Show simple item record

dc.contributor.advisorGogineni, Sivaprasad
dc.contributor.authorPlayer, Kevin
dc.date.accessioned2010-06-09T03:12:04Z
dc.date.available2010-06-09T03:12:04Z
dc.date.issued2010-03-29
dc.date.submitted2010
dc.identifier.otherhttp://dissertations.umi.com/ku:10787
dc.identifier.urihttp://hdl.handle.net/1808/6282
dc.description.abstractDepth-sounding radar systems provide the scientific data that are useful in modeling polar ice sheets and predicting sea-level rise. These radars are typically deployed on crewed aircraft; however, crewed missions over polar regions are difficult and dangerous. Thus, CReSIS is developing uninhabited aerial vehicles (UAVs) from which fine-resolution measurements can be made over vast areas. These fine-resolution measurements require highly linear power amplifiers (PAs) to create low range side-lobe levels. However, highly linear PAs are typically less efficient and require large and bulky heat sinks for heat dissipation, which increases the payload weight and decreases flight time. Furthermore, the linear FM chirp signal used for these radar systems creates Fresnel ripples and side-lobes will be generated when there are deviations from the ideal rectangular spectrum amplitude even with efficient windowing techniques, such as a Tukey window. Therefore, a 100 W, high-speed, pulsed, VHF power amplifier was developed and linearized using memoryless digital predistortion (DP) to obtain high linearity and high efficiency. The DP linearization decreased near-range side-lobe levels 11 dB from -46 dBc to -57 dBc, with a maximum reduction in the far-range side-lobe levels of 17 dB over the Tukey (transmit) and Blackmann2 (receive) windowing alone. The high-speed switching circuit reduced current consumption to 117 mA (or 3.28 W at +28 V) for a 10-us pulse at 1-kHz PRF.
dc.format.extent137 pages
dc.language.isoEN
dc.publisherUniversity of Kansas
dc.rightsThis item is protected by copyright and unless otherwise specified the copyright of this thesis/dissertation is held by the author.
dc.subjectElectronics and electrical engineering
dc.subjectAtmospheric sciences
dc.subjectGeology
dc.subjectDigital predistortion of power amplifier
dc.subjectHigh speed
dc.subjectPulsed power amplifier
dc.subjectLinearization of radar depth sounder
dc.subjectPower amplifier linearization
dc.subjectPower amplifier module for uav
dc.subjectSide-lobe improvement of radar depth sounder system
dc.titleLinearization using Digital Predistortion of a High-Speed, Pulsed, Radio Frequency Power Amplifier for VHF Radar Depth-Sounder Systems
dc.typeThesis
dc.contributor.cmtememberSeguin, Sarah
dc.contributor.cmtememberAllen, Christopher
dc.thesis.degreeDisciplineElectrical Engineering & Computer Science
dc.thesis.degreeLevelM.S.
kusw.oastatusna
kusw.oapolicyThis item does not meet KU Open Access policy criteria.
kusw.bibid7078812
dc.rights.accessrightsopenAccess


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record