Browning, JoAnnDarwin, DavidReynolds, DianePendergrass, Benjamin2017-03-022017-03-022011Browning, J., Darwin, D., Reynolds, D., and Pendergrass, B., “Lightweight Aggregate as Internal Curing Agent to Limit Concrete Shrinkage,” ACI Materials Journal, Vol. 108, No. 6, Nov.-Dec. 2011, pp. 638-644.https://hdl.handle.net/1808/23331The effectiveness of prewetted, vacuum-saturated (PVS) lightweight aggregate (LWA) as an internal curing agent to reduce concrete shrinkage is evaluated for curing periods of 7 and 14 days. Normalweight aggregate is replaced by LWA at volume replacement levels ranging from 8.9 to 13.8%. Some mixtures contain a partial replacement of portland cement with slag cement while maintaining the paste content at approximately 24.1% of concrete volume. Comparisons are made with mixtures containing low-absorption granite and high absorption limestone normalweight coarse aggregates. At the replacement levels used in this study, PVS LWA results in a small reduction in concrete density, no appreciable effect on concrete compressive strength, and a substantial decrease in concrete shrinkage for drying periods up to 365 days. Increasing the curing period from 7 to 14 days reduces concrete shrinkage. Thirty and 60% volume replacements of portland cement by slag cement result in reduced shrinkage when used with a porous LWA or normalweight aggregate. After 30 and 365 days of drying, all mixtures with LWA exhibited less shrinkage than the mixtures with either low- or high-absorption normalweight aggregates.Bridge decksCrackingCuringDrying shrinkageLightweight aggregateSlag cementVacuum saturationLightweight Aggregate as Internal Curing Agent to Limit Concrete ShrinkageArticlehttps://orcid.org/0000-0001-5039-3525openAccess