Duncan, Tyrone E.Varaiya, Pravin2015-02-172015-02-171971-01-01Duncan, Tyrone E. "On the solutions of a stochastic control system." SIAM J. Control. (1971) 9, 3. 354-371. http://www.dx.doi.org/10.1137/0309026.https://hdl.handle.net/1808/16692This is the published version, also available here: http://www.dx.doi.org/10.1137/0309026.The control system considered in this paper is modeled by the stochastic differential equation dx(t, to) f(t, x(., o), u(t, to)) dt + dB(t, to), where B is n-dimensional Brownian motion, and the control u is a nonanticipative functional of x(., to) taking its values in a fixed set U. Under various conditions on f it is shown that for every admissible control a solution is defined whose law is absolutely continuous with respect to the Wiener measure #, and the corresponding set of densities on the space C forms a strongly closed, convex subset of LI(C, I). Applications of this result to optimal control and two-person, zero-sum differential games are noted. Finally, an example is given which shows that in the case where only some of the components of x are observed, the set of attainable densities is not weakly closed in LI(C, t).On the solutions of a stochastic control systemArticle10.1137/0309026openAccess