examine the EEDF nor did he use the kTe values that he 

derived to attempt to explain the increase in etch rate while Hebner and 

Fledderman mentioned their attempt but did not publish any results 

because of concerns about reproducibility and believability. 
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Chapter 3. Review of Relevant Plasma Physics 

3.1. Plasma Physics Review 

A plasma is an ionized gas. It can be either fully ionized or partially 

ionized, but it must have a sufficient number of ionized particles 

(electrons, positive ions, or negative ions) to affect its macroscopic 

physical, electrical, and perhaps chemical properties. It then becomes 

conductive, begins to exhibit other electrical and physical properties, and 

its constituent particles interact collectively to create unique phenomena 

because of the interaction of the separated charged particles. 

If one looks at a plasma in isolation, such as a plasma in outer space, 

or a volume of bulk plasma that is sufficiently far away from any other 

state of matter, several properties become clear. First, the sum of the 

charges of the negative and positive charge carriers is equal to zero when 

summed over a large volume (i.e., a large number of particles is observed). 

Second, while the net charge of the volume is zero, the particles inside it 

are actively attempting to recombine into stable molecular or atomic 

species via the electro-magnetic forces that are created because of the 

charge separation. These forces cause the charge carriers to cease their 

purely random motion and to accelerate toward (or be repelled by) the 

electric fields created by the other charge carriers. Third, because of the 



 
18 

lack of boundaries of an isolated plasma, charge carriers that enter the 

plasma replace those that escape it.  

 Any time a non-plasma object comes in contact with a plasma, the 

lighter, more quickly moving electrons collide with its surface more 

frequently than the heavier, positively or negatively charged ions. 

Because these interactions result in charge transfer, the object quickly 

acquires a negative charge relative to the plasma. If the object is 

electrically insulated (or non-grounded) this accumulated charge then 

repels increasingly energetic electrons until only the few electrons with a 

kinetic energy above a certain threshold can overcome the object’s electric 

potential barrier. The more massive positive (or negative) ions do not 

move as quickly even when they are attracted to (or repelled by) the 

negatively charged object, and so are only termed to “drift” towards (or 

away from) it. Provided there are enough electrons in the plasma, the 

negative charge on the surface continues to accumulate, repelling 

negatively charged particles (ions and electrons) and attracting positively 

charged ones (ions) until the sum of the electron and negative ion flux is 

equal to that of the positive ions. The volume of influence of this electric 

field is termed the Debye sheath or the plasma sheath. (N.B: This is 

different from the Debye radius, which is the characteristic radius of 

influence of a charged particle within a plasma.) 
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Vp (the plasma potential) is physically the average electric potential 

that exists on a scale smaller than that of the Debye radius (wavelength 

or length—λD) between the individual charged particles within a plasma. 

In this context, however, it also corresponds to the voltage at which the 

probe is at the same potential as the plasma. At this probe bias voltage, 

all the charge carriers (mostly electrons) that cross the probe tip’s 

boundary—high and low energy alike—are captured by the probe. 

Because the probe must have a path to ground to achieve this voltage, the 

accumulated negative charge these carriers transfer to the probe drains 

off the probe to ground through the voltage source. This is equivalent to 

having a positive current being emitted by the probe.  

Despite the quasi-neutrality of bulk plasmas, the small reduction of 

negatively charged particles (mostly electrons) around the edges of the 

plasma generates a positive Vp throughout the plasma. The typical 

capacitively coupled plasma (CCP) RIE chamber geometry and the circuit 

used to generate the plasma allows these electrons to escape in larger 

numbers than in other plasma systems. The typical CCP chamber, like 

the PlasmaTherm 790 used in the KU PRL, is composed of an electrically 

grounded chamber housing and a powered electrode that is DC isolated 

from the chamber RF power source by a capacitor and is physically 

isolated from the chamber housing. A high power RF signal is sent 



 
20 

through the electrode and induces an oscillating electric field between the 

electrode and the chamber housing. The few free electrons that are 

normally present in any gas respond to this oscillation by accelerating 

toward and away from the electrode. When these electrons inevitably 

collide with parent molecules in the source gas they sometimes knock 

other electrons out of the outermost molecular or atomic orbits ionizing 

the gas. The original and new free electrons continue to be affected by the 

electric field and an avalanche of ionization begins. A portion of this cloud 

of free electrons then collides with both the chamber housing and the 

electrode. The electrons that collide with the housing drain off because the 

chamber is grounded, while the electrons that collide with the electrode 

are trapped by the DC blocking capacitor and build up a negative charge. 

Since the only sources of electrons in the system are the outermost orbits 

of the parent molecules, the plasma becomes positively charged and thus 

Vp is noticeably positive. This phenomenon also explains why the 

electrode becomes negatively charged leading to a negative DC bias 

voltage with respect to ground. This DC bias attracts positive ions across 

the sheath and these ions bombard the substrate, reacting and 

consequently etching it.  

One can quickly infer that if the difference between Vp and the 

electrodes changes, the sheath will have to change to compensate. This 
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change can take on many forms but if the potential difference is large 

enough it generally changes the dimension of the sheath. (Although the 

term sheath height, radius, or length is often used informally depending 

on the inducing electrode’s geometry.) If the difference in potential is 

small, the compensation does not affect the sheath dimension, and instead 

the sheath itself adjusts internally. This adjustment forms the basis for 

Langmuir probe theory. However, because each plasma is a unique 

mixture of negative ions, positive ions, and electrons it will react similarly 

but not identically to minute perturbations, leading to the wide ranging 

experiments using Langmuir probe studies. 
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Chapter 4.  Langmuir (Electrostatic) Probe Description 

4.1. Background 

At its simplest, a Langmuir probe is any small piece of metal that is 

inserted into a plasma to measure its characteristics. To make use of its 

probing capabilities, however, requires that a voltage source bias that 

piece of metal from below a potential where the electron flux does not 

significantly mask the positive ion saturation current to a few volts above 

the electron saturation potential where the positive ion flux is negligible. 

In addition, if the plasma source varies with time, a filtering scheme 

(either passive or active) is required to suppress the primary RF driving 

frequency and mitigate the inevitable high frequency oscillations that an 

RF plasma power source creates. 

4.2. Preliminary Electrostatic Probe Theory 

A Langmuir probe sweep characteristic is essentially a measurement 

of a DC voltage-current pair taken at many different voltage points. Each 

voltage point corresponds to a different current that reflects the energies 

and density of positive ions, negative ions, and electrons that are attracted 

to or repelled by the probe tip. The sweep can be fundamentally divided 

into three regions based on the voltage applied to the probe (the probe 

bias—Vb). The first is the positive ion collection region. This region 
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corresponds to a strongly negative probe bias in relation to the plasma 

potential (Vp). In this region the probe is biased so negatively that all the 

electrons and negative ions are repelled from its surface and only positive 

ions are collected. Because of this, and the relatively standard definition 

that positive charge flow away from the probe tip is positive, the probe 

current is negative and only positive ions affect the probe response if there 

is a decrease in the bias. The second region is the electron saturation 

region. This corresponds to the region where the probe bias is a few volts 

higher than Vp. In this region the probe surface collects all the electrons 

and negative ions that come in contact with the sheath surface. In this 

range, the potential barrier effectively repels all of the positive ions from 

the collecting surface and therefore the current overwhelmingly consists of 

electrons and negative ions. In a similar (but opposite) fashion to the 

positive ion collection region, the probe response here depends only on 

electrons and negative charge carriers if the probe bias is increased. The 

third region is the transition region. This is where both high energy 

electrons that are able to overcome the potential created by the probe tip 

and the positive ions contribute to the probe current. Within this region, a 

special point exists called the floating potential (Vf). This is the potential 

(or voltage) where the sum of the charges of the positive ions, negative 
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ions, and electrons that are collected by the probe result in a net zero 

current.  

Ideal Langmuir Probe Behavior in a DC Plasma of a Single Species 

While Langmuir’s original work and several other more recent 

monographs and articles [28-33] admirably explain the basic principles of 

electrostatic probes, a brief visualization of an ideal probe characteristic 

may help guide the reader throughout the rest of this thesis.  

The probe current comprises two competing currents—the positive 

charge carrier current (positive ion current, I+) and the negative charge 

carrier current. In plasmas that ionize predominantly into positive ions 

and electrons, called electropositive plasmas, the negative charge carrier 

current is the electron current (Ie). In plasmas that have a sufficient 

number of negative ions so as to influence the plasma, termed 

electronegative plasmas, the negative charge carrier current is the sum of 

Ie and the negative ion current (I–). In this example, I– is taken to be zero. 

If one does not attempt to take sheath expansion into account, and if the 

thermal energy of the electrons is much greater than the thermal energy 

of the positive ions ( ekT kT+ ), which is typically true, 
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, the random electron current. This 

results in the type of curve seen in Figure 4.3. This oversimplifies the 

probe characteristic because the electric potential sheaths do not expand 

as they must in order to retard the positive ions and electrons in the 

regions slightly above and below Vp, nor do they continue expanding as 

the bias spreads away from Vp. Still, the transition region from Vf to Vp is 

similar to what one would expect in a well-behaved DC plasma with no 

collisions in the sheath (such as the plasmas found in fusion Q-machines) 

and the knee that one sees at Vp is one of the first indicators of a “good” 

I-V characteristic.  



 
26 

 

 

40 20 0 20 40 60 80
2 .10 4

0

2 .10 4

4 .10 4

Electron Current
Probe Current
10x Positive Ion Current

Electron Current
Probe Current
10x Positive Ion Current

Ideal Probe Trace (No Sheath Expansion)

Probe Voltage

El
ec

tro
n 

&
 P

ro
be

 C
ur

re
nt

 (A
)

Vf Vp

 
Figure 4.3: Ideal probe trace with Vf and Vp labeled.  
The positive ion mass is taken to be that of helium. 
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Such clean curves were indeed found by Langmuir, Druyvesteyn, Chen 

and others working in the realm of fully ionized plasmas, validating the 

original Langmuir probe theory. Unfortunately, to quote Francis Chen (a 

well respected electrostatic probe researcher) after he presented several 

examples of Q-machine I-V characteristics: “Such nice exponentials were 

never seen again!” This is emblematic of the realities of today’s plasmas, 

which are inevitably time varying and usually collisional. 

4.3. Practical Considerations in an RF driven processing plasma 

Langmuir originally developed electrostatic probes in inert DC 

discharges or glows (i.e., with a steady electric field inducing the plasma, 

and in Ar, H2, or He) [29]. Because of the static nature of those plasma 

sources, the electric potential of the plasma, the driving electrode, and the 

direction of electron flow did not vary with time. This allowed the 

difference between the plasma potential and the probe bias voltage to 

remain constant for each point on the characteristic curve. Further, 

because the gases were inert and non-reactive, there was relatively little 

chemical interaction between the plasma and the probe tip. (Although the 

reader should note that this does not mean that the two did not interact at 

all.) In modern processing plasmas, however, the plasma source is rarely 

static and the gases are always reactive—less so with the probe tip than 
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with the substrate, but they still react. Specifically, the KU PRL 

PlasmaTherm 790 receives power from a 13.56 MHz RF generator that 

connects to the biased electrode via two coaxial cables and the plasma 

parent gases in this study are He, N2, and BCl3. These realities ensure 

that the plasma oscillates at 13.56 MHz, introduce the possibility of a non-

sinusoidal driving function, and guarantee that the plasma species will 

quickly affect the electrical characteristics of the probe tip.  

Time Varying, RF Plasma Source 

If one simply ignored the existence of the RF oscillations and used a 

non-compensated probe to measure the I-V characteristic in an RF 

plasma, the RF interference would effectively obscure the target 

measurements. To quote Paranjpe et al. [25], “Numerous papers have 

demonstrated the perturbing effects of [RF] interference on the single 

probe characteristic.” This comment rings true because even the simplest 

Helium and Argon plasmas do not behave nearly as well when they are 

created with an RF source because of the dynamic electric fields to which 

the plasma species are subjected. Unlike the Q-machine or other DC 

plasmas where the electric field used to ionize the parent gases is 

constant, the RF sources in a CCP accelerate electrons back and forth 

between the electrodes (or more accurately their accelerating sheaths) 

until the electrons collide with some particle—more than likely a parent 
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molecule—dissociating, ionizing, exciting, or attaching to it. Meanwhile, 

the ions formed react to the changing field much more slowly, and are 

largely unaffected by the rapid changes in the electric field. 

Unfortunately, this still means that the electric potential between the DC 

probe bias and the plasma is rapidly changing in the all-important 

transition region. Even if one relies on the “average” DC value that the 

ammeter provides, because of the non-linearity of the I-V curve, the knee 

will effectively be obscured and the transition region deformed as seen in 

Figure 4.4.  
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Figure 4.4: Illustration of various levels of RF distortion of the electron 
current [19]. 
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Unless one uses an extremely fast volt/current meter to attempt to 

capture the time resolved data, the probe must either suppress or mimic 

and ride the RF signal used to create the plasma. While each of these 

options have their own disadvantages ranging from an unknown response 

of sheath potential drop to a strongly nonlinear current response, various 

researchers have tried them all, and Annaratone et al, even compared the 

passive and active probe methods [18]. This remains an active area of 

research with recently issued patents [22]. Because of the nascent nature 

of Langmuir probe research in the KU PRL, we opted for the simplest 

method of the three—suppression and filtering. With this scheme it does 

not matter if the driving signal is non-sinusoidal or out of phase with the 

source. We focused on designs used by both Chen and Hopkins to 

passively filter the RF from the plasma signal [15, 19, 34]. The section on 

experimental setup will provide further details of the filtering scheme. 

Plasma-Probe Tip Interactions and Probe Tip Contamination 

By design, the probe tip interacts with the plasma. Without charge 

transfer, no current would pass through the probe and this would render 

the probe useless. However, because ions and electrons collide with the 

probe, one is guaranteed that they will interact both physically and 

perhaps chemically (especially in reactive plasmas). Further, the ions that 
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collide with the probe are often the same species of ions that will 

eventually react with and etch the substrate, and some of the electrons 

have the same energies as the ones needed to dissociate parent molecules 

in the plasmas into their constituent ions. This is a perfect recipe for 

probe tip contamination and while it is beyond the scope of this thesis to 

discuss its exact modalities, suffice it to say that a dirty, contaminated 

probe is the bane of an accurate I-V curve and consequently every value 

derived from it is suspect.  

Because of the need to ensure probe cleanliness, every researcher must 

develop a cleaning protocol for the Langmuir probe tip in situ. Authors 

explain that these range from simple electron bombardment at high bias 

voltages to more elaborate cleaning techniques that involve both ion and 

electron bombardment [3, 15, 30, 35-37]. Oftentimes, as the plasma 

becomes more reactive and complex, the cleaning technique becomes more 

stringent and complex as well. At the KU PRL, BCl3 necessitated a more 

involved cleaning than did He and N2, and plasma mixtures such as 

BCl3/N2 contaminated the probe very quickly after cleaning, necessitating 

changes in experimental protocol to avoid corrupting the I-V 

characteristic.  
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4.4. Interpreting the Probe Sweep 

As mentioned previously, a Langmuir probe is only useful when it is 

swept through a range of voltages. These voltages are related to the 

electric field strength generated in the plasma and corresponding energy 

of the collected charged particles.  

In the case of the positive ion collection or positive ion saturation 

region (i.e., when Vb<<Vp and Vb<<Vf), the strong negative voltage applied 

to the probe creates an electric field that collects positive ions with 

increasing energy until 1) the electric field is sufficient to prevent all the 

electrons and negative ions from hitting the probe and 2) all the positive 

ions are collected from the sheath. In this region, any decrease in 

potential results not in an increase of collected ions per unit of sheath 

area; rather, it increases the volume of the sheath and consequently its 

surface area. The effect of that surface area increase on probe current has 

been modeled by Z. Sternovsky as a polynomial with linear dependence on 

the applied voltage and square root dependence on the absolute value of 

the applied voltage relative to Vp [38].  

In the case of the electron saturation region (i.e., when Vf>Vp), the 

strong positive bias applied to the probe creates an electric field that 

collects all the electrons and negative ions from the probe sheath and 
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repels all positive ions. Though for a small voltage bias above Vp, the 

positive ion current decays exponentially, past this often insignificant 

region, any increase in the potential results in an increase in the volume 

of the sheath and its surface area. The effect of that surface area increase 

on probe current has again been modeled by Sternovsky and varies 

linearly with increased applied voltage [38]. 

The region of most interest is the region from slightly below Vf to Vp. In 

this region, the current gives a good representation of the total number of 

electrons collected by the probe, and consequently the total number of 

electrons below a given energy threshold. There is an offset because of the 

positive ion current, but because more and more positive ions are being 

repelled as the bias voltage is raised, the effect of the positive ion current 

becomes more and more negligible. Further, since the positive ion current 

is composed of heavier particles that do not have the same charge to mass 

ratio, they will not respond as dramatically as electrons to the change in 

probe potential. This asymmetrical effect results in a lower positive ion 

current in comparison to the current that the highly mobile electrons 

create.  
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Finding Vp 

Knowing the plasma potential is important because it determines the 

origin for the EEDF and is used in all other methods of determining both 

<ε> and kTe. At Vp, there is no sheath around the probe tip and only the 

random flux of electrons, positive ions, and if present, negative ions 

determines the probe current. Traditionally, any analysis begins by 

estimating Vp as the voltage where the current slope is maximized. This 

leads to either calculating the first derivative of the slope and finding its 

maximum, or calculating the second derivative and finding where it 

crosses zero. Realistically, because of the increase in noise inherent in the 

process of taking derivatives, the (first) maximum of the first derivative is 

always used. 

Laframboise Correction 

In 1966 Laframboise investigated the non-ideal nature of single probe 

I-V sweeps [39]. He concluded that the zero-second derivative method 

underestimated the true value of Vp. Further, this underestimation was 

based on the non-ideal saturation of the positive ion and electron currents. 

Laframboise put forth the idea that the ratio of the Debye radius to the 

probe radius could be used as an indicator of sheath expansion which 

influenced the shape of the ion and electron saturation curves and 

consequently the correction required to find Vp. His very complete 



 
35 

experimental work gave rise to a new generation of papers that 

parameterized his ion current curves while at the same time expanding 

his theory to almost-Maxwellian and slightly collisional plasmas [23, 40, 

41]. As Laframboise was mainly interested in the proper placement of Vp 

and finding kTe, his papers hinted at what Karamcheti and Steinbrüchel 

explicitly stated: “A linear extrapolation of [I+(Vp)] is often adequate for 

determining the electron temperature,… [23].”  

To this end, the Laframboise correction typically linearly extrapolates 

the electron saturation current and the exponential in the transition 

region to find a more accurate Vp at the intersections of these two lines. 

This new value of Vp can then be used to calculate kTe and Ne. For 

example, Figure 4.5 illustrates how the second derivative method would 

estimate Vp=18.8 V, while the Laframboise correction would increase it to 

VpLF=20.8 V. This correction can be incorporated into the SmartProbe 

Method [42], and is used to augment it if there is concern that the sheath 

expands rapidly enough to discernibly impact Vp. While this correction 

does not incorporate the entirety of Laframboise theory, it is the first step 

in correcting for sheath expansion in plasmas. 
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Figure 4.5: Graphical example of Laframboise correction to Vp. 
A more accurate estimate of VP is located at the intersection of the 
extrapolated lines. 
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The Electron Energy Distribution Function (EEDF) 

Like any statistically characterized system, the free electrons in a CCP 

plasma are not all at the same energy. While the main force that initiates 

the electrons’ motion is the RF oscillation, a myriad of forces including 

collisions with other species in the plasma influences each electron and 

therefore the electrons take on a variety of speeds and corresponding 

energy levels. The resulting distributions give insight into the kinetics of 

the plasma, the reactions that occur, and how the driving electrical forces 

are converted to particle motion. Because this thesis focuses on the 

average electron energy, it will focus on the electron energy distribution 

function (EEDF) and not work with the electron velocity distribution 

function (EVDF) which can be derived from the EEDF. 

An accurate EEDF is the definitive way to measure both the average 

electron energy and electron density of a plasma as described in 

Equations (4.3) and (4.4).  
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where p bV Vε = − . Experimentally observed distributions vary 

tremendously and can be of any shape. For example, a nitrogen plasma 

EEDF has been observed to have a “hole” between 2 and 4 eV for certain 

pressures and powers in the GEC Reference Cell because the N≡N bond 

resonates at that energy [13, 15]. While initially suggested by Langmuir, 

Druyvesteyn [28] demonstrated that the second derivative of the electron 

current in the transition region of a Langmuir probe sweep was 

proportional to what is termed the electron energy probability function 

(EEPF) through the Druyvesteyn formula  

 ( )
2

3 2

2 2 ( )e e

e p

m d IEEPF
q A d

εε
ε

⋅
= ⋅

⋅
 (4.5) 

where me is the mass of an electron, qe is the elementary charge, Ap is the 

area of the probe tip, and 
2

2
( )ed I

d
ε

ε
 is the second derivative of the probe 

electron current in units of 2
A

V . Further, he showed that the EEPF was 

related to the EEDF by the relation in Equation (4.6): 

 ( ) ( )EEDF EEPFε ε ε= ⋅ . (4.6) 

Druyvesteyn’s work provided the bridge between the probe 

characteristic and the EEDF for any non-concave (typically planar, 

cylindrical, or spherical) probe tip geometry. As a side note, the term 
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EEPF can be a bit confusing and the reader should be aware that the 

EEPF is not a true probability distribution because its integral is not 

equal to one. 

While the EEDF is a highly effective method for finding the average 

electron energy and electron density, it suffers from a number of 

drawbacks. First, because ε relies on knowing Vp, it can easily be skewed. 

Second, the EEPF relies on the second derivative of the electron current 

and taking the second derivative magnifies the noise in the transition 

region which already has a low signal to noise ratio because of the 

inherent thermal and RF noise and a signal that peaks at values on the 

order of 0.5–1.5 mA. Third, because ( )eI ε  is the electron current and not 

the raw probe characteristic, a correction for the positive ion current must 

be made to obtain accurate values of the EEDF at higher energy values. 

Nonetheless, even an approximate EEDF provides insights that cannot be 

gleaned from the other methods that will be described that avoid some of 

the EEDFs pitfalls. 

The Log-Slope method 

The simplest, time-honored, and original method for analyzing the 

probe characteristic is the Log-Slope method. Langmuir [29] first proposed 

this method as an effective analysis for the original DC glow discharges 
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that he later called plasmas. It assumes that the EEDF of the bulk 

plasma electrons is Maxwellian. Because a Maxwellian distribution of 

electrons is described by  

 ( )
3

2 expMax e
ee

EEDF N
kTkT
εε ε

π

⎛ ⎞
= ⋅ ⋅ ⋅ −⎜ ⎟

⋅ ⎝ ⎠
, (4.7) 

the EEPF, the first derivative, and the electron current all can be 

described as exponentials. Specifically, the electron current in the 

transition region (i.e., Vb<Vp) is described by 

 ( )( ) exp b p
e b sat e

V V
I V I kT

⎡ ⎤−
= ⋅ ⎢ ⎥

⎢ ⎥⎣ ⎦
. (4.8) 

As described previously, when the probe potential approaches Vp, the 

probe current approaches the electron current and the positive ion current 

becomes negligible (more or less so depending on the mass of the positive 

ions). So near the plasma potential, the slope of the logarithm of the probe 

current becomes proportional to the inverse of the electron temperature. 

 ( ) ( )1ln ( ) ln p
b b sat

e e

V
I V V IkT kT

= ⋅ + − . (4.9) 

This allows for a simple analysis of the probe curve. First one takes the 

natural logarithm of the probe current and fits a line to the section of the 

curve closest to Vp. Then the inverse of the slope of the line is equal to the 
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electron temperature. Fortunately, when the EEDF is Maxwellian, the 

average electron energy is then equal to three halves ( 3
2 ) of the electron 

temperature. 

One of the advantages of the Log-Slope method is its simplicity once Vp 

is found. Another of its advantages is that if Vp is not clear, the fit to an 

exponential can be moved a bit lower and further away from a possibly 

incorrectly estimated Vp. This will still give the same value for kTe 

provided that the ion current is not sufficiently large to distort the 

exponential. Its major downfalls are that is often does not take into 

account a large section of the I-V curve, it requires that the EEDF be 

Maxwellian, and that there ideally should be no significant ion (positive or 

negative) component in the region used to fit the exponential. 

The SmartProbe Method 

The SmartProbe method [43] is similar to the Log-Slope method in 

that it assumes that the EEDF follows a Maxwellian distribution. The 

difference, however, is that it decreases the dependence of the kTe 

calculation on the numerical differentiation method and resulting 

individual slope calculations at each point in the logarithm of the I-V 

curve.  
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Recall that for a Maxwellian EEDF the electron current takes on the 

form of Equation (4.8) and that 

 ( ) ( )exp exppV b p b p
sat e sat

e e

V V V V
I kT IkT kT−∞

⎡ ⎤ ⎡ ⎤− −
⋅ = ⋅ ⋅⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
∫ . (4.10) 

From this, one can find an excellent estimate of kTe from 
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provided that the ion current is sufficiently low in the transition region 

and 3f p eV V kT< − ⋅  for a 5% error. Because both the ion current and the 

discarding of the low V portion of the sweep depress the value of 

( )
( )p

f

V

V

p

I V dV

I V
∫

, one expects the values of kTe found by the SmartProbe method 

to be slightly lower than the actual value of kTe. 

Despite the errors that are inherent in its formulation, the SmartProbe 

method is very useful in many less than optimal circumstances. For 

example, when the EEDF is more or less Maxwellian but has some 

discontinuities such as in the case of N2, it allows for an accurate 

measurement of kTe without the noise inducing double differentiation that 

would be required to find the location of the possible “hole” in the 
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Maxwellian. It is also useful as an automated method of calculation, 

particularly in the cases when probe sweeps are noisy and smoothing 

would excessively smear out the I-V characteristic.  

4.5. The Effect of Negative Ions and (Charged) Metastables on the 
Second Derivative of the I-V Characteristic 

Most plasmas are electropositive. This means that the ionized 

components of the plasma consist of electrons and positive ions. 

Historically, Langmuir probe theory assumed this, and only upon further 

investigation were negative ions included in the analysis. Further, if a 

plasma contains enough negative ions that they need to be taken into 

account because they affect the plasma’s behavior, the plasma is termed 

electronegative. Unfortunately, the first attempts to fit a theory that 

would characterize these plasmas contained a mathematical inconsistency 

that propagated throughout the field through textbooks despite being 

corrected in an earlier journal article [20, 44]. 

Fortunately, H. Amemiya experimentally observed the Langmuir 

probe response to an electronegative plasma and identified both the 

current and features of the second derivative the negative ions and 

metastable negative species induce [16, 17]. Since our experiments use 

BCl3 as a primary parent gas, and it results in an electronegative plasma, 

these particular features become extremely relevant when observing our 
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Langmuir probe results. Figure 4.6 shows both the ideal and actual cases 

for negative ion current and its second derivative (i−" in the figure, I–" in 

this thesis). The local minimum seen in the actual second derivative 

results from a reconfiguration of the sheath around the Langmuir probe. 

It is the point at which the slow negative ions reach a critical ratio with 

the remaining fast electrons in the sheath and change the response of the 

sheath from one dominated by electrons to one dominated by negative 

ions. This reconfiguration of the sheath momentarily slows down the 

increase in negative charge carrier current and creates the local minimum 

in the second derivative preceding the negative ion peak.  

Amemiya also discusses the matter of negatively charged metastable 

species. Citing Wiesemann [45], he warns that these species result in a 

secondary electron emission spike similar to –i+" in Figure 4.6 just above 

Vp. When these metastables collide with the probe, they relax back to a 

lower energy state releasing energy in the form of electrons. These 

electrons are then rapidly recaptured by the probe, resulting in a spike in 

the second derivative. Amemiya also notes that this spike should be 

discriminated from the spike caused by negative ions that should appear 

just below Vp.  
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Figure 4.6: Schematic drawings of the positive ion current (i+) and the 
second derivative of the electron, negative ion, and positive ion currents 
(ie", i–", i+") [16]. Dotted curve: ideal case; solid line: actual observation. 
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Chapter 5. Experimental  Setup & Protocol 

The experiments consist of collecting information that can be analyzed 

to infer the characteristics of different plasmas created in a PlasmaTherm 

790 Series chamber with a Langmuir probe using the associated data 

acquisition system. To this end, several sections will provide a brief 

description of the equipment involved in each sub-system of the apparatus 

and a detailed description of its role in the experiments. Figure 5.7 shows 

a schematic of the entire system and may be useful as an overview before 

delving into specifics. This chapter presents an outline of the experimental 

and analysis protocol along with parameters common to the experimental 

runs. Any significant variations will be summarized and the specific 

variation used to characterize a particular set of parameters (chemistry, 

power, pressure) will be mentioned in the corresponding results sections. 

It is worth noting that many experimental variations yielded a few choice 

examples that nicely illustrate the controlling phenomena, and that the 

underlying experimental philosophy remained the same throughout the 

data collection and analysis process. 
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Figure 5.7: Schematic of experimental apparatus used in Langmuir 
probe studies. 
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5.1. PlasmaTherm 790 

The experiments were performed in a PlasmaTherm 790 Series 

capacitively coupled parallel plate system. Figure 5.8 is a schematic 

prepared by J. Sia that shows the basic plasma reactor configuration.  

Further details of the system, also prepared by J. Sia, can be found in 

Appendix A. In our experiments, the Langmuir probe was inserted into 

one of the three viewing ports using a quick fit reducing adapter. (See 

Figure 5.7.) Figure 5.9 shows that the distance from the inner wall of the 

chamber to the end of the probe, counting tip length, is standardized to 7". 

This corresponds to the probe tip being within 0.5" of the radial center of 

the chamber and lower electrode during all experiments. A base pressure 

of 5×10-6 Torr was considered acceptable without the quick fit reducing 

adapter (probe coupler) attached to the system, and because of the probe 

and coupler seals, a base pressure of 8.0–9.5×10-6 Torr was considered 

acceptable with a probe inserted into the chamber through the coupler.  
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Figure 5.8: Schematic of the PlasmaTherm 790 Series capacitively 
coupled plasma chamber used in Langmuir probe and etching 
experiments [6]. 
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Figure 5.9: Schematic describing the Langmuir probe positioning 
radially in the chamber. 



 
51 

 

5.2. Langmuir Probe 

In our design of a Langmuir probe, we use a wire for our probe tip 

giving us a cylindrical Langmuir probe. The wire protrudes from a quartz 

tube fitted with a ceramic plug on one end and an epoxy plug on the other 

to keep the probe vacuum tight. A passive RF filtering network connects 

the probe tip to a lead wire that is swept across a range of voltages by a 

sourcemeter that also measures the actual voltage applied to and current 

flowing through the probe (and consequently the plasma). Figure 5.10 

exemplifies the KU PRL probe structure and will be useful as a reference 

as each part is discussed further. 

Probe Tip 

As mentioned earlier, the probe tip consists of a wire. While different 

plasma chemistries and pressures require different probe tip sizes and 

materials, the starting point for most investigations is a platinum tip with 

0.25 mm radius and 1.05 cm length. 
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Figure 5.10: Illustration/Schematic of typical Langmuir probe 
construction. Based on previous designs by Chen et al. and Hopkins et 
al. [15, 19, 34]. 
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    Table 5.1 below lists the various tip dimensions and materials used. It 

is indexed by chemistry and pressure range which affects the magnitude 

of the plasma electron density and Debye radius.  

 

Table 5.1: Probe tip characteristics used for experimental chemistries 
presented.  

Plasma 
Chemistry & 

Characteristics 
Probe Radius 

(mm) 
Probe Length 

(cm) 
Probe 

Material 
He,  

20–140 mTorr,  
50–225 W 

0.25 1.05 80:20 Ni:Cr 

N2, 
10–75 mTorr,  

25–300 W 
0.25 0.85 99.95% Pt 

BCl3 
10–100 mTorr 

50–200 W 
0.25 0.60 99.95% Pt 

BCl3/N2  
15 mTorr 

50 W 
0.25 0.80 99.95% Pt 
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 Compensation Electrode and Shield 

The compensation electrode for the majority of preliminary Langmuir 

probes consists of nickel tubing obtained from UTI Corporation (now 

Accellent Corporation). The tubing’s inner diameter (ID) is 4 mm and its 

outside diameter (OD) is 4.5 mm. In preliminary models of the probe, the 

compensation electrode is 1 cm long, and has a hole drilled into it to 

facilitate attaching a nickel lead from the internal passive filter. In the 

later models of the probe, the compensation electrode consists of a 316 

stainless steel tube obtained from Small Parts Corporation. Like the 

nickel tubing, the ID is 4 mm, and the OD is 4.5 mm. However, because of 

an improved understanding of the target plasmas, and to counteract 

possible errors due to Debye length concerns, newer probes used a longer 

(1.3 cm) compensation electrode.  

Probe Body and Housing 

The probe housing consists of a 6 mm OD, slightly greater than 4 mm 

ID quartz tube obtained from the University of Kansas glass blower. As 

can be seen in the diagram, a 4 mm OD, 0.8 mm ID double bore alumina 

ceramic tube plugs one end of the tube (Alfa Aesar Stock #32550). The 

ceramic also acts as a support for the compensation electrode, isolates the 

electronics housed in the probe from the plasma, and isolates the 
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cylindrical probe tip from everything but the plasma and the signal port of 

the RF filtering network.  

Internal Probe Electronics 

Electrostatic probe analysis in RF generated capacitively coupled 

plasmas (CCPs) requires that a passive or active filter suppress the RF 

signal used to generate the plasma. Only then can the probe measure the 

stationary DC current-voltage (I-V) pairs that make up a sweep. While the 

active method has the theoretical advantage of using the same RF driving 

signal as the plasma source to suppress it exactly, we have found that not 

only does the plasma act as a mixer, but other signals between 13.56 MHz 

and 27.12 MHz are present. Because of this, we chose to implement a 

passive filtering scheme. 

The minimum passive filtering network consists of a blocking inductor 

(or RF choke) with a self-resonant frequency (SRF) that corresponds to the 

plasma frequency in series with the probe tip and a capacitor that 

smoothes the incoming RF signal that rides the bias potential between the 

probe tip and the compensation electrode. In practice, because the 

filtering network should be placed as close to the probe tip as possible, all 

of the filtering capacitors and inductors must fit inside the quartz tube 

making up the probe body. No single inductor that can fit into the probe 
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body can sufficiently attenuate the driving signal at the plasma frequency 

and its harmonics so a series of inductors commonly called a choke chain 

must be employed. Further, because the electron bombardment portion of 

the cleaning cycle subjects the probe tip to voltages that can reach up to 

175 V above the plasma floating potential, a series of capacitors must 

replace the single capacitor. (Again, since no single capacitor that can 

withstand this voltage can fit into the probe body.)  

Manufacturers rarely market inductors with a specific SRF and even 

inductors with the same ratings will have 1) different SRFs and 2) 

different impedances at that frequency because of manufacturing 

differences. Each inductor, therefore, must be tested before it is used in a 

passive filter. As alluded to previously, the spectral profile of the plasma 

does not have just one peak at 13.56 MHz. Preliminary tests using a probe 

with capacitors but no inductor choke chain indicated additional 

harmonics at both 27.12 MHz and 40.68 MHz. Because of this, additional 

RF chokes were used in two basic configurations. The first aims to broadly 

attenuate frequencies above 13.56 MHz while the second focuses on the 

fundamental and second harmonics. 

Table 5.2 below details the inductors used in both configurations. 

Because the manufacturers list a minimum SRF, the inductors are each 
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tested with a function generator and an oscilloscope to determine the 

actual SRF. These particular inductors have been found to have an SRF 

either at the target frequency (either the fundamental plasma frequency 

or the secondary harmonic) or slightly below or above it. Ideally one 

chooses an SRF that is slightly above the target frequency to avoid ringing 

and other distortions in the filter network. The first (or broadband) 

configuration uses one or two 33 μH inductors and a mix of 100, 120, 150, 

and 180 μH inductors. The second (or tuned) configuration uses two or 

three Vishay Dale 180 μH inductors in series with two of the 33 μH 

inductors. Both methods yielded good suppression, but neither seems to 

work for all plasmas. 

Table 5.2: Inductor characteristics used in the passive RF filters. 
Manufacturer Part Number Value Minimum 

SRF 
JW Miller 
(Bourns) 

8230-68-RC 100 μH 13 MHz 

JW Miller 
(Bourns) 

8230-70-RC 120 μH 12 MHz 

JW Miller 
(Bourns) 

8230-72-RC 150 μH 11 MHz 

JW Miller 
(Bourns) 

8230-56-RC 33 μH 24 MHz 

Vishay Dale IM02BH181K 180 μH 10 MHz 
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The capacitors used have fewer restrictions. While a larger capacitor 

smoothes out the RF signal more effectively, it also decreases the step 

response of any change in the electrode bias. Therefore, a judicious choice 

of capacitance is around 1000 pF. We used two Kemet 2200 pF, 100 V 

(Part #C420C222J1G5TA7200) capacitors in series to form the capacitive 

leg of the filtering network. 

In Situ Monitoring via Oscilloscope 

As mentioned in the previous section, a filter must suppress the RF 

signal (and its harmonics) used to generate the CCP plasma before the 

probe can record a meaningful sweep. While function generators can 

provide a useful indicator of the probe’s frequency response, there is no 

substitute for observing the RF that the probe picks up from the plasma. 

The Agilent 6000 series oscilloscope can provide a graphical 

representation of the RF signal and allows the user to gain some insight 

into the maximum uncertainty that it could cause in the probe sweep. It 

also provides insight into probe and component aging as multiple sweeps 

are taken with a single probe.  

5.3. Data Acquisition System 

The data acquisition system consists of a Keithley 2400 sourcemeter, a 

custom control program written in Microsoft Visual Basic 6.0, an x86 
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computer running Microsoft Windows 2000 with an Agilent 82350B IEEE-

488 (GPIB, HPIB, etc.) control board installed, and an Agilent 6000 series 

oscilloscope. The sourcemeter provides the driving signal to the probe tip 

during experiments, takes both voltage and current measurements, and 

facilitates plasma cleaning of the probe tip between experiments. The 

control program and associated hardware provide a method to automate 

data acquisition via the sourcemeter, record and organize data runs, and 

automate the process of cleaning the probe tip. The oscilloscope is used to 

monitor data runs in situ to ensure that the filters in the probe 

sufficiently attenuate the RF portion of the probe tip signal and other 

noise seen by the sourcemeter so as to assure consistent measurements 

and minimize error. 

Sourcemeter 

The Keithley 2400 sourcemeter is a DC voltage and current source, DC 

voltage and current measuring device, and can also measure resistance. 

The experiments make use of all of its capabilities except resistance 

measurements. The sourcemeter scans through a list of voltages provided 

by the control system, takes measurements at each voltage after a 

specified delay, and reports the collected current measurements back to 

the computer via the control system for storage and processing. 
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Control Program and Hardware 

The control program (or application), written in Microsoft Visual Basic 

6.0, combines three major functions: data storage and organization, probe 

cleaning, and sweep control (or data acquisition). Figure 5.11 shows an 

overview of the data acquisition application. Each of the forms comprising 

the application concentrates on one task. The hardware interface is based 

on the GPIB (IEEE-488) protocol and uses the Agilent 82350B card, the 

HP SICL32 dynamic link library, and the Visual Basic sicl32.bas module 

to translate the control commands provided by the program to the 

Keithley 2400 sourcemeter. 
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Figure 5.11: Overview screenshot of data acquisition application. 
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Figure 5.12: Screenshot of the data file organization form in the data 
acquisition application. 
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Figure 5.13: Screenshot of the probe cleaning form. 
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Because the number of I-V curves required for a single experiment (not to 

mention the countless preliminary tests and variations) inevitably 

requires some sort of indexing method, the first form (See Figure 5.12) 

allows the user to select the output file path, generates filenames based on 

a serial number system and experimental conditions. Further, it logs the 

experimental conditions to a log file and passes the filenames to the data 

collection form that records the collected I-V pairs. Further details of the 

indexing method, including details of what serial number codes mean can 

be found in Appendix C. For the purposes of elucidating the order of 

experimental curves, however, it is useful to point out that the first 

number in the filename is the run serial number that is usually associated 

with a single set of experimental conditions that vary one parameter such 

as pressure, power, or composition of the plasma.  

The second form (See Figure 5.13) controls the probe cleaning cycle. 

Although Section 5.5 describes individual cleaning cycles in detail and 

explains the reasoning behind individual parts of those cycles in greater 

detail, the purpose of this form is to give the user flexibility in cleaning 

probes. To this end, there are two frames that correspond to electron and 

ion cleaning. A third frame “Cleaning and Cooling” allows the user to cycle 

repeat the electron-ion bombardment cycles as well as to pick a minimum 

cooling time that will allow the probe to re-equilibrate to approximately 
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room temperature after being subjected to electron and/or ion 

bombardment. The user can also select parameters for adaptive power 

control during the electron and ion bombardment. These parameters place 

limits on the maximum current and voltage and determine the gain so 

that charge carriers can bombard the tip with sufficient energy to knock 

off any impurities, while preventing a current or voltage overload that 

could (and has in the past) melted the probe tip during cleaning. Finally a 

frame is provided to allow the user to examine the current state of the 

sourcemeter in the event that cleaning does not appear to be working or if 

there are other anomalous conditions. 

The third form (See Figure 5.14.) orchestrates the number and type of 

voltage sweeps that determine the characteristic I-V curve, records the 

values measured by the probe, and allows the user to pick individual the 

parameters of the voltage sweeps. Specifically, because the time in the 

plasma, the response time of individual probes, the direction of the sweep, 

and knowledge of the floating potential all influence the quality and 

usability of the probe sweep, the form needed to have a user-friendly 

method to control each of them. Further, repeatability is a constant 

concern in any scientific endeavor and even more so with plasma research, 

so options that take data multiple times in different ways allowed us to 
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further examine the effects of probe tip cleanliness and what effect it had 

on critical parameters and the shape of the I-V curve. 

 

 

 

Figure 5.14: Screenshot of the sweep control form. 
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5.4. Data Analysis 

Acquiring a usable I-V curve from the plasma is only the first step to 

understanding the plasma parameters, their trends, and the underlying 

physical phenomena. Initially, the collected data was processed using 

Microsoft Excel templates, but as the analysis of the data became more 

complicated and required a more automated, transparent, and 

customizable analysis, a series of MathCAD worksheets were developed. 

An example of each of the worksheets can be found in Appendix B. The 

worksheets accomplish five tasks: 1) post-process the data throughout the 

analysis to eliminate noise; 2) find an accurate Vp and Vf; 3) find kTe and 

Ne by either calculating them directly from an approximate EEDF or by 

using the Log-Slope, SmartProbe, and SmartProbe with Laframboise 

correction methods; 4) display the various stages of analysis graphically so 

that they can be examined for unusual behavior (e.g., negative ions, 

multiple boundary layers in the plasma, excessive probe contamination, 

etc.); and 5) provide a method to easily export the values of kTe, Ne, and 

any of the stages of analysis back into Excel so summary charts can be 

created. 

The worksheets are separated into two categories: analyses that 

assume Maxwellian EEDFs, and those that do not. This progression 
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reflects the realities of the plasmas studied and the more important and 

less important factors affecting the resulting kTe and Ne values.  

Both worksheet templates use either smoothing or filtering to reduce 

the noise of the I-V characteristic. The first attempt at smoothing used 

localized smoothing with a Gaussian kernel. This smoothing technique 

was adequate for He and N2, but did not work well for the BCl3 and 

BCl3/N2 plasmas. The reason for this was that the BCl3 and BCl3/N2 

plasmas have 1) finer detail that a Gaussian smooth would smear out and 

2) have surprisingly high noise so several iterations were required. Since 

the I-V characteristic was non-linear and not easily described in the case 

of an electronegative plasma, the LOESS filtering/curve fitting method as 

implemented by MathCAD was used [46, 47]. LOESS takes small sections 

of the curve and fits a low degree polynomial to those sections. In the 

MathCAD implementation, the polynomial is second order. This allows 

one to examine the effects of varying the length of the section to see 

coarser and finer features, corresponding to the electron distribution and 

the distribution of possible negative ions or charged metastable species 

while eliminating the relevant bandwidth of noise. 
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5.5. Experimental Protocol 

While the experimental setup and protocol for each chemistry 

investigated was slightly different, a set of guiding principles directs all 

the experimental protocols. First, one must select the proper probe design. 

Second, based on each discharge’s unique characteristics, one must 

determine the vertical placement of the probe within the chamber that 

will capture the region of interest. Third, the probe must be cleaned. And 

finally, several timing parameters must be selected to ensure that the 

sweep is a valid representation of what actually occurs in the plasma. 

Determination of plasma region of interest and correct probe height 

Because (at least) two sheaths form in an RF plasma, one at the 

powered electrode and one at the grounded electrode, and since a 

Langmuir probe obtains information about a plasma locally, interference 

from these sheaths and their presheath regions must be avoided. To 

further complicate things, the sheaths’ heights change based on the 

difference in mass between the positive and negative charge carriers and 

the other layers in the plasma often vary based on the electron density. 

Consequently, each chemistry and pressure potentially requires 

adjustment of the probe height within the chamber. 
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Figure 5.15: Labeled photograph of a probe in situ demonstrating the 
visual guides used to determine accurate vertical positioning. 
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Figure 5.16: Photographs of a probe positioned to measure the 
presheath (Top, 100% N2, 15 mTorr, 50 W) and the bottom of the bulk 
of the plasma (Bottom, He plasma, 50 mTorr, 100 W). 
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For calibration, the main region of interest is the bulk of the plasma 

since it is well mixed and large enough to provide uniform plasma 

characteristics several (5–20 depending on the plasma) Debye lengths 

above and below the probe. However, for plasmas that include N2 and 

BCl3 it is also worthwhile to examine the presheath region since this is 

the region that produces most of the ions that directly influence etching 

and if there are vertically varying effects one would expect significant 

variations in the EEDF and consequently kTe and Ne in these regions (See 

Figure 5.16). 

Even for cleaning the probe, the proper height is important. Since the 

sheath height is larger in a He plasma than in a BCl3 or N2 plasma, one 

can adjust the probe to be in the bulk region for the target plasma and 

find that the probe is in the sheath for a He cleaning plasma, rendering 

the cleaning cycle useless.  

Cleaning 

In-situ cleaning of the probe consists of electron bombardment and 

optionally ion bombardment. If ion bombardment is used, then the cycle 

can be repeated as many times as needed. The cleaning is then followed 

by a cooling down time. During electron bombardment, the probe is biased 

to a highly positive voltage with respect to the plasma. The result is that 
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the electrons in plasma are strongly drawn to the probe and the resulting 

collisions not only transfer charge but also momentum and create heat. 

Any impurities that have formed a surface layer on the probe are either 

knocked off or evaporate off of the tip. The probe glows a bright orange 

color during this phase of the cleaning cycle. Electrons have a very small 

mass, however, and so the primary mode of cleaning is thermal. Ion 

cleaning complements this action. By biasing the probe strongly negative, 

the opposite effect occurs. The positive ions are strongly attracted to the 

probe, and though the probe does not glow orange-hot during this phase, 

the momentum transfer of the ions sputters away any remaining 

contaminants. 

The probe tip was typically cleaned in a 50 mTorr, 100 W He plasma. If 

a He plasma was to be investigated, then an electron bombardment at 

750 mW (around 100–130 V) would suffice to clean the probe. With N2 and 

BCl3, however, electron bombardment (as before) and ion bombardment 

(at –150 V) cycles were used because of the contaminant films that readily 

formed on the probe surface. Typically each electron and ion 

bombardment phase lasted two minutes as did the cool down after the 

clean was finished. 
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Probe Sweep and Plasma Settling Timing Parameters 

The probe sweep duration and data point settling time were chosen as 

trade-off parameters. The A/D integration time on the sourcemeter was 

chosen as 0.1 PTAD (a unit determined by the frequency of the AC power 

source, in the US 1/60 Hz) or 1.667 ms. The settling time was chosen as 

1 ms, and because the sourcemeter has as built in trigger and settling 

time of 1.5 ms, the data points were collected approximately every 

4.167 ms or at 240 Hz. With ~1150 samples per data run each sweep 

lasted ~4.8 seconds, thus avoiding contamination and ensured that there 

were enough cycles of the plasma frequency to allow the plasma to settle 

between data points. 

However, there was also a need to allow the plasma to settle after 

striking before sweeps were taken to allow the matching network and the 

bulk of the plasma to come to equilibrium. This took approximately 

25 seconds and was controlled using the global lead in option of the data 

acquisition application. 
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Chapter 6. Experimental Chemistries 

6.1. Helium Calibration 

As previously discussed, Langmuir probes were first used in DC 

discharges and then in highly ionized plasmas. Because the targets of this 

study are weakly ionized, RF plasmas, the first step to ensuring that our 

probe works and that we have a valid data acquisition and analysis 

system is to characterize a well known or at least well behaved chemistry. 

Pure helium fits this profile well. Helium is inert and monatomic, 

produces light ions, and ionizes at a high energy of 24.587 eV. This 

suggests that the only charged species that would be present in the bulk 

plasma would be singly ionized He ions and electrons and consequently 

the other interactions (such as collisions) would result in a well defined 

Maxwellian electron energy distribution. Because R. Alapati used 

125 mTorr and 175 W as plasma parameters in his study of SF6/He [2], 

these initial calibration experiments are centered on this pressure and 

power. 

6.2. Variation of kTe and Ne, and the Evolution of the EEDF in He 

Pressure Variation 

Gas kinetics predicts that as pressure increases, the average energy 

per particle decreases if the same amount of power applied to a system 
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because the number of particles per unit volume increases proportionally 

to the pressure. With a gas at room pressure and temperature, there is 

often an abundant supply of external thermal energy to keep the entire 

system at a single temperature and consequently varying the pressure on 

a small scale does not greatly alter the average energy of species. For a 

simple plasma, this relationship between increased pressure and 

individual electron energy decreasing is magnified because the power that 

is injected into the system maintains the plasma state by moving 

electrons and that source of energy is finite and controllable. If the 

pressure increases, the power then must be distributed over a larger 

number of electrons and unlike a room temperature gas, there is not 

enough thermal energy in a plasma to compensate for this effect. 

The initial pressure calibrations maintained a fixed power of 175 W 

and varied the pressure from 20 mTorr to 150 mTorr. As expected, the 

average electron energy (<ε>), and consequently the equivalent electron 

temperature (kTe) decreased with increasing pressure in an inverse 

exponential curve while Ne increased somewhat linearly (See Figure 6.17).  
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kTe and Ne Measurements for 100% He, 175 W RF Power 
(Run 121)
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Figure 6.17: kTe and Ne measurements 100% He, 175 W RF Power 
plasma with pressure ranging from 20 to 150 mTorr (Run 121).  
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Because the Log-Slope, SmartProbe, and the LaFramboise methods are 

used to calculate kTe and Ne in Figure 6.17, a Maxwellian EEDF is 

inherently assumed. While this is not often the case for most plasmas, the 

assumption does hold for the lower pressures (such as 40 mTorr) in this 

set of experiments as can be seen by the EEDF itself (Figure 6.18). 
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Figure 6.18: Comparison of an EEDF of a 100% He, 40 mTorr, 175 W 
plasma with a Maxwellian and Druyvesteyn distribution of equal 
average electron energy. 
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As the pressure increases to 125 mTorr, the distribution becomes more 

Druyvesteyn as can be seen by comparing Figure 6.18 to Figure 6.19 and 

observing the evolution of the EEDFs in Figure 6.20. At this point, the kTe 

and Ne values found assuming a Maxwellian distribution are only useful 

as qualitative indicators; they no longer hold any true meaning 

quantitatively.  

0 5 10 15 20
0

1 .109

2 .109

3 .109

4 .109

5 .109

Observed EEDF
Maxwellian with equivalent Avg e- Energy
Druyvesteyn with equivalent Avg e- Energy
Druyvesteyn with 0.75*equivalent Avg e- Energy

Observed EEDF
Maxwellian with equivalent Avg e- Energy
Druyvesteyn with equivalent Avg e- Energy
Druyvesteyn with 0.75*equivalent Avg e- Energy

Observed EEDF vs Equivalent Avg e- Energy Distributions

Electron Energy (eV)

eV
^-

1*
cm

^-
3

 
Figure 6.19: Comparison of an EEDF of a 100% He, 125 mTorr, 175 W 
plasma with a Maxwellian and Druyvesteyn distribution of equal 
average electron energy, as well as a Druyvesteyn distribution with ¾ 
the average electron energy found from the observed EEDF. 
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EEDF Evolution of He plasma at 175 W RF Power
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Figure 6.20: Evolution of the EEDF in 175 W He calibration plasmas. 
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Given this change in distribution shape, actually calculating <ε> from 

the EEDF gives a more telling measure of the change in average electron 

energy and density. Further, it became clear that most of the 

experimental EEDFs would be neither purely Maxwellian nor 

Druyvesteyn, and in order to fit the curves to one or the other would 

require additional fitting parameters such as modifying <ε>. (See Figure 

6.19.) This suggested that even an estimated EEDF would provide more 

insight into the qualities of free electrons (and a window into negative ion 

densities that might be encountered in electronegative processing 

plasmas) than methods that assumed a particular distribution. With this 

in mind, a MathCAD sheet was developed to visualize and analyze an 

estimate of the EEDF of various plasmas. Using that technique, a more 

accurate plot emerged. (See Figure 6.21.) 

Surprisingly, the kTe and Ne values and trends cluster together fairly 

well independent of the method used to calculate them. This outcome both 

reinforced our belief that the probe behaved as expected and shows that 

these methods are fairly robust in well behaved gases—despite the 

evolution of the EEDF from a Maxwellian distribution toward a 

Druyvesteyn distribution, the trends do not deviate from one another 

significantly using the three different methods. 
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Comparison of kTe (or Equivalent kTe) and Ne 

Measurements for 
100% He, 175 W RF Power (Run 121)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

0 50 100 150 200
Plasma Pressure (mTorr)

kT
e 

(e
V

)

0.0E+00

2.0E+09

4.0E+09

6.0E+09

8.0E+09

1.0E+10

1.2E+10

1.4E+10

1.6E+10

1.8E+10

2.0E+10

N
e  (cm

-3)

kTe Smart Probe kTe Log-Slope
Equiv kTe from EEDF Ne Smart Probe
Ne Log-Slope Ne from EEDF

 

Figure 6.21: Comparison of kTe and Ne calculations based on Log-Slope, 
SmartProbe, and EEDF measurements in 175 W He calibration 
plasmas. 



 
83 

Power Variation 

Along with pressure, power is a clear external input to plasmas. By 

maintaining a constant pressure and varying power, the researcher forces 

the plasma to distribute varying amounts of energy on a constant number 

of particles. This effect is well known, and if the type of energy 

distribution remains constant, the variations will follow a well-defined 

pattern. The higher values of kTe and Ne found via the EEDF method in 

the pressure variation experiment and the fact that the distribution is 

more Druyvesteyn at higher pressures warranted that we include it to 

determine more accurate values for kTe and Ne, and to compare and 

contrast it with methods that would assume a Maxwellian distribution. 

Again, since Alapati used 125 mTorr and 175 W in his studies of SF6/He 

mixtures, this experiment used 125 mTorr. The results of this experiment 

are summarized in Figure 6.22. 
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Comparison of kTe and Ne Measurements for 100% He, 
125 mTorr Pressure (Run 120)
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Figure 6.22: Comparison of the kTe and Ne values obtained using 
various techniques in 125 mTorr He calibration plasmas. 
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As in the case of the pressure variation, kTe decreased along a power 

curve with increasing power because an increase in dissociation resulted 

in far more electrons over which the increase in power had to be 

distributed. Unlike the case of pressure variation, however, Ne exhibited 

two separate linear regions (50–200 W, and 200–300 W) if calculated via 

the EEDF method, and an anomalous region between 200–250 W if 

calculated using the Log-Slope or SmartProbe methods. Surprisingly, this 

did not seem to correlate with any sharp change in the overall shape of 

the EEDF when compared to a Druyvesteyn with equivalent <ε>. 

In Figure 6.22 there are two sets of equivalent kTe and Ne values 

derived from the EEDF. They differ in how far out in energy we chose to 

calculate the EEDF. Remember that the farther out the EEDF is 

calculated the larger the ε  factor that is multiplied by the second 

derivative of the I-V characteristic, and the greater the negative offset 

created by the positive ion saturation current. As ε  increases, the noise 

that is inherent in the second derivative of the probe sweep is magnified, 

artificially inflating Ne. If the positive ion saturation current is linear or 

constant, the double differentiation removes its influence. If it is not, 

however, the differentiation could have unexpected side effects. By 

examining different ranges for the EEDF, we can hope to capture the 
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necessary detail to give accurate results without introducing too much 

noise at higher electron energies. In the case of helium, it is clear that 

even if the EEDF is extended out an additional 10 eV, neither kTe trends 

nor Ne trends and values change significantly. Both are included to give 

the reader an idea of the possible error that could be introduced by 

extending the range of the EEDF out past where it is warranted in a well 

behaved gas. A similar example will be used when a more complicated 

plasma is discussed. 

6.3. N2 Calibration 

Nitrogen was the second gas chosen to calibrate the Langmuir Probe. 

Like He, N2 is relatively inert and electropositve, but it differs in that it is 

a molecular gas. This means that not only will ionizations and inelastic 

collisions affect the distribution of electrons, but the molecular bonds will 

also play a role. Nitrogen also presents an interesting test case because it 

is known that as pressure increases the EEDF changes shape and a “hole” 

develops at the resonant energy of the bond vibrational energy [13, 15]. 

With this in mind, and because J. Sia and K. Nordheden observed etch 

rate enhancement with a BCl3/N2 mixture at 15 mTorr and 50 W power [4, 

6], N2 calibration was centered on these values.  
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While taking data in N2 (and He), the probe was adjusted so that it was 

at its highest position possible to ensure that the tip remained in the bulk 

region of the plasma throughout the runs and well above the driven 

electrode and its sheath. This is because N2 (in addition to gaining a hole 

at higher pressure) exhibits anomalous sheath heating at low pressures in 

RF plasmas [13]. Turner describes the effect as a “push-pull” mechanism 

that the driving RF creates when it induces the sheath around the 

electrode to contract and expand. The time varying sheath alternately 

draws in and expels the electrons in the boundary layer between the bulk 

plasma and the sheath. The elastic and inelastic collisions these highly 

energetic electrons undergo with neutrals as they are driven back into the 

bulk plasma rapidly attenuate their energy and confine the unusual 

heating effects to a thin boundary layer at the edge of the bulk. The 

electrons that do not collide with the N2 neutrals then heat the bulk of the 

plasma normally. It should be noted that if N2 were an atomic gas with a 

high first ionization energy, the effect would not change the energy 

distribution of the bulk plasma. Because it can store energy in its bond in 

the form of vibration, however, the N2 robs the electrons of a specific range 

of energies. Further, as pressure increases, the sheer quantity of targets 

increases and consequently the boundary layer where those energetic 
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electrons lose their energy becomes thinner, localizing the effect even 

more, creating a deeper hole in the EEDF. 

6.4. Variation and Relevance of kTe and Ne, and the Evolution of the 
EEDF in N2 

Pressure Variation 

Unlike He, N2 is known to not follow classical gas kinetics at higher 

pressures in plasmas. It is however, known to have a Maxwellian or 

Bi-Maxwellian distribution at lower pressures. To see the effects of 

pressure variation, the power was kept at 50 W, and the pressure initially 

varied from 10–75 mTorr. The electron temperature (or its equivalent) 

and Ne were calculated using direct EEDF analysis, the Log-Slope 

Method, the SmartProbe Method, and the SmartProbe method with a 

LaFramboise correction. Figure 6.23 summarizes the results with one 

major omission: kTe calculated via the SmartProbe method with 

LaFramboise correction. These were omitted because excessive noise in 

the data at 50 W noticeably confused the automated LaFramboise 

correction and resulted in clearly erroneous values for kTe.  
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Preliminary kTe and Ne Measurements for 
100% N2, 50 W RF Power (Run 150)
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Figure 6.23: Comparison of the equivalent kTe and Ne values obtained 
using various techniques (including LaFramboise correction) in 50 W 
N2 calibration plasmas. 
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In Figure 6.23, kTe or its equivalent stays fairly constant with pressure 

up to about 40 mTorr and then increases with pressure but only slightly. 

Ne increases up to 30 mTorr, and then saturates. Again, the exception to 

this is the SmartProbe method with LaFramboise correction which had 

problems discerning when the electron current saturated. The fact that 

kTe and Ne have clear transitions encourages one to examine the evolution 

of the EEDFs directly.  

Comparison of N2 EEDFs as a Function of Pressure 
(40-75 mTorr, 50 W, Run 150)
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Figure 6.24: Comparison of the EEDFs of 40-75 mTorr N2 calibration 
plasmas. 
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After examining the EEDFs, they fall into two categories: below 

~40 mTorr and above 40 mTorr, with 40 mTorr being a transition point. 

Figure 6.25 shows that below 40 mTorr, the EEDF appears to have a 

fairly constant <ε>, and the area under the curve simply increases with 

increasing pressure. This indicates that up to 40 mTorr, as pressure 

increases, the dissociation rate continues to increase relative to the 

recombination and bond excitation rate increasing the electron density 

without a corresponding change in kTe. Above 40 mTorr, there are enough 

N2 molecules available that collisions result more readily in both direct 

Comparison of N2 EEDFs as a Function of Pressure 
(10-40 mTorr, 50 W, Run 150)
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Figure 6.25: Comparison of the EEDFs of 10-40 mTorr N2 calibration 
plasmas. 
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dissociation and vibrational bond excitation. The low energy electrons are 

very readily scavenged by collisions that result in bond vibration 

excitation, and this drives the number of free electrons down, which 

increases kTe. Regardless of how one looks at the results, however, 

40 mTorr clearly represents a change in the character of the EEDF. At 

this point, one begins to see a “hole” before the main peak of the electron 

distribution and a shift in the EEDF toward higher energies. (See Figure 

6.24.) This trend continues with increasing pressures, and the hole 

remains. This hole corresponds to vibrational excitation of the N≡N bond 

and has been described in the literature as a marker of a well designed 

probe [13, 15], and while those papers show that it is often not very deep 

until higher powers and pressures, it is reassuring to see its beginnings. It 

is also worthwhile to note that 40 mTorr actually has a higher <ε> than 

50 mTorr and less of a hole before the main electron peak making it a nice 

example of blending of the lower and higher pressure EEDFs.  

Since the EEDF reflects intra-molecular dynamics in N2, and clearly 

shows non-Maxwellian characteristics, one would be remiss in thinking 

that trends in kTe and Ne explained all the electron dynamics in a 

molecular gas plasma. This is especially important since virtually all 

processing gases are even more complicated molecular gases than N2, and 

might therefore exhibit more, not fewer intra-molecular effects.  
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Power Variation 

For N2 power variation calibration, the pressure was kept constant at 

15 mTorr and the power varied from 25–300 W. Because the observed N2 

EEDF transitioned from a one type of distribution to another at 40 mTorr, 

it was unclear whether a similar transition would present itself 

somewhere in the power spectrum. Because of this, the only viable method 

was to examine the EEDFs directly and only then decide whether a 

summary chart of equivalent kTe and Ne values would be worthwhile.  

Figure 6.26 shows the evolution of the EEDFs with increasing power. 

In order not to oversmooth the EEDFs because any fine structures such as 

holes would be important in determining the EEDFs’ character, the 

smoothing parameters were kept to a minimum. This obviously results in 

EEDFs with less smooth profiles. Still, it is clear that the shape of the 

distribution does not change with power at 15 mTorr and resembles a 

Druyvesteyn distribution. With this in mind, the Log-Slope and 

SmartProbe methods can be compared with an equivalent kTe and Ne 

directly calculated from the EEDF just like in the He calibrations.  
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N2 EEDFs as a function of Power (15 mTorr, Run 149)

0.0E+00

5.0E+08

1.0E+09

1.5E+09

2.0E+09

2.5E+09

3.0E+09

3.5E+09

4.0E+09

4.5E+09

0 2 4 6 8 10
ε (eV)

N
e/

eV
 (c

m
-3

×e
V-1

)

25 W Sweep A 50 W Sweep H 50 W
Sweep N 50 W 75 W 100 W
125 W 150 W 175 W
200 W 225 W 250 W
275 W 300 W

Arrow indicates trend with 
increasing power.

 

Figure 6.26: Comparison of EEDFs for 25-300 W N2 calibration 
plasmas. 
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kTe (or Equivalent) & Ne for 100% N2 at 15 mTorr 
(25-300 W, Average of Runs 122 & 149)
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Figure 6.27: Comparison of the equivalent kTe and Ne values obtained 
using various techniques in 15 mTorr N2 calibration plasmas. 
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In Figure 6.27, kTe and Ne evolve as gas kinetic theory predicts, with 

no hint of intra-molecular effects. Again, with increasing power, kTe 

decreases on a power curve while Ne increases linearly because of 

increased dissociation. Figure 6.27 averages Runs 122 and 149 because 

while they both exhibit the power trend for kTe and the linear trend for 

Ne, they vary in when they were taken and what gases were introduced 

into the chamber between runs. Run 122 was taken immediately after He 

calibrations, while run 149 was taken after the chamber was conditioned 

with N2 for an extended period of time to alleviate any concerns that 

residual He would affect N2 calibration.  

6.5. BCl3 Calibration & Investigation 

BCl3 is a common parent species in etching plasmas, particularly for 

III-V substrates because it provides the necessary Cl and Cl2 species upon 

dissociation. BCl3 is also intriguing because of its electronegativity. While 

He and N2 both donate electrons and are quite stable as positive ions, 

electrons can attach to BCl3, forming BCl3–, and to the active species Cl 

and Cl2, forming Cl− and Cl2− respectively. Both attachment to BCl3 and Cl 

are even energetically favored (by 0.33 eV for BCl3+e−→BCl3-, and 

1.132 eV for Cl+e−→Cl–) so the species actually gain energy once the 

attachment occurs [21, 48, 49]. Again, because J. Sia’s and K. Nordheden’s 
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work in BCl3/N2 focused on 15 mTorr and 50 W, these experiments are 

centered on that pressure and power [4, 6]. 

6.6. Variation in Ne and kTe, as well as Evolution of the EEDF in BCl3 

Pressure Variation 

G. Franz has shown that the electronegative nature of BCl3 only 

presents itself above pressures of 25 mTorr in CCPs and that it behaves 

much like a classic monoatomic gas below this threshold pressure [8]. To 

see if we could discern this transition in our experiments, the BCl3 plasma 

power was kept constant at 50 W and pressures were varied between 10 

and 100 mTorr. 

Figure 6.28 shows the summarized results of the experiment. Because 

the EEDFs were clearly neither Maxwellian nor Druyvesteyn, the 

equivalent kTe and Ne values were computed directly from the EEDF. 

Clearly, the Ne values below 25 mTorr behave as if classical gas kinetics 

applied, with the density rising linearly with increasing pressure. And 

while kTe decreases following a power curve only up to 20 mTorr, rising 

slightly at 25 mTorr, it too confirms Franz’s findings. The values of Ne and 

kTe above 25 mTorr also clearly show that the fundamental nature of the 

plasma has somehow changed. Instead of rising linearly with further 

increases in pressure, Ne drops linearly and kTe rises instead of falling. 
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Equivalent kTe and Ne values for BCl3 at 
50 W RF Power (Run 227)
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Figure 6.28: Comparison of the equivalent kTe and Ne values obtained 
using various ranges for the EEDF in 50 W BCl3 calibration plasmas. 



 
99 

Recall that in Figure 6.22 the direct calculation of equivalent kTe and 

Ne from the EEDF was performed with different EEDF ranges, and that 

despite the choice between 20 eV and 30 eV, the trends and values were 

remarkably similar. A similar look at Figure 6.28 shows that this is no 

longer the case. As the EEDF range was increased from 10 eV to 20 eV, 

the trends in the values of Ne differ markedly. Based on these results, one 

can see that an EEDF range of 15 or 20 eV is necessary to properly 

capture all the active electrons in the EEDF when BCl3 is involved. It was 

found, however, that increasing the EEDF range to 30 eV introduced 

excessive noise and artificially inflates both Ne and kTe. 

Figure 6.29 shows the evolution of the EEDF in BCl3 with pressure 

above 25 mTorr. The change in distribution characteristics suggests that 

the plasma becomes increasingly electronegative with increased pressure. 

The trends observed in Figure 6.28 can be explained by Cl or BCl3 

scavenging the lower energy electrons for attachment and consequently 

decreasing Ne while increasing <ε>, particularly at higher pressures. In 

fact, R. Gottscho and C. Gaebe observed that at higher pressures (in the 

100–300 mTorr range), both BCl3− and Cl− ions were present, although the 

excitation frequencies used in their experiments only ranged between 50 

and 750 kHz, and “[a]t higher frequencies, electrons have insufficient time 
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to attach before they are reheated and the instantaneous anion density in 

the sheath is greatly reduced [21].” It may also be possible that electron 

density decreases because of B–Cl bond vibrations that relax into BCl and 

Cl2 or BCl2 and Cl, similar to what is observed in N2. This is based on the 

squelching not only of the very low electron energies, but also that of more 

energetic electrons around the BCl–Cl2 bond energy of 5.65 eV, and BCl2–

Cl bond energy of 4.61 eV in the 100 mTorr EEDF. 
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Figure 6.29: Comparison of EEDFs for 25-100 W BCl3 calibration 
plasmas. 
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Power Variation 

For this experiment, the pressure of the BCl3 plasma was kept at 

15 mTorr and the power was varied from 50 to 200 W. Unlike He or N2, 

BCl3 did not follow classical gas kinetics with increasing power. 

Figure 6.30 shows trends in BCl3 with increasing power. Unlike He or 

N2, the increase in Ne saturates above 100 W, and the equivalent kTe 

increases. While the effect of having kTe increase if Ne remains constant 

with increasing power is not surprising, if the heating of electrons is based 

on elastic collisions, classical gas kinetics predicts that Ne would continue 

to increase well past 100 mTorr. However, if one compares the maximum 

Ne value in Figure 6.28 with the Ne saturation value in Figure 6.30, BCl3 

is likely to also exhibit increased electronegativity at higher powers. For 

comparison, C. Fleddermann and G. Hebner report that in a BCl3 ICP at 

20 mTorr and 200–400 W, Cl− ions are present but BCl3− ions are not, and 

that their density increases with increasing power [27, 50]. This is 

consistent with our counterintuitive observation that both kTe and Ne 

increase from 50 to 100 mTorr, and their conditions are closer to ours than 

are those of Gottscho and Gaebe. (See Figure 6.30.) 
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Equivalent kTe and Ne values for BCl3 at 
15 mTorr Pressure (Run 227)
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Figure 6.30: Comparison of the equivalent kTe and Ne values obtained 
using various ranges for the EEDF in 15 mTorr BCl3 plasmas. 
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6.7. BCl3/N2 Composition Experiments 

BCl3/N2 plasmas appear to behave counterintuitively. The addition of 

N2 to a BCl3 plasma (up to a point) greatly increases the etch rate of both 

copper and GaAs materials. J. Sia and K. Nordheden conducted GaAs etch 

rate experiments at 15 mTorr and 50 W, and varied the concentration of 

BCl3 and N2, while B. Howard conducted his Cu etch rate experiments at 

50 mTorr, −300 V, and 250°C [3, 4, 6, 12]. Because both experiments 

obtained very similar results relating etch rate to N2 concentration, this 

Langmuir probe study of BCl3/N2 plasmas focused on J. Sia’s and K. 

Nordheden’s experimental conditions. 

6.8. Effect of Composition on Negative Ion Density, the EEDF, kTe, and 
Ne 

EEDF and Second Derivative Structure—Evidence of Negative Ions 

In both BCl3 and N2 plasmas, the EEDFs not only change their 

aggregate characteristics (i.e., <ε>, kTe, and Ne) but also their overall 

electron distributions. By examining these changes, one can uncover 

important information that is often hidden when only the arithmetic 

mean of the electron energies (i.e., <ε>) is taken into consideration. This is 

especially important because for a collision with an electron to liberate an 

active etching species, the electron must be highly energetic, and this 

often means that it would be in the tail of the energy distribution. 
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Further, because negative ions are also attracted to the probe as negative 

charge carriers, they too can impact the I–V curve, and consequently what 

would initially appear to be an EEDF, but is really a summation of an 

EEDF and a scaled negative ion energy distribution function (negative ion 

EDF). 

Figure 6.31 and Figure 6.32 show that BCl3/N2 EDFs appear to fall 

into two broad categories—mixtures where the BCl3 EDF determines the 

shape of the mixture EDF, and mixtures where the N2 EEDF visibly 

influences the shape of the EDF. For our region of interest 

(100%:0% BCl3:N2–40%:60% BCl3:N2), the EDFs (and consequently the 

energy probability function and second derivative) follow the BCl3 EDF 

archetype, with the important exception of the region below 1 eV, which 

increases and then falls off again with N2 addition. After examining the 

second derivative of the BCl3/N2 mixtures with an eye toward Amemiya’s 

schematics (refer back to Figure 4.6), the shape of his schematics and that 

of our data was surprisingly similar. A second peak before Vp in the 

second derivative presented itself from 100% BCl3 all the way down to 

15% BCl3 suggesting that 1) BCl3 intrinsically produces negative ions 

(more likely Cl− than BCl3− based on [50], but possibly BCl3− at lower 

powers) and 2) N2 enhances negative ion formation if there is a sufficient 

concentration of BCl3.  
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Comparison of Negative Charge Carrier EDFs 
of Mixtures of 40-100% BCl3 (Balance N2)
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Figure 6.31: Comparison of EDFs of mixtures of 40-100% BCl3 (balance 
N2) plasmas at 15 mTorr and 50 W. 
The mass of all anions is taken to be that of an electron. 
N.B: Notice that in the highlighted area, as N2 is added the area under 
the curve increases to a maximum at 40% N2, and then begins to 
decrease. 
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Comparison of Negative Charge Carrier EDFs 
of N2 Dominated Mixtures of BCl3 & N2 

and 100%:0% BCl3: N2 for Comparison
(15 mTorr, 50 W, 20 sccm total flow)
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Figure 6.32: Comparison of EDFs of mixtures of 0-40% BCl3 (balance 
N2) plasmas with the EDF of a 100% BCl3 plasma at 15 mTorr and 
50 W. 
The mass of all anions is taken to be that of an electron. 
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Aggregate Metrics—Equivalent kTe and Ne 

Originally, the MathCAD sheets used to calculate the equivalent kTe 

and Ne values from an I–V sweep via an observed (electron) EDF ignored 

the possibility of negative ions and would treat them as just additional 

electrons. This resulted in the trends in Figure 6.33 labeled “Neg Ions as 

Electrons”. The electron density in mixtures with >40% BCl3 (<60% N2) 

remained relatively constant and kTe decreased with the addition of N2 to 

BCl3. Further, even after the MathCAD sheets were modified to eliminate 

the negative ions from consideration by zeroing out the area under the 

EDF curves with energy less than the local minimum at ~1 eV, there was 

no significant change in either the equivalent kTe or Ne values. This, along 

with Figure 6.31’s comparison of the electron portion of the EDFs shows 

that our initial hypothesis regarding kTe influencing etch rate was wrong. 

In fact, when one discounts the negative ion portion of the EEDF (below 

1 eV) the electrons all appear to follow a remarkably similar energy 

distribution to that of pure BCl3 for plasma mixtures with >40% BCl3 

(<60% N2). 

It is worth noting that some BCl3 always adsorbs onto the chamber 

walls or forms a BN film and then degasses into even “pure” N2 plasmas. 

This adsorption and formation followed by degassing also explains why 
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the Ne observed at 100% N2 in this experiment is so markedly lower than 

that of the initial N2 calibrations due to the residual BCl3 components. 

 

 

 

 Equivalent kTe and Ne as a Function of BCl3 
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Figure 6.33: Comparison of the equivalent kTe and Ne values in 
15 mTorr, 50 W BCl3/N2 plasmas of varying compositions. 
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6.9. Comparing Negative Ion Density with Etch Rate in BCl3/N2 
Plasmas 

The apparent lack of change in the electron energy distribution from 

0% to 60% N2 (40% to 100% BCl3) necessitates a change in thinking away 

from our original hypothesis that an increase in average electron energy 

(or kTe) might be responsible for an etch rate increase as one adds N2 to 

BCl3 plasmas. Figure 6.34 clearly shows that to which was alluded before: 

the area under the negative ion peak in the EDF increases as N2 is added 

up to a 40% N2:60% BCl3 mixture, and then decreases until the second 

peak becomes quite small in comparison at 85% N2.  

Interestingly, the area under the negative ion portion of the EDFs 

seems to follow a similar trend with N2 concentration to that of the 

observed etch rate enhancement. In fact, comparing the magnitude of that 

area (i.e., the portion of the curve thought to correspond to negative ions, 

giving a relative negative ion concentration) with both the GaAs and Cu 

etch rate curves (Figure 6.34 to Figure 2.1 and Figure 2.2), one is struck 

by their similarity. Both etch rate and negative ion densities peak 

between 40% and 60% N2. While this does not imply a causative 

relationship, previous work by Hebner and Fleddermann in an ICP at 

10 mTorr and 400 W using laser induced photodetachment showed a 67% 

increase in Cl− ion density in a 33% N2:67% BCl3 plasma over pure BCl3, 
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and failed to detect any BClx− ions [50]. Also, using laser induced 

fluorescence (LIF) they observed a 400% increase in Cl+* metastable ion 

density at the same 33% N2:67% BCl3 ratio over pure BCl3 which could 

directly contribute to an etch rate increase [27].  

In [50] and a later work [51], Fleddermann and Hebner propose a set 

of reactions based on Breitbarth’s, Rothe’s, and Howard’s results and 

suppositions [3, 49, 52] starting with vibrationally excited N2 or N2 
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Figure 6.34: Comparison of normalized area under the negative ion 
region of the EEPF (or second derivative).  
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metastables that create Cl neutrals from BCl3 or BCl radicals, see 

Equation (6.1). These Cl neutrals then ionize into active etching species or 

recombine into a Cl2 molecule (ostensibly at a surface, but Cl might 

recombine into Cl2 in the gas phase as well), and finally dissociate into Cl− 

ions and Cl neutrals upon re-entering the plasma, see Equations (6.2) and 

(6.3). 

 
*
2 3 2

* *
2 2

N BCl BCl 2Cl N
N BCl B + Cl N
+ → + +
+ → +

 (6.1) 

 2

2

2Cl Cl
Cl Cl 2

2Cl Cl

Surface

Gas Phasee e OR− + − ⎯⎯⎯→
+ → +

⎯⎯⎯⎯→
 (6.2) 

 2Cl Cl Cle− −+ → +  (6.3) 

Unfortunately, although they examined electron density, none of the 

previous authors examined the actual distribution of electrons. Further, 

Hebner and Fledermann only investigated 100%:0% BCl3:N2–

50%:50% BCl3:N2 mixtures and conducted their experiments in an ICP 

[27, 50, 51]; and Breitbarth only investigated 0%:100% BCl3:N2–

5%:95% BCl3:N2 mixtures and conducted his experiments in a BCl3/N2 

plasma afterglow [52]. Although their experimental conditions differ from 

those in this work, similarities do exist. Hebner’s and Fleddermann’s 

results in an ICP in particular are very similar to those of our work in 
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BCl3/N2 plasmas, especially when one considers that their negative ion 

densities peak at 33% N2 (67% BCl3) and ours peak at 40%. 

 For pure BCl3 plasmas, however, N2 does not play a role so another 

possible pathway comes to mind if the observed negative ions are 

responsible for catalyzing the formation of active species. The direct 

formation of negative ions from e− + BCl3→BCl2 + Cl– dissociation has a 

very low threshold energy (0.14 eV), and is likely to be occur whether or 

not N2 is present in the plasma. It could be followed by the electron 

detachment reaction e− + Cl–→Cl + 2e− that also has a relatively low 

threshold energy (3.61 eV) [53]. The Cl neutral could then continue along 

any number of paths to become an active etch species. This direct 

dissociation, along with the recombination and ionization reactions 

described in Equations (6.2) and (6.3) could adequately explain why one 

would see Cl− ions in low pressure, RF BCl3 plasmas. 
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Chapter 7. Conclusions 

This work set out to conduct Langmuir probe measurements in BCl3/N2 to 

help determine the cause of the etch rate enhancement seen by J. Sia [4, 6]. 

Sia posited that the two remaining viable causes of rate enhancement were 

an increase in kTe and/or energy transfer from N2 metastables. The observed 

EDFs in BCl3/N2 composition experiments show that adding N2 to a BCl3 

plasma does not increase kTe or <ε> at concentrations up to 60% N2, in fact a 

small decrease was observed. Therefore, a change in kTe or <ε> is not 

responsible for the etch rate enhancement. Further, while J. Sia did see a 

small (<20%) increase in Ne, in this work Ne decreased slightly, suggesting 

the value remains nearly constant and is not sufficient to explain the etch 

rate enhancement. This leaves N2 metastables as the last viable mechanism 

to explain the increase in etch rate, and with other work implicating N2 

metastables in the creation active etch species produced from BCl3 it appears 

very likely that this is the case. 

What is remarkably coincidental is that the increase in negative ions 

observed in this work mirrors the etch rate enhancement observed by 

Howard, Nordheden, and Sia [4, 6, 12]. This in and of itself still does not 

explain the etch rate enhancement because negative ions do not participate 

in any etching mechanism since they are repelled by the strong negative DC 

bias that the powered electrode acquires. It does, however, become much 
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more plausible that the increase in negative ions is a consequence of a 

process (or processes) that both produces negative ions as well as active 

species. 

As N2 is added, the negative ions are most likely a consequence of the 

production of active etch species due to the interaction of BCl3 and BClx with 

N2 metastables and vibrationally excited N2 molecules through the direct 

dissociation reactions of BClx mentioned in the previous chapter. The most 

likely pathway is that of vibrationally excited N2 and N2 metastable species 

starting a reaction chain that creates Cl neutrals that enhance etch species 

formation or recombine and form negative ions that are quickly repelled back 

into the bulk plasma [27, 49-52]. The specifics of this mechanism were 

presented in Section 6.9, and are well documented in the literature. 

This clearly suggests new directions for study. Perhaps using similar 

techniques to examine other mixtures of tri-, tetra-, and hexa-halides 

mixtures with N2; investigate other additives to BCl3 that have active 

metastables like N2; or explore strongly electronegative additives such as 

SF6, which would be more likely to induce electron temperature changes than 

N2 would be good starting points. This would help to separate out different 

mechanisms of etch rate enhancement as well as the differences and 

commonalities of BCl3, SiCl4, and SF6 mixtures. 
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 “Sit down before fact as a little child,  
be prepared to give up every preconceived notion,  
follow humbly wherever 
and to whatever abysses nature leads, 
or you will learn nothing.” 

—Thomas Henry Huxley 
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Appendix A. Chamber Description  

 This section is excerpted from J. Sia’s Thesis [6]. 

A.1. Reactive Ion Etching System 

The reactive ion etching system used to generate the plasma and etch 

GaAs samples was a Plasma-Therm 790 series parallel plate system. A 

schematic of the equipment is shown in Figure A.35. The system 

generates the plasma at the standard frequency of 13.56 MHz and has the 

capability to control RF power, DC Bias, flow rate of inlet gases, and 

pressure. 

The chamber is 15" in diameter and 10" in height. The diameter of the 

powered electrode is 10". The system is comprised of a parallel plate 

capacitively coupled electrodes separated by 3 inches. Samples as large as 

8" can be loaded into the system manually by lifting the chamber lid. The 

lower electrode in the system, where the sample is placed, is the powered 

one and the chamber walls are grounded. The chamber is equipped with 

three Pyrex glass viewports to facilitate visual inspection of the plasma 

and can be used for plasma diagnostic tools. The gases enter the system 

from a showerhead in the chamber lid. 
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The lower powered electrode is temperature controlled by a water 

circulator system (Neslab RTE 111). The base pressure inside the system 

is maintained at 10−6 Torr to avoid any contamination from the 

atmosphere. This low pressure is maintained by pumping the chamber 

through a 150 l/s Leybold turbo-molecular pump backed by a 32 cfm 

Leybold rotary vane mechanical pump.  

All the controls in the system are performed by control software 

operational on Microsoft Windows 3.0. This software provides a graphical 

interface for the user to operate and adjust various parameters. 
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Figure A.35: Schematic of the PlasmaTherm 790 series capacitively 
coupled plasma chamber used in the Langmuir probe and etching 
experiments [6].  
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Appendix B. Sample MathCAD Worksheets 



Langmuir Probe Data Analysis (EEDF)

At its simplest, a Langmuir probe is simply a wire (or disk) placed in the plasma. The
probe collects mostly electrons when biased positively and mostly ions when biased
negatively. When the bias is negative, the electrons that are collected are the ones with
sufficient energy to overcome the potential barrier of the probe. In this exercise we will
analyze data from a cylindrical Langmuir probe. The random current of electrons to a
surface in a plasma is

eeesat mkTqnJ π= 2/

where Jsat is the current density, ne is the electron density, me is the electron mass, and
q is the elementary charge. The surface is assumed to be at the plasma potential. The
electron temperature Te will be written in electron volts below, which means that the
thermal energy will be qTe rather than kTe. When the probe is at the plasma potential, the
current collected is the saturation current Isat:

satsatpsat aLJJAI π2==
where a is the probe radius, L is the probe length and
Ap is the probe area. 

When the probe voltage is negative relative to the plasma potential, Vplasma, the current is
estimated as: 

]/)exp[()( eplasmasat TVVIVI −= Vplasma is the potential in the space between
plasma electrons and ions. 

Characteristics of the probe used to acquire the data: 
Dp 0.25 10 3−

⋅:= Probe diameter in m. The wire diameter is Dp m⋅ 0.25 mm= . 

Lp 0.5 10 2−
⋅:= Probe length in m. The length is approximately Lp m⋅ 0.5 cm= . 

Ap π Dp⋅ Lp⋅:= Probe surface area in m2. The area is approximately Ap m2
⋅ 3.927 mm2

=

Required Physical Constants
qe 1.602 10 19− C×:= Elementary Charge (of an

electron)
me 9.109 10 31− kg×:= Mass of an

Electron

eV 1.602 10 19− J×:=
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Import the sweep data from a CSV File: 

RAW
.....\Run 121K1 - 100% He - 40 mTorr 175 W -360 V from -20.00 to 60.00 by 0.10 V.csv

:= Probe current in amps versus probe voltage 

rows RAW( ) 801= Rows in the
file...

dV RAW1 0, RAW0 0,−:= dV 0.1=

RAW reverse RAW( ) RAW1 0, RAW2 0,>if

RAW otherwise

:=

20 0 20 40 60
0

0.001

0.002

0.003

Raw Data

Probe Bias (V)

Pr
ob

e 
C

ur
re

nt
 (A

)

RAW 1〈 〉

RAW 0〈 〉
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Limit the sweep data to a useful region. 

VRawmin RAW0 0,:= VRawmax RAWrows RAW( ) 1− 0,:=

VRawmin 20−= VRawmax 60=

Vmin 10−:= idxmin rows RAW( ) 1− floor
VRawmax Vmin−

dV

⎛
⎜
⎝

⎞
⎟
⎠

−:= idxmin 101=

Vmax 50:= idxmax rows RAW( ) 1− floor
VRawmax Vmax−

dV

⎛
⎜
⎝

⎞
⎟
⎠

−:= idxmax 701=

Create an initial DATA array that has the current data, the first derivative, and the second
derivative.

DAT submatrix RAW idxmin, idxmax, 0, 1,( ):= kdx 2 3, rows DAT( ) 3−..:=

DatRows rows DAT( ) 1−:=DAT 1〈 〉 106 DAT 1〈 〉⋅:= Convert currents to microamps

DATkdx 2,
1

12 dV⋅
DATkdx 2+ 1,− 8 DATkdx 1+ 1, 8 DATkdx 1− 1,⋅−+ DATkdx 2− 1,+( )⋅:=

DATkdx 3,
1

12 dV2
⋅

DATkdx 2+ 1,− 16 DATkdx 1+ 1,+ 30 DATkdx 1,⋅−

16 DATkdx 1− 1,⋅ DATkdx 2− 1,−+

...⎛
⎜
⎝

⎞
⎟
⎠

⋅:=
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nt
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DATkdx 1, DATkdx 2,

DATkdx 0,
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Smooth the original data, the first derivative, and the second derivative to see if they can
be more usable.

smoothrange 0.5:=

DAT 1〈 〉 ksmooth DAT 0〈 〉 DAT 1〈 〉, smoothrange,( ):=

DAT 2〈 〉 ksmooth DAT 0〈 〉 DAT 2〈 〉, 2 smoothrange⋅,( ):=

DAT 3〈 〉 ksmooth DAT 0〈 〉 DAT 3〈 〉, 4 smoothrange⋅,( ):=

10 0 10 20 30 40 50
1000

0

1000

2000

3000

0

50

100

150

DATkdx 1,

0
DATkdx 2,

DATkdx 0,

10 0 10 20 30 40 50
0

50

100

150

10

0

10

20

DATkdx 2,

DATkdx 3,

0

DATkdx 0,
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Find the Floating potential and the Plasma potential based on the
smoothed data.

The floating potential is the potential at which the probe current is equal to
zero

iVf j DatRows 1−←

j j 1−←

DATj 1, 0>while

:= iVf 196= Find the index of Vf

VF DATiVf 0,:= VF 9.7= This is the floating
potential

The plasma potential is at first estimation equal to the maximum of the first
derivative.

iVp match max DAT 2〈 〉( ) DAT 2〈 〉,( )0:= iVp 320= Find the index of
Vp

iVp iVp:= If you don't like that Vp,
pick another one...

VP DATiVp 0,:= VP 22.1= This is the plasma
potential

extension 5:= points to plot before and after VF and
VP
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Create an EEPF and EEDF based on the second derivative and the
found VP

EERange 20:= How many volts the EEPF and EEDF extend
out 

idxEEmin iVp
EERange

dV
−:=

EEFV submatrix DAT idxEEmin, iVp, 0, 0,( )− VP+( ) eV⋅:= EEFV reverse EEFV( ):=

EEPF 2
2 me⋅

qe
3 Ap⋅ m2

⋅
⋅ submatrix DAT idxEEmin, iVp, 3, 3,( )⋅

μA

V2
⋅:=

EEPF EEPF Φ EEPF( )⋅( )
→⎯⎯⎯⎯⎯⎯⎯

:= EEPF reverse EEPF( ):= Manipulate EEPF to get it to behave...

EEDF EEPF EEFV⋅( )
→⎯⎯⎯⎯⎯⎯

:=

Note that both the EEPF and EEDF shouldn't have any negative values, so if the values are
negative, we switch them to zero.

0 5 10 15 20
0

5 .107

1 .108

1.5 .108

2 .108

0

5 .107

1 .108

1.5 .108

2 .108

2.5 .108

3 .108

EEPF

eV

3−
2 cm 3−⋅

EEDF

eV 1− cm 3−⋅

EEFV

eV
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Try and find an equivalent kTe from the EEDF

Integrate the EEDF both with and without multiplying it by the
voltage...

IntegralEEDF
0

rows EEDF( ) 2−

m

1
2

EEDFm
EEDFm 1++

...⎛
⎜
⎝

⎞
⎟
⎠

⋅ EEFVm 1+
EEFVm
−+

...⎛⎜
⎜
⎝

⎞⎟
⎟
⎠

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

∑
=

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

:=

WeightedIntegralEEDF
0

rows EEDF( ) 2−

m

1
4

EEDFm
EEDFm 1++

...⎛
⎜
⎝

⎞
⎟
⎠

⋅ EEFVm 1+
EEFVm
−+

...⎛⎜
⎜
⎝

⎞⎟
⎟
⎠

EEFVm 1+
EEFVm

+

...⎛⎜
⎜
⎝

⎞⎟
⎟
⎠

⋅⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

∑
=

:=

IntegralEEDF 2.226 109
× cm 3−

= WeightedIntegralEEDF 1.502 1010
× eV cm 3−

⋅=

AvgEE
WeightedIntegralEEDF

IntegralEEDF
:= AvgEE 6.745 eV=

kTeequiv
2
3

AvgEE⋅:= kTeequiv 4.497 eV=

Ne IntegralEEDF:= Ne 2.226 109
× cm 3−

=

131



Compare the EEDF to a Maxwellian and Druyvesteyn with an equal avera
electron energy (equivalent kTe for the Maxwellian)

dmaxwelliane ε kTe,( ) 2

π

ε

kTe
3

⋅ e

ε−

kTe
⋅:= 1

0

EERange

εdmaxwelliane ε
kTeequiv

eV
,

⎛
⎜
⎝

⎞
⎟
⎠

⌠
⎮
⎮
⌡

d− 0.031=

ddruyvesteyne ε kTe, α,( ) 2

π

ε

kTe
3

⋅ exp
ε

kTe

⎛
⎜
⎝

⎞
⎟
⎠

α
−
⎡⎢
⎢⎣

⎤⎥
⎥⎦

⋅:= N.B. α 2=  for a true
Druyvesteyn

ndruyvesteyne ε kTe, α,( )
ddruyvesteyne ε kTe, α,( )

0

∞
εddruyvesteyne ε kTe, α,( )⌠

⎮
⌡

d

:=

avgEEndruy kTe α,( )
0

∞
εε ndruyvesteyne ε kTe, α,( )⋅

⌠
⎮
⌡

d:= normAvgEE α( ) avgEEndruy 1 α,( ) 1−
:=

α 2:= α 2=  for a true
Druyvesteyn...

AvgEE 6.745 eV= E 0 dV, EERange..:=

0 5 10 15 20
0
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3 .108

Observed EEDF
Maxwellian with equivalent Avg e- Energy
Druyvesteyn with equivalent Avg e- Energy
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Maxwellian with equivalent Avg e- Energy
Druyvesteyn with equivalent Avg e- Energy

EEDF vs Equivalent Avg e- Energy Distributions

Electron Energy (eV)

eV
^-

1*
cm

^-
3
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Excel Line for ease of import: 

Excel augment
kTeequiv

eV

Ne

cm 3−
,

⎛⎜
⎜⎝

⎞⎟
⎟⎠

:= Excel 0 1

0 4.497 92.226·10
=

Error in the Distributions caused by
limits

1

0

EERange

εdmaxwelliane ε
kTeequiv

eV
,

⎛
⎜
⎝

⎞
⎟
⎠

⌠
⎮
⎮
⌡

d− 3.072 %=

1

0

EERange

εndruyvesteyne ε
AvgEE

eV
, α,

⎛
⎜
⎝

⎞
⎟
⎠

⌠
⎮
⎮
⌡

d− 7.006 10 3−
× %=
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EEDF

eV 1− cm 3−
⋅

0

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0
71.071·10

72.399·10

74.015·10

75.84·10

77.799·10

79.822·10

81.184·10

81.38·10

81.566·10

81.738·10

81.894·10

82.032·10

82.154·10

82.259·10

82.348·10

=
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Langmuir Probe Data Analysis (Log-Slope and SmartProbe)

A Langmuir probe is simply a wire (or disk) placed in the plasma. The probe collects mostly
electrons when biased positively and mostly ions when biased negatively. When the bias is
negative, the electrons that are collected are the ones with sufficient energy to overcome the
potential barrier of the probe. In this exercise we will analyze data from a cylindrical
Langmuir probe. The random current of electrons to a surface in a plasma is

eeesat mkTqnJ π= 2/

where Jsat is the current density, ne is the electron density, me is the electron mass, and q
is the elementary charge. The surface is assumed to be at the plasma potential. The
electron temperature Te will be written in electron volts below, which means that the thermal
energy will be qTe rather than kTe. When the probe is at the plasma potential, the current
collected is the saturation current Isat:

satsatpsat aLJJAI π2==
where a is the probe radius, L is the probe length and
Ap is the probe area. 

When the probe voltage is negative relative to the plasma potential, Vplasma, the current is
estimated as: 

]/)exp[()( eplasmasat TVVIVI −=
Vplasma is the potential in the space between
plasma electrons and ions. 

Characteristics of the probe used to acquire the data: 
a 0.125 10 3−

⋅:= Probe radius in m. The wire diameter is 0.25 mm. 

L 0.5 10 2−
⋅:= Probe length in m. The length is approximately 1.05 cm. 

Ap 2 π⋅ a⋅ L⋅:= Ap 3.927 10 6−
×= Probe surface area in m2.
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Import the two sweeps and "average" data from a CSV File: 
Probe current in amps versus probe voltage: 

DAT
.....\Run 121A1 - 100% He - 125 mTorr 175 W -308 V from -20.00 to 60.00 by 0.10 V.csv

:=

rows DAT( ) 801= Number of rows in the file. 

dV DAT1 0, DAT0 0,−:= dV 0.1=

DatRows rows DAT( ) 1− floor
21
dV

⎛⎜
⎝

⎞⎟
⎠

−:= The last data row is numbered DatRows

DAT reverse DAT( ) DAT1 0, DAT2 0,>if

DAT otherwise

:=

swp 0 0..:=

Switch to microamps
DAT 2 swp⋅ 1+〈 〉

106 DAT 2 swp⋅ 1+〈 〉
⋅:=

nSmoothing 1:= nSmthlow floor
nSmoothing

2
− 1+
⎛
⎜
⎝

⎞
⎟
⎠

:= nSmthlow 0=

nSmthhigh floor
nSmoothing

2

⎛
⎜
⎝

⎞
⎟
⎠

:= nSmthhigh 0=

k nSmthlow− nSmthlow− 1+, DatRows nSmthhigh( )−..:=

DATSmthk 1,
nSmthlow

nSmthhigh

i

DATk i+ 1,

nSmoothing
∑
=

:=

DAT 2 swp⋅ 1+〈 〉
DATSmth

2 swp⋅ 1+〈 〉
:=

iVf swp
j DatRows 1−←

j j 1−←

DATj 2swp 1+, 0>while

:=

iVf 342( )= Find the index of Vf

Vf swp DAT 2 swp⋅〈 〉( )iVf swp
:= Vf 14.2( )= Find the Value of Vf
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DAT2
.....\Run 121A1 - 100% He - 125 mTorr 175 W -308 V from -20.00 to 60.00 by 0.10 V.csv

:=

rows DAT2( ) 801=

dV2 DAT21 0, DAT20 0,−:= dV2 0.1=

Dat2Rows rows DAT2( ) 1− floor
25
dV

⎛⎜
⎝

⎞⎟
⎠

−:=

DAT2 reverse DAT2( ) DAT21 0, DAT22 0,>if

DAT2 otherwise

:=

DAT2 2 swp⋅ 1+〈 〉
106 DAT2 2 swp⋅ 1+〈 〉

⋅:=

n2Smoothing 1:= n2Smthlow floor
n2Smoothing

2
− 1+
⎛
⎜
⎝

⎞
⎟
⎠

:= n2Smthlow 0=

n2Smthhigh floor
n2Smoothing

2

⎛
⎜
⎝

⎞
⎟
⎠

:= n2Smthhigh 0=

k2 n2Smthlow− n2Smthlow− 1+, Dat2Rows n2Smthhigh( )−..:=

DAT2Smthk2 1,
n2Smthlow

n2Smthhigh

i

DAT2k2 i+ 1,

n2Smoothing
∑
=

:=

DAT2 2 swp⋅ 1+〈 〉
DAT2Smth

2 swp⋅ 1+〈 〉
:=
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5000
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5000

1 .104

1.5 .104

DAT 1〈 〉

DAT2 1〈 〉

DAT 0〈 〉 DAT2 0〈 〉,
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esatregion floor
15
dV

⎛⎜
⎝

⎞⎟
⎠

:=

esatregion2 floor
10
dV

⎛⎜
⎝

⎞⎟
⎠

:= PointsPoints 

n DatRows nSmthhigh( )− esatregion− DatRows nSmthhigh( )−..:=

n2 Dat2Rows n2Smthhigh( )− esatregion2− Dat2Rows n2Smthhigh( )−..:=

Satregionn DatRows nSmthhigh− esatregion−( )− 0, DATn 0,:=

Satregion2n2 Dat2Rows n2Smthhigh− esatregion2−( )− 0, DAT2n2 0,:=

Satregionn DatRows nSmthhigh− esatregion−( )− 1, DATn 1,:=

Satregion2n2 Dat2Rows n2Smthhigh− esatregion2−( )− 1, DAT2n2 1,:=

LFsatParam line Satregion 0〈 〉 Satregion 1〈 〉,( ):=

LFsat2Param line Satregion2 0〈 〉 Satregion2 1〈 〉,( ):=

LFsatParam1 341.094=

LFsat2Param1 345.039=

k2 n2Smthhigh 2+ Dat2Rows n2Smthlow+ 2−..:=

Deriv2k2 swp,
1

12 dV2⋅
DAT2k2 2+ 2 swp⋅ 1+,− 8 DAT2k2 1+ 2 swp⋅ 1+,⋅+

8 DAT2k2 1− 2 swp⋅ 1+,⋅ DAT2k2 2− 2 swp⋅ 1+,++

...⎛
⎜
⎝

⎞
⎟
⎠

⋅:=
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LaFramsat x( ) LFsatParam0 LFsatParam1 x⋅+:= LaFramsat2 x( ) LFsat2Param0 LFsat2Param1 x⋅+:=

20 0 20 40 60
2 .104

1 .104

0

1 .104

2 .104

DAT 1〈 〉

DAT2 1〈 〉

LaFramsat DAT 0〈 〉( )
LaFramsat2 DAT2 0〈 〉( )

DAT 0〈 〉 DAT2 0〈 〉, DAT 0〈 〉, DAT2 0〈 〉,1. Find the plasma potential 

The plasma potential is located at the maximum in the first derivative of the current. We find thi
derivative from the difference between the next current data point and the previous one.  

Because we need the difference between the data at k+1 and at k-1,
our counter k must begin and end one point from the ends. (There is
no k= -1 data point.)

k nSmthhigh 2+ DatRows nSmthlow+ 2−..:=
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Derivk swp,
1

12 dV⋅
DATk 2+ 2 swp⋅ 1+,− 8 DATk 1+ 2 swp⋅ 1+,⋅+

8− DATk 1− 2 swp⋅ 1+,⋅ DATk 2− 2 swp⋅ 1+,++

...⎛
⎜
⎝

⎞
⎟
⎠

⋅:=

20 10 0 10 20 30 40
5 .104

0

5 .104

1 .105

1.5 .105

Derivk 0,

Deriv2k2 0,

DATk 0, DAT2k2 0,,

Find the maximum.

Use the match function to find the
index. iVpswp

match max Deriv swp〈 〉( ) Deriv swp〈 〉
,( )0:=

There is some sneakiness involved here: the sub zero is required because match returns
an array, and we want the values, not the "1x1 array"

iVp 388( )= The indices corresponding to the maximum derivative. 

Probe voltage at the plasma potential, Vplasma. And the Saturation Current, Isat.

Vplasmaswp DAT 2 swp⋅〈 〉( )iVpswp
:= Vplasma 18.8( )= Volts

Isatswp DAT 2 swp⋅ 1+〈 〉( )iVpswp
:= Isat 1.495 103

×( )= microamps

Define a region near the plasma potential for plotting. 
10 6− Isat⋅ 1.495 10 3−

×( )=

kmin iVp 10−:= kmax iVp 10+:=

IPlotswp submatrix DAT kminswp, kmaxswp, 2 swp⋅, 2swp 1+,( ):=

dIPlotswp submatrix Deriv kminswp, kmaxswp, swp, swp,( ):=

The probe current near the plasma potential:
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dIPlot0( ) 0〈 〉

Deriv 0〈 〉( ) iVp0

IPlot0( ) 0〈 〉 Vplasma0,

LFxitionParam DAT 1〈 〉( )iVp0
Deriv 0〈 〉( )iVp0

DAT 0〈 〉( )iVp0
⋅− Deriv 0〈 〉( )iVp0

⎡
⎣

⎤
⎦

:=

LFxitionParam 1.75− 104
× 1.01 103

×( )=
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LaFramxition x( ) LFxitionParam0 0, LFxitionParam0 1, x⋅+:=

VZXLF
LFxitionParam0 0,−

LFxitionParam0 1,
:=

VpLF
LFxitionParam0 0, LFsatParam0−

LFxitionParam0 1, LFsatParam1−
−:= VpLF 20.809=

iVpLFswp
j DatRows 1−←

j j 1−←

DATj 2swp, VpLF>while

:=

iVpLF 408( )=
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IsatLF linterp DAT 0〈 〉 DAT 1〈 〉, VpLF,⎛
⎝

⎞
⎠:= IsatLF 3.151 103

×= microamp
s

extension 2:=

im VZXLF extension− VZXLF dV+ extension−, VpLF extension+..:=
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Option 1: Find the temperature from the slope of the logarithm of the
current
Create a vector of subsets of 5 data points to the left of the plasma potential. 

Subswp submatrix DAT iVpswp
5−, iVpswp

1−, 0, 1,⎛
⎝

⎞
⎠

:=

Create a vector logI with the logarithms of the currents: 

logIswp ln Subswp( ) 1〈 〉⎡
⎣

⎤
⎦

→⎯⎯⎯⎯⎯⎯

:=

The vectorize command (arrow on top) above the ln command creates a new matrix whose
elements are the loge of the elements of the original vector. 

Now we can use the line function
to return the slope and intercept. ABswp line Subswp( ) 0〈 〉 logIswp,⎡

⎣
⎤
⎦:=

Logfit x y,( ) ABy( )
0

ABy( )
1

x⋅+:= intercept
slope

We check the quaility of the fit by plotting the data and the fitted function: 

18.25 18.3 18.35 18.4 18.45 18.5 18.55 18.6 18.65
6.9

6.95

7

7.05

7.1

7.15

7.2

7.25

logI0

Logfit Sub0( ) 0〈 〉 0,⎡⎣ ⎤⎦

Sub0( ) 0〈 〉 Sub0( ) 0〈 〉,
Now we can find Te from the inverse of the
slope of the log graph: Teswp

1
ABswp( )

1

:= Te 1.386( )=

Temperature in eV.
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Option 1a: Find the temperature from the slope of the logarithm of
the current with LaFramboise
Create a vector of subsets of 5 data points to the left of the plasma potential. 

SubLFswp submatrix DAT iVpLFswp
5−, iVpLFswp

1−, 0, 1,⎛
⎝

⎞
⎠

:=

Create a vector logI with the logarithms of the currents: 

logILFswp ln SubLFswp( ) 1〈 〉⎡
⎣

⎤
⎦

→⎯⎯⎯⎯⎯⎯⎯

:=

The vectorize command (arrow on top) above the ln command creates a new matrix
whose elements are the loge of the elements of the original vector. 

Now we can use the line function
to return the slope and intercept. ABLFswp line SubLFswp( ) 0〈 〉 logILFswp,⎡

⎣
⎤
⎦:=

LogfitLF x y,( ) ABLFy( )
0

ABLFy( )
1

x⋅+:= intercept
slope

We check the quaility of the fit by plotting the data and the fitted function: 

20.2 20.3 20.4 20.5 20.6
7.94

7.96

7.98

8

8.02

logILF0

LogfitLF SubLF0( ) 0〈 〉 0,⎡⎣ ⎤⎦

SubLF0( ) 0〈 〉 SubLF0( ) 0〈 〉,

TeLFswp
1

ABLFswp( )
1

:= TeLF 4.505( )= Temperature in eV.
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Find the density from Isat and the thermal velocity of electrons 
Physical constants: 

q 1.6 10 19−
⋅:= me 9.11 10 31−

⋅:=

Now we can find Te from the inverse of the
slope of the log graph: 

ve
q Te⋅

2π me⋅
:=

Calculate the "flux" velocity of the electrons: 

Note that qTe is the electron energy because our temperature is in eV. We can use Te and
Isat and the equation at the beginning of the exercise to find the electron density ne.  

Electron density in cm-3. 
ne

Isat 10 6−
⋅

ve Ap⋅ q⋅

→⎯⎯⎯⎯

m 3−
⋅:= ne 1.209 1010

×( ) cm 3−
=

Now we have found the electron density and temperature from the probe data. 
Note that Isat has been converted from microamps to amps.  

Option 2: Smartprobe Method
iVf 342( )= iVp 388( )=

Integrate using the Trapezoidal Rule

IntegralVfVpswp
iVfswp

iVpswp
1−

m

1
2

DAT 2 swp⋅ 1+〈 〉( )
m

DAT 2 swp⋅ 1+〈 〉( )
m 1++

...⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅ DAT 2 swp⋅〈 〉( )
m 1+

DAT 2 swp⋅〈 〉( )
m−+

...⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

∑
=

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

:=

TeSP
IntegralVfVp

Isat

→⎯⎯⎯⎯⎯

:= TeSP 1.2252( )= in eV

veSP
q TeSP⋅

2π me⋅
:=Calculate the "flux" velocity of the electrons: 

Note that qTe is the electron energy because our temperature is in eV. We can use Te
and Isat and the equation at the beginning of the exercise to find the electron density
ne.  

neSP
Isat 10 6−

⋅

veSP Ap⋅ q⋅

→⎯⎯⎯⎯

m 3−
⋅:= neSP 1.285 1010

×( ) cm 3−
= Electron density in cm-3. 
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Option 2a: Smartprobe Method w/ LaFramboise

iVf 342( )= iVpLF 408( )=

Integrate using the Trapezoidal Rule

IntegralVfVpLFswp
iVfswp

iVpLFswp
1−

m

1
2

DAT 2 swp⋅ 1+〈 〉( )
m

DAT 2 swp⋅ 1+〈 〉( )
m 1++

...⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅ DAT 2 swp⋅〈 〉( )
m 1+

DAT 2 swp⋅〈 〉( )
m−+

...⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

∑
=

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

:=

TeSPLF
IntegralVfVpLF

IsatLF

→⎯⎯⎯⎯⎯⎯

:= TeSPLF 2.1017( )= in eV

veSPLF
q TeSPLF⋅

2π me⋅
:=Calculate the "flux" velocity of the electrons: 

Note that qTe is the electron energy because our temperature is in eV. We can use Te
and Isat and the equation at the beginning of the exercise to find the electron density
ne.  

neSPLF
IsatLF 10 6−

⋅

veSPLF Ap⋅ q⋅

→⎯⎯⎯⎯⎯⎯

m 3−
⋅:= neSPLF 2.069 1010

×( ) cm 3−
= Electron density in cm-3. 
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Now we have found the electron density and temperature from the probe data. 
Note that Isat has been converted from microamps to amps.  

For the time being, let us create a nice little array that will fit directly into Excel: We
currently want it in the format of:
kTe 1st swp SP, Ne 1st swp SP,  kTe 2nd swp SP, Ne 2nd swp SP,  kTe Avg swp
SP, Ne Avg swp SP,  kTe 1st swp LN, Ne 1st swp LN,  kTe 2nd swp LN, Ne 2nd
swp LN,  kTe Avg swp LN, Ne Avg swp LN,

Clean up/Remove the units

neSP neSP cm3
⋅:= neSP 1.285 1010

×( )= ne ne cm3
⋅:= ne 1.209 1010

×( )=

neSPLF neSPLF cm3
⋅:= neSPLF 2.069 1010

×( )=

Excel_line augment TeSP0
neSP0
, TeSPLF0

, neSPLF0
, Te0, ne0,⎛

⎝
⎞
⎠

:=

Excel_line 1.22521 1.28541 1010
× 2.10166 2.06926 1010

× 1.38574 1.20866 1010
×( )=
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Appendix C. Langmuir Probe and Sweep Identification 

C.1. Sweep Identification 

A large number of data files were created when researching this topic. 

While initially each one was cataloged manually, the need for a systematic 

naming of the sweeps soon became apparent. Thus a folder structure and 

file naming convention was imposed. Figure C.36 shows the hierarchy of 

folders. The hierarchy levels with tokens in italics enclosed in brackets 

(<token>) and descriptions following a colon are listed below in descending 

order and will reference the example names in Figure C.36.  

• <Description of experiments>: He Calibration Runs 
• <Year of runs>: 2007 
• Two options: 

 <Two digit number run month>–<Name of run month>:  
11–November  

 <Side experiment done under the same plasma conditions>: 
Ceramic Test Length Runs 

• (Optional) <Two digit number run day>: Not present in this 
example. 

• <Probe identification code> L=<probe tip length in cm>, D=<probe 
tip diameter in mm>: 18-Pt-1-R0 L=0.5, D=0.25 
 The probe identification code will be discussed in the next 

section (
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Langmuir Probe Identification). 
• Run <Run number> Data: Run 120 Data 

 Optionally, a “Run <Run Number> Analysis” folder is included 
to store the MathCAD and Excel worksheets that analyze a 
particular run’s data. 

 

 

Figure C.36: Folder tree showing the hierarchy of folder names 
exemplifying the folder naming conventions. 
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Similarly, Figure C.37 shows an example of the run naming 

conventions. While the names of the files can be somewhat altered based 

on what the user selects in the data file organization form in the data 

acquisition application and sweep control form, the names follow a file 

format as described below, using Run 120F1 from Figure C.37 as an 

example. Tokens are in italics enclosed in brackets followed by either a 

definition or the data from the example. 

• <Run Identifier> – <Plasma Chemistry> – <Plasma Conditions> 
<Plasma DC Bias> <Sweep Voltage Description>.csv:  
Run 120F1 – 100% He – 125 mTorr 50 W -168 V from -20.00 to 
60.00 by 0.10 V.csv 
 <Run Identifier>: Run <Run Serial Number> 

<Cleaning Serial Letter><Intra-cleaning Serial Number> 
 <Run Serial Number>: 120 
 <Cleaning Serial Letter>: F 
 <Intra-cleaning Serial Number>: 1 

 <Plasma Chemistry>: 100% He 
 <Plasma Conditions>: 125 mTorr 50 W 
 <Plasma DC Bias>: -168 V 
 <Sweep Voltage Description>: from -20.00 to 60.00 by 0.10 V 
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Figure C.37: Several run files exemplifying the run naming 
conventions. 
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C.2. Langmuir Probe Identification 

Because a large number of Langmuir probes were produced with 

differing characteristics, a way to index them became paramount to 

ensuring consistency and repeatability. This section will present the 

method behind the serial coding of the probes, but more importantly will 

help one to understand what probe produced what data when sifting 

through the supplemental data. The probe identifiers follow the format 

described below with tokens in italics enclosed in brackets, the example 

probe name will be the one referenced in Figure C.36  

• <Probe series number>–<Probe tip material>– 
<Probe serial number within the probe series>–<Rework number>: 
 18–Pt–1–R0 
 <Probe series number>: 18 
 <Probe tip material>: Pt (Platinum) 
 <Probe serial number within the probe series>: 1 
 <Rework number>: R0 

 The rework number represents the number of times the 
probe housing has been opened and re-sealed to modify the 
probe tip or any other component of the probe. Typically 
probes last through three to four reworks. 

 

 


