Biopharmaceutical Innovation & Optimization Center Scholarly Works

Permanent URI for this collection

Browse

Recent Submissions

  • Publication
    Fosciclopirox suppresses growth of high-grade urothelial cancer by targeting the γ-secretase complex
    (Springer Nature, 2021-05-31) Weir, Scott J.; Dandawate, Prasad; Standing, David; Bhattacharyya, Sangita; Ramamoorthy, Prabhu; Rangarajan, Parthasarathy; Wood, Robyn; Brinker, Amanda E.; Woolbright, Benjamin L.; Tanol, Mehmet; Ham, Tammy; McCulloch, William; Dalton, Michael; Reed, Gregory A.; Baltezor, Michael J.; Jensen, Roy A.; Taylor, John A., III; Anant, Shrikant
    Ciclopirox (CPX) is an FDA-approved topical antifungal agent that has demonstrated preclinical anticancer activity in a number of solid and hematologic malignancies. Its clinical utility as an oral anticancer agent, however, is limited by poor oral bioavailability and gastrointestinal toxicity. Fosciclopirox, the phosphoryloxymethyl ester of CPX (Ciclopirox Prodrug, CPX-POM), selectively delivers the active metabolite, CPX, to the entire urinary tract following parenteral administration. We characterized the activity of CPX-POM and its major metabolites in in vitro and in vivo preclinical models of high-grade urothelial cancer. CPX inhibited cell proliferation, clonogenicity and spheroid formation, and increased cell cycle arrest at S and G0/G1 phases. Mechanistically, CPX suppressed activation of Notch signaling. Molecular modeling and cellular thermal shift assays demonstrated CPX binding to γ-secretase complex proteins Presenilin 1 and Nicastrin, which are essential for Notch activation. To establish in vivo preclinical proof of principle, we tested fosciclopirox in the validated N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN) mouse bladder cancer model. Once-daily intraperitoneal administration of CPX-POM for four weeks at doses of 235 mg/kg and 470 mg/kg significantly decreased bladder weight, a surrogate for tumor volume, and resulted in a migration to lower stage tumors in CPX-POM treated animals. This was coupled with a reduction in the proliferation index. Additionally, there was a reduction in Presenilin 1 and Hes-1 expression in the bladder tissues of CPX-POM treated animals. Following the completion of the first-in-human Phase 1 trial (NCT03348514), the pharmacologic activity of fosciclopirox is currently being characterized in a Phase 1 expansion cohort study of muscle-invasive bladder cancer patients scheduled for cystectomy (NCT04608045) as well as a Phase 2 trial of newly diagnosed and recurrent urothelial cancer patients scheduled for transurethral resection of bladder tumors (NCT04525131).
  • Publication
    A phase I study of intraperitoneal nanoparticulate paclitaxel (Nanotax®) in patients with peritoneal malignancies
    (Springer Verlag, 2015-05) Williamson, Stephen K.; Johnson, Gary A.; Maulhardt, Holly A.; Moore, Kathleen M.; McMeekin, D. S.; Schulz, Thomas K.; Reed, Gregory A.; Roby, Katherine F.; Mackay, Christine B.; Smith, Holly J.; Weir, Scott J.; Wick, Jo A.; Markman, Maurie; diZerega, Gere S.; Baltezor, Michael J.; Espinosa, Jahna; Decedue, Charles J.
    PURPOSE: This multicenter, open-label, dose-escalating, phase I study evaluated the safety, tolerability, pharmacokinetics and preliminary tumor response of a nanoparticulate formulation of paclitaxel (Nanotax®) administered intraperitoneally for multiple treatment cycles in patients with solid tumors predominantly confined to the peritoneal cavity for whom no other curative systemic therapy treatment options were available. METHODS: Twenty-one patients with peritoneal malignancies received Nanotax® in a modified dose-escalation approach utilizing an accelerated titration method. All patients enrolled had previously received chemotherapeutics and undergone surgical procedures, including 33 % with optimal debulking. Six doses (50–275 mg/m2) of Cremophor-free Nanotax® were administered intraperitoneally for one to six cycles (every 28 days). RESULTS: Intraperitoneal (IP) administration of Nanotax® did not lead to increases in toxicity over that typically associated with intravenous (IV) paclitaxel. No patient reported ≥Grade 2 neutropenia and/or ≥Grade 3 neurologic toxicities. Grade 3 thrombocytopenia unlikely related to study medication occurred in one patient. The peritoneal concentration–time profile of paclitaxel rose during the 2 days after dosing to peritoneal fluid concentrations 450–2900 times greater than peak plasma drug concentrations and remained elevated through the entire dose cycle. Best response assessments were made in 16/21 patients: Four patients were assessed as stable or had no response and twelve patients had increasing disease. Five of 21 patients with advanced cancers survived longer than 400 days after initiation of Nanotax® IP treatment. CONCLUSIONS: Compared to IV paclitaxel administration, Cremophor-free IP administration of Nanotax® provides higher and prolonged peritoneal paclitaxel levels with minimal systemic exposure and reduced toxicity.