KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Some Properties of Realcompact Subspaces and Coarser Normal Spaces

    Thumbnail
    View/Open
    Niknejad_ku_0099D_10297_DATA_1.pdf (355.7Kb)
    Issue Date
    2009-04-23
    Author
    Niknejad, Jila
    Publisher
    University of Kansas
    Format
    67 pages
    Type
    Dissertation
    Degree Level
    Ph.D.
    Discipline
    Mathematics
    Rights
    This item is protected by copyright and unless otherwise specified the copyright of this thesis/dissertation is held by the author.
    Metadata
    Show full item record
    Abstract
    In this work we obtain results in two areas of topology, normal condensations of products and size of realcompact subspaces of a space. In 2000 Swardson proved that every uncountable compact space has a realcompact subspace of the same cardinality as the first uncountable cardinal. In the first chapter the work of Swardson is continued to prove that realcompact spaces with pseudocharacter no greater than the first uncountable cardinal have realcompact subspaces of the same size as the first uncountable cardinal. Under continuum hypothesis, a consequence is that every uncountable realcompact space has a realcompact subspace of the same size as the first uncountable cardinal. We also prove that every realcompact right-separated set of size larger than continuum has a realcompact subspace of size of any cardinal less or equal to continuum. A corollary is that every compact set of size bigger or equal to continuum has a realcompact subset of size less or equal to continuum, answering a question by Professor William Fleissner. In 1997 Buzjakova proved that for a pseudocompact space X, there exists an ordinal such that the product of X and that ordinal condenses onto a normal space if and only if X condenses onto a compact space. In the third chapter, we extend Buzjakovas's method to prove that for a Tychonoff space X, there exists an ordinal such that if the product of X and that ordinal condenses onto a normal space, then X condenses onto a countably paracompact space.
    URI
    http://hdl.handle.net/1808/5320
    Collections
    • Dissertations [4474]
    • Mathematics Dissertations and Theses [179]

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps