KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Engineering
    • Infrastructure Research Institute Scholarly Works
    • View Item
    •   KU ScholarWorks
    • Engineering
    • Infrastructure Research Institute Scholarly Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Multiple Corrosion Protection Systems for Reinforced Concrete Bridge Components

    Thumbnail
    View/Open
    07043dd.pdf (959.9Kb)
    Issue Date
    2007-07
    Author
    Darwin, David
    Browning, JoAnn
    Locke, Carl E., Jr.
    Van Nguyen, Trung
    Publisher
    University of Kansas Center for Research, Inc.
    Type
    Technical Report
    Is part of series
    SM Report;84
    Published Version
    https://iri.ku.edu/reports
    Metadata
    Show full item record
    Abstract
    the rapid macrocell, Southern Exposure, cracked beam, and linear polarization resistance tests. The systems include bars that are pretreated with zinc chromate to improve the adhesion between the epoxy and the reinforcing steel; two epoxies with improved adhesion to the reinforcing steel; one inorganic corrosion inhibitor, calcium nitrite; two organic corrosion inhibitors; an epoxy-coated bar with a primer containing microencapsulated calcium nitrite; the three epoxy-coated bars with improved adhesion combined with the corrosion inhibitor calcium nitrite; and multiple coated bars with an initial 50-μm (2-mil) coating of 98 percent zinc and 2 percent aluminum followed by a conventional epoxy-coating. The systems are compared with conventional uncoated reinforcement and conventional epoxy-coated reinforcement. The results presented in this report represent the findings obtained during the first half of a 5-year study that includes longer-term ASTM G 109 and field tests. In the short-term tests used to date, the epoxy-coatings evaluated provide superior corrosion protection to the reinforcing steel. The results also indicate that the bars will continue to perform well in the longer term, although the tests do not evaluate the effects of long-term reductions in the bond between the epoxy and the reinforcing steel. The corrosion rate on the exposed regions of damaged epoxy-coated reinforcement is somewhat higher than the average corrosion rate on the surface of uncoated reinforcement subjected to similar exposure conditions. The use of concrete with a reduced water-cement ratio improves the corrosion performance of both conventional and epoxy-coated reinforcement in uncracked concrete but has little effect in cracked concrete. Increased adhesion between the epoxy and reinforcing steel provides no significant improvement in the corrosion resistance of epoxy-coated reinforcement. It appears that corrosion inhibitors in concrete and the primer coating containing microencapsulated calcium nitrite improve the corrosion resistance of the epoxy-coated steel in uncracked concrete, but not in cracked concrete. The zinc coating on the multiple coated bars acts as a sacrificial barrier and provides some corrosion protection to the underlying steel in both uncracked and cracked concrete. The degree of protection, however, cannot be evaluated based on the results available to date.
    URI
    http://hdl.handle.net/1808/20076
    Collections
    • Infrastructure Research Institute Scholarly Works [331]
    Citation
    Darwin, D., Browning, J., Locke, C.E., Jr., and Nguyen, T., "Multiple Corrosion Protection Systems for Reinforced Concrete Bridge Components," Publication No. FHWA-HRT-07-043, Federal Highway Administration, also SM Report No. 84, University of Kansas Center for Research, Inc., Lawrence, Kansas, July 2007, 116 pp.

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    Login

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps