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Chaotic Transport in Time-Dependent Symplectic Maps
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(Received 20 October 1995)

The effect of tune modulation in two-dimensional symplectic maps has been studied by usin
concept of chaotic transport in terms of flux across resonances. When a single resonance is do
the particle escape due to the tune modulation can be characterized by the increment of t
induced by the modulation. The parameter dependence of the particle escape rate obtained b
the transport theory agrees well with the result of the multiparticle tracking study and the beam
experiments at the CERN Super Proton Synchrotron. This study showed that the transport
provides a computationally efficient means of studying the particle escape due to the tune mod
and estimating the parameter dependence of the escape rate. [S0031-9007(96)00214-1]

PACS numbers: 41.85.–p, 05.45.+b, 29.20.–c
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Recent experiments in hadron accelerators have sh
that the beam lifetime is substantially decreased when
tatron tunes are modulated due to the power supply
ple, ground motion, or synchrobetatron coupling [1,2].
this phenomenon is not well understood, no effective t
available for estimating the particle loss rate or providi
the parameter (modulation amplitude and frequency)
pendence of this rate.

In nonlinear dynamics, the concept of chaotic tran
port in terms of flux across partial barriers on the uns
ble manifolds has been developed to study the part
escape from one region of phase space to another [
This transport theory was originally developed for Ham
tonian systems with two degrees (or one and half degr
of freedom. Its mathematical framework has been gene
ized to Hamiltonian systems with multidegrees of freed
[5] and successfully applied to a four-dimensional sy
plectic map [6]. These important developments in no
linear dynamics should play a role in the study of be
particle loss caused by tune modulation. In fact, as we
show below, transport theory provides an effective too
investigate the effect of tune modulations on the betat
motion when a single resonance is dominant. The
rameter dependence of the particle loss rate obtained
transport theory agrees well with the results of the mu
particle tracking study and the results of the beam st
experiments.

Consider a two-dimensional symplectic ma
sxn11, pn11d ­ T sxn, pnd, where xn and pn are the
phase-space coordinate and its conjugate momentum
n iterations, respectively. For any phase-space reg
which contains a fixed point and is bounded by a clos
curve, the flux across the boundary is defined as
area occupied by all phase-space points mapped f
the interior to the exterior of this region in one iteratio
of map T and the particle escape from the region c
be characterized by the flux across the boundary. E
though the evaluation of the flux across an arbitra
boundary in phase space is not known, the flux acr
a resonance can be evaluated numerically. Cons
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an mth-order resonance which hasm pairs of elliptic
and hyperbolic points. A phase-space boundary on
resonance can be constructed in the following way [
First, connect two neighboring hyperbolic points wi
an arbitrary curveC0 and drawC0 through the elliptic
point between these two hyperbolic points (see Fig.
Iterating C0 once with T, one obtainsTC0 which again
connects two hyperbolic points and goes through
elliptic point. If we iterateC0 m 2 1 times, the result is
a closed curveC ­ hC0, TC0, T2C0, . . . , T m21C0j which
connects all the elliptic and hyperbolic points of th
resonance and separates the phase space into two
Now iterating C once more, we have another close
curve C0 ­ hTC0, T2C0, . . . , Tm21C0, TmC0j. All parts
of C0 coincide with C except the last segmentTmC0
which connects the original two hyperbolic points o
C0. Except in a nongeneric integrable case,TmC0 and
C0 typically intersect only at three points on the period
orbits since otherwise more than two periodic orb
would exist onC0. This yields the structure in Fig. 1
which is called the turnstile [4]. The area in one lobe
the turnstile is the area escaping throughC on each iterate
of the map and therefore is the flux. By area preservati
the two lobes have the same area. Such constructio

FIG. 1. Formation of the phase-space boundary with turns
on a 4th-order resonance.X indicates hyperbolic orbit andO
elliptic.
© 1996 The American Physical Society 3971
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a boundary has localized the entire flux to one regi
and the flux can simply be calculated by evaluating t
area of one lobe. For twist maps, this calculation c
be accomplished in terms of generating functions [3,
A map is a twist map if≠xn11y≠pn fi 0 for all xn and
pn. For a twist map, there exists a generating functi
Lsxn, xn11d such that pn ­ 2≠Lsxn, xn11dy≠xn and
pn11 ­ ≠Lsxn, xn11dy≠xn11. It can be shown [3,4] that
the area in one lobe can be calculated as

Flux ­ W sheijd 2 Wshhijd , (1)

where heiji ­ 0, . . . , m 2 1j with em ­ e0 and hhi ji ­
0, . . . , m 2 1j with hm ­ h0 denote the phase-space c
ordinates for the elliptic and hyperbolic points, respe
tively, and W shxijd ­

Pm21
i­0 Lsxi , xi11d is the action of

orbit hxiji ­ 0, . . . , m 2 1j. The flux acrossC is thus
given by the difference of action between the ellipt
and hyperbolic orbits. This is independent of the w
C is constructed and, therefore, uniquely defines the fl
through a resonance which is, in fact, the flux across
stable and unstable manifolds of hyperbolic points.

In a charge-particle storage ring, the betatron motion
the horizontal plane can be described by a two-dimensio
one-turn map. Since the combination of any linear elem
with any nonlinear element in the thin-lens approximati
can be expressed as a symplectic twist map, the genera
function for the one-turn map can be obtained as a s
of the generating functions for the combined elements a
the flux across a resonance can be calculated in term
Eq. (1). The number of betatron oscillations for a partic
traveling one turn around the ring is called the betatr
tune which is denoted asn. Because of the power suppl
ripple, ground motion, or synchrobetatron coupling,n is
modulated with time. The modulation of the tune c
usually be modeled by

nsnd ­ n0 1 dn sins2pnvd , (2)

wheren0, dn, andv are the designed betatron tune, mo
ulation amplitude, and modulation frequency, respective
n is the number of turns that the particle has circled arou
the ring. Because of modulation, the one-turn map for
betatron motion becomes time dependent. If the modu
tion frequency is a rational number, i.e.,v ­ lyk wherel
andk are relatively prime integers, thek-turn map is still
a time-independent map. To study the effect of the tu
modulation, one can first consider the system without
modulation. After choosing a resonance in the phase-sp
region of interest, flux across the resonance can be ca
lated with Eq. (1). When the tune is modulated, period
orbits of the one-turn map are no longer periodic, but
long as the modulation is weak, thek-turn map still pos-
sesses the same resonance in the same phase-space r
Flux across the resonance of thek-turn map contains infor-
mation of additional particle escape caused by tune mo
lation and can be evaluated with the periodic orbits of t
k-turn map. The effect of tune modulation can thus
studied with a comparison between flux for the system w
modulation and that without modulation.
3972
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Let DDms1, 0d denote the flux across anmth-order
resonance in the phase-space region of interest for
system without the modulation andDDmsk, dnd denote
flux across the same resonance of thek-turn map when
the tune is modulated with a modulation frequencyv ­
lyk. We conjecture that the effect of modulation can
characterized by

z ­ DDmsk, dndyk 2 DDms1, 0d , (3)

where DDmsk, dndyk is the average flux per turn whe
the tune is modulated andz is the increment of the flux
induced by tune modulation. It should be noted that ev
though the dominant resonance in the phase-space re
of interest should be the first candidate for calculati
z , the correlation betweenz and the order of resonance
needs to be studied in detail. Since an irrational num
can be approximated by a sequence of rational numb
the effect of tune modulation with an irrational frequen
can be studied by successively studying modulations w
rational frequencies.

