KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Integrating in situ Geochronology and Metamorphic Petrology: An Example from the Gruf Complex, European Central Alps

    Thumbnail
    View/Open
    Oalmann_ku_0099D_15310_DATA_1.pdf (56.85Mb)
    Issue Date
    2017-05-31
    Author
    Oalmann, Jeffrey Anthony G.
    Publisher
    University of Kansas
    Format
    275 pages
    Type
    Dissertation
    Degree Level
    Ph.D.
    Discipline
    Geology
    Rights
    Copyright held by the author.
    Metadata
    Show full item record
    Abstract
    Understanding the thermal evolution (i.e. the timing, rate, duration, and magnitude of thermal events) within mountain belts has important implications for the geodynamic evolution of both ancient and modern orogenies. Ultra-high temperature (UHT) metamorphism requires geodynamic or tectonic processes that bring excess heat to the lower crust. Therefore, dating UHT metamorphism can shed light on the geodynamic evolution of the geological settings in which UHT rocks are exposed. In recent years, many researchers have used accessory mineral U-Pb geochronology to date (U)HT metamorphic events. However, it is not always clear to what part of the pressure-temperature (P-T) path the ages relate. Using an in situ approach, this study combines accessory mineral U-Pb geochronology with single mineral thermometry, thermobarometric modeling, and trace element geochemistry to elucidate the P-T-time (P-T-t) evolution of sapphirine-bearing granulites from the Gruf Complex in the Central Alps. Two main questions are addressed: (1) When did the Gruf Complex experience UHT metamorphism? (2) What parts of the P-T evolution of high-grade metamorphic rocks can be dated using U-Pb geochronology of different accessory phases? Equilibrium phase diagrams calculated from whole rock and microdomain compositions and Zr-in-rutile thermometry indicate that the Gruf granulites underwent UHT metamorphism at 900–1000°C and 7.0–9.5 kbar after decompressing from ca. 800°C and 9–12 kbar. This decompression-heating event resulted in the breakdown of garnet to form orthopyroxene, sapphirine, and cordierite. A lack of inherited monazite and presence of young (34–30 Ma) monazite within UHT textures is interpreted to indicate that UHT metamorphism was the last main metamorphic event the Gruf granulites experienced, thus precluding a Permian UHT event followed by a lower temperature (700–750°C) Alpine event. Textural observations and Ti-in-zircon thermometry reveal that minor zircon growth occurred in equilibrium with garnet at 34.8 ± 1.1 Ma, and zircon was not growing, but resorbing during UHT metamorphism. Therefore, the youngest zircon rims can only be used to date post-UHT melt crystallization and cooling at 32.7 ± 0.7 Ma. The U-Pb zircon ages of variable deformed felsic dikes indicate that the lower crustal UHT rocks were juxtaposed against the midcrustal migmatites between 30 and 27 Ma and contractional deformation ceased by 25.6 ± 0.3 Ma in the Gruf Complex. Finally, U-Pb rutile ages indicate that the amalgamated Gruf Complex cooled from 700–420°C over an 11 m.y. period from 30 to 19 Ma. These results indicate that different accessory minerals can be used to date different stages of the evolution of UHT rocks. However, depending on the reactions in the rock volume, dateable accessory minerals may be crystallizing, resorbing, or not reacting at a given P-T condition. Therefore, combining accessory mineral ages with textural, geochemical, and petrological information is necessary to elucidate the P-T-t evolution of a particular rock package.
    URI
    http://hdl.handle.net/1808/26345
    Collections
    • Geology Dissertations and Theses [234]
    • Dissertations [4472]

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps