Show simple item record

dc.contributor.authorOleson, Keith W.
dc.contributor.authorBonan, Gordon B.
dc.contributor.authorFeddema, Johannes J.
dc.contributor.authorVertenstein, M.
dc.contributor.authorGrimmond, C. S. B.
dc.date.accessioned2012-05-10T17:44:19Z
dc.date.available2012-05-10T17:44:19Z
dc.date.issued2008
dc.identifier.citationOleson, K. W., G. B. Bonan, J. Feddema, M. Vertenstein, C. S. B. Grimmond, 2008: An Urban Parameterization for a Global Climate Model. Part I: Formulation and Evaluation for Two Cities. J. Appl. Meteor. Climatol., 47, 1038–1060. http://dx.doi.org/10.1175/2007JAMC1597.1en_US
dc.identifier.urihttp://hdl.handle.net/1808/9391
dc.description© 2008 American Meteorological Societyen_US
dc.description.abstractUrbanization, the expansion of built-up areas, is an important yet less-studied aspect of land use/land cover change in climate science. To date, most global climate models used to evaluate effects of land use/land cover change on climate do not include an urban parameterization. Here, the authors describe the formulation and evaluation of a parameterization of urban areas that is incorporated into the Community Land Model, the land surface component of the Community Climate System Model. The model is designed to be simple enough to be compatible with structural and computational constraints of a land surface model coupled to a global climate model yet complex enough to explore physically based processes known to be important in determining urban climatology. The city representation is based upon the “urban canyon” concept, which consists of roofs, sunlit and shaded walls, and canyon floor. The canyon floor is divided into pervious (e.g., residential lawns, parks) and impervious (e.g., roads, parking lots, sidewalks) fractions. Trapping of longwave radiation by canyon surfaces and solar radiation absorption and reflection is determined by accounting for multiple reflections. Separate energy balances and surface temperatures are determined for each canyon facet. A one-dimensional heat conduction equation is solved numerically for a 10-layer column to determine conduction fluxes into and out of canyon surfaces. Model performance is evaluated against measured fluxes and temperatures from two urban sites. Results indicate the model does a reasonable job of simulating the energy balance of cities.en_US
dc.language.isoen_USen_US
dc.publisherAmerican Meteorological Societyen_US
dc.titleAn Urban Parameterization for a Global Climate Model. Part I: Formulation and Evaluation for Two Citiesen_US
dc.typeArticle
kusw.kuauthorFeddema, Johannes J.
kusw.kudepartmentGeographyen_US
dc.identifier.doi10.1175/2007JAMC1597.1
kusw.oaversionScholarly/refereed, publisher version
kusw.oapolicyThis item does not meet KU Open Access policy criteria.
dc.rights.accessrightsopenAccess


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record