As an example, we study tune modulation on a ri
with one sextupole kick and otherwise linear. The on
turn map for the betatron motion in the horizontal pla
can be written as a time-dependent Henon map,(

xn11 ­ cosfmsndgxn 1 sinfmsndg spn 2 x2
nd ,

pn11 ­ 2 sinfmsndgxn 1 cosfmsndg spn 2 x2
nd , (4)

where msnd ­ 2pnsnd and nsnd is given in Eq. (2).
Figure 2(a) shows the phase-space portrait of map
without tune modulationsdn ­ 0d asn0 ­ 0.2114. The
dynamic aperture (stable boundary) is located between
21st-order resonance and the 5th-order resonance w
is the dominant resonance limiting the dynamic apertu
The orbits started inside the dynamic aperture stay ins
for a long time. In order to have a general picture
the phase space of the modulated system, we plot
in Figs. 2(b) and 2(c), the phase-space portraits of m
(4) and its 537-turn map when the tune is modulated
v ­ 1y537 and dn ­ 1023. It can be seen that som
orbits started inside the original dynamic aperture beco
unstable when the tune is modulated. Figure 2(c) sho
that the multiturn map of a weakly modulated syste
possesses a similar resonance structure as that of
original system without the modulation.

Without tune modulation,n ­ n0 and the action for a
period-m orbit of map (4) is

W s1d
m shxijd ­

m21X
n­0

Ω
1

2 sinsmd
fcossmd sx2

n11 1 x2
nd

2 2xn11xng 2
1
3

x3
n

æ
. (5)

When tune is modulated withv ­ lyk, the action for a
period-m orbit of thek-turn map is

W skd
m shxijd ­

skmd21X
i­0

Ω
1

2 sinsmsidd
hcosfmsidg sx2

i11 1 x2
i d

2 2xi11xig 2
1
3

x3
i

æ
. (6)
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FIG. 2. Phase-space portraits of map (4) whenn0 ­ 0.2114.
(a) Tune is not modulatedsdn ­ 0d; (b) tune is modulated
with v ­ 1y537 anddn ­ 1023; and (c) phase-space portra
of 537-turn map when tune is modulated as (b).

Evaluating the flux across a resonance by using Eqs
and (5) or (6) requires the knowledge of the pha
space coordinates of the elliptic and hyperbolic poin
For the one-turn map, a search for the elliptic a
hyperbolic points can be accomplished by using
Newton method with the map. The hyperbolic orb
1)
-
.

e

has a positive Lyapunov exponent and the Lyapun
exponent of the hyperbolic orbit of thek-turn map is
about k times larger than that of the one-turn map.
very large positive Lyapunov exponent implies a very fa
exponential growth of numerical errors so that the meth
of the iteration of the map cannot be used on thek-turn
map. To locate highly unstable periodic orbits, one has
solve the Lagrange equations for the orbits. The deta
of the computation of the periodic orbits can be found
Ref. [8].

In order to examine the effect of the modulatio
when v is irrational,z was calculated on the fifth-orde
resonance whenv approached irrational numbers wit
sequences of continued-fraction approximations [8].
was found that whenv approaches the irrational numbe
z converges very fast and no singularity was observ
This suggests that the effect of tune modulation c
be understood by only considering rational modulati
frequencies.

In Fig. 3, z calculated on the fifth-order resonance
plotted as a function of modulation frequency for diffe
ent modulation amplitude asn0 ­ 0.2114. The calcu-
lation on higher-order resonances nearby the fifth-or
resonance reveals a similar amplitude and frequency
pendence ofz . Figure 3 shows that the particle loss ra
due to tune modulation strongly depends on the mo
ulation amplitude but weakly depends on the modu
tion frequency. This phenomenon has been observed
the CERN Super Proton Synchrotron (SPS) experime
[1]. The effect of tune modulation increases more th
linearly with the modulation amplitude as it was con
firmed by the experiments [1]. In Table I, a compariso
is given between the amplitude dependence ofz and the
amplitude dependence of the particle loss rate measu
in the SPS experiments when the dominant resonanc
fifth order [1]. As dn is increased from1.1 3 1023 to
1.65 3 1023, both z and the loss rate are doubled. Th
particle loss due to tune modulation is therefore w
characterized byz when the modulation is weak. As
dn is further increased to2.2 3 1023, the particle loss
rate is increased by a factor of 10 whilez is only in-
creased by a factor of 4. This discrepancy could be d
to the additional particle escape along the vertical pla
in the experiments when the modulation is strong. Ev
though flat beams were used and the linear coupling w
well corrected in the experiments, particle escape alo
the vertical plane can be significant when the modulat
is strong as it was observed in the experiments [1].z

here, however, only characterizes particle escape al
the horizontal plane.

To further examine transport theory, a multipartic
tracking study has been conducted [8] with an ensemble
initial phase-space points chosen within a band cover
a phase-space region containing the fifth-order resona
and bounded by the 21st-order resonance. LetNnsdnd
and Nns0d denote the number of points escaped aftern
iterations of map (4) with and without tune modulatio
3973



VOLUME 76, NUMBER 21 P H Y S I C A L R E V I E W L E T T E R S 20 MAY 1996

o
th
ay

er
ge
in
an
-

u

k
t
e
n

or
th
io
y

loss
u-

se-
an-

-
in

eak
er-
on
es,
the

ans-
ge
ld
e
as

folds
and
r-
e
[5].
r

ial
s

ion
He
eir
sor
nd
ed
3-

e
-
.

)

a

s

FIG. 3. z as a function ofv for different dn when n0 ­
0.2114 (solid curves). Asterisk points are the scaled rate
the particle loss due to the modulation estimated from
multiparticle tracking. The scaling was done in such a w
that the loss rate equalsz at v ­ 1y241 anddn ­ 1023. The
points plotted along each solid curve are for the samedn as
that of the curve which is indicated on the curve.

respectively. fNnsdnd 2 Nns0dgyn is the average of the
escape due to tune modulation inn iterations. It should
be noted thatn, the number of iterations, should be larg
than the period of tune modulation but not be too lar
since, as a large number of points have been lost, po
remaining in the ensemble are too few to give a signific
statistical result. Whenn is several hundred of the mod
ulation period, we found thatz , fNnsdnd 2 Nns0dgyn.
In Fig. 3, the scaledfNnsdnd 2 Nns0dgyn is plotted as
asterisk points where the scaling has been done in s
a way thatfNnsdnd 2 Nns0dgyn equalsz at v ­ 1y241
anddn ­ 1023. (This point for the scaling is arbitrarily
chosen with relatively weak modulation since the trac
ing result and the flux-calculation result are expected
agree with each other best there.) Very good agreem
was found between the result of the flux calculation a
the result of the multiparticle tracking.

This work shows that the concept of chaotic transp
in terms of flux across resonances is very useful to
understanding of particle escape due to tune modulat
It provides a computationally efficient means of stud

TABLE I. A comparison of thedn dependence of the particle
loss rate measured in the SPS experiments andz . D1.1 and
z1.1 are the values of the loss rate andz at dn ­ 1.1 3 1023,
respectively.

dn s1023d Loss rate z

1.1 D1.1 z1.1

1.65 2 3 D1.1 2 3 z1.1

2.2 10 3 D1.1 4 3 z1.1
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ing particle escape from single resonances or particle
along the horizontal plane when tune is weakly mod
lated (dn ø n0 and v ø n0). In the case of strong
modulation, the resonance structure of the system is
verely distorted and, consequently, particle escape c
not be well characterized byz and the calculation ofz
will also become too difficult to be practical. This, how
ever, appears to not be a problem for tune modulation
storage rings since most cases there involve only w
tune modulation. In order to have a complete und
standing of the effect of tune modulation on the betatr
motion in storage rings especially in proton machin
particle escape, however, needs to be investigated in
four-dimensional transverse phase space. To extend tr
port theory to the four-dimensional case, the challen
is to evaluate the flux on a three-dimensional manifo
(manifolds of codimensional one) which partitions th
four-dimensional phase space into disjoint regions. It w
shown that single resonances may possess the mani
of codimensional one, the three-dimensional stable
unstable manifolds of a two-dimensional normally hype
bolic invariant manifold (NHIM), and the flux across th
resonance can be evaluated if NHIM can be located
The difficulty here is a lack of the general algorithm fo
computation of arbitrary NHIMs except for some spec
cases [6]. A thorough study of the properties of NHIM
in accelerator models is therefore needed.
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