KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Dissertations and Theses
    • Theses
    • View Item
    •   KU ScholarWorks
    • Dissertations and Theses
    • Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    COMPUTATIONAL SIMULATION OF SCRAMJET COMBUSTORS - A COMPARISON BETWEEN QUASI-ONE DIMENSIONAL AND 2-D NUMERICAL SIMULATIONS

    Thumbnail
    View/Open
    Tourani_ku_0099M_11359_DATA_1.pdf (3.113Mb)
    Issue Date
    2011-01-26
    Author
    Tourani, Chandraprakash Chandra
    Publisher
    University of Kansas
    Format
    114 pages
    Type
    Thesis
    Degree Level
    M.S.
    Discipline
    Aerospace Engineering
    Rights
    This item is protected by copyright and unless otherwise specified the copyright of this thesis/dissertation is held by the author.
    Metadata
    Show full item record
    Abstract
    1-D simulations based on the quasi-one-dimensional equations of fluid motion plus an ignition delay model and 2-D numerical simulations based on Reynolds-Averaged Navier-Stokes (RANS) equations have been performed for two different scramjet combustors. The combustor configurations at DLR and NASA's SCHOLAR Supersonic Combustor have been used as test cases for the 1-D and 2-D simulations. Comparisons between the published 3-D computational and experimental results and quasi-one-dimensional and 2-D simulations have been performed. The quasi-one dimensional modeling of NASA's SCHOLAR supersonic combustor captures the trends in Mach number, static pressure and static temperature for both cold flow and combustion case. The comparison with experimental result for combustion case reveals a close agreement with the pressure peak and the presence of an ignition delay. Thus, 1-D simulation very closely predicts the flow evolution within the combustor. On the other hand, for DLR supersonic combustor, due to the lack of oblique wave (i.e. shock waves and expansion waves) and shear dominated viscous flow simulation, 1-D model severely fails to predict the trend followed by the experimental result along the centerline of the combustor. However, the 1-D model is able to match the overall flow velocity achieved within the combustor downstream of the wedge at approximately six wedge chord lengths.
    URI
    http://hdl.handle.net/1808/7635
    Collections
    • Engineering Dissertations and Theses [705]
    • Theses [3710]

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps