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Chaotic Transport in Time-Dependent Symplectic Maps
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The effect of tune modulation in two-dimensional symplectic maps has been studied by using the
concept of chaotic transport in terms of flux across resonances. When a single resonance is dominant,
the particle escape due to the tune modulation can be characterized by the increment of the flux
induced by the modulation. The parameter dependence of the particle escape rate obtained by using
the transport theory agrees well with the result of the multiparticle tracking study and the beam study
experiments at the CERN Super Proton Synchrotron. This study showed that the transport theory
provides a computationally efficient means of studying the particle escape due to the tune modulation
and estimating the parameter dependence of the escape rate. [S0031-9007(96)00214-1]

PACS numbers: 41.85.—p, 05.45.+b, 29.20.—c

Recent experiments in hadron accelerators have showan mth-order resonance which haa pairs of elliptic
that the beam lifetime is substantially decreased when bend hyperbolic points. A phase-space boundary on the
tatron tunes are modulated due to the power supply ripresonance can be constructed in the following way [7].
ple, ground motion, or synchrobetatron coupling [1,2]. AsFirst, connect two neighboring hyperbolic points with
this phenomenon is not well understood, no effective toohn arbitrary curveC, and drawC, through the elliptic
available for estimating the particle loss rate or providingpoint between these two hyperbolic points (see Fig. 1).
the parameter (modulation amplitude and frequency) delerating C, once with T, one obtainsTC, which again
pendence of this rate. connects two hyperbolic points and goes through an

In nonlinear dynamics, the concept of chaotic trans-elliptic point. If we iterateCy m — 1 times, the result is
port in terms of flux across partial barriers on the unstaa closed curveC = {Cy, TCo, T>Cy, ..., T" 'Co} which
ble manifolds has been developed to study the particleonnects all the elliptic and hyperbolic points of the
escape from one region of phase space to another [3,4fesonance and separates the phase space into two parts.
This transport theory was originally developed for Hamil- Now iterating C once more, we have another closed
tonian systems with two degrees (or one and half degreesurve C' = {TCy, T*Cy,...,T" 'Cy, T"Cy}. All parts
of freedom. Its mathematical framework has been generabf C’ coincide with C except the last segmerft”C,
ized to Hamiltonian systems with multidegrees of freedomwhich connects the original two hyperbolic points on
[5] and successfully applied to a four-dimensional sym-Cy. Except in a nongeneric integrable ca%&.C, and
plectic map [6]. These important developments in non-Cy typically intersect only at three points on the periodic
linear dynamics should play a role in the study of beanorbits since otherwise more than two periodic orbits
particle loss caused by tune modulation. In fact, as we willvould exist onCy. This yields the structure in Fig. 1,
show below, transport theory provides an effective tool towhich is called the turnstile [4]. The area in one lobe of
investigate the effect of tune modulations on the betatrothe turnstile is the area escaping throw@bn each iterate
motion when a single resonance is dominant. The paef the map and therefore is the flux. By area preservation,
rameter dependence of the particle loss rate obtained withe two lobes have the same area. Such construction of
transport theory agrees well with the results of the multi-
particle tracking study and the results of the beam study
experiments.

Consider a two-dimensional symplectic map
(xn+1»pn+l) = T(XmPn)1 where x, and pn are the
phase-space coordinate and its conjugate momentum after
n iterations, respectively. For any phase-space region
which contains a fixed point and is bounded by a closed
curve, the flux across the boundary is defined as the
area occupied by all phase-space points mapped from
the interior to the exterior of this region in one iteration
of map T and the particle escape from the region can
be characterized by the flux across the boundary. Even

though the evaluation of the flux across an arbitraryFlG_ 1. Formation of the phase-space boundary with turnstile

boundary in phase space is not known, the flux acrosgn a 4th-order resonanceX indicates hyperbolic orbit an®
a resonance can be evaluated numerically. Consideliptic.
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a boundary has localized the entire flux to one region, Let AD,(1,0) denote the flux across amth-order
and the flux can simply be calculated by evaluating theesonance in the phase-space region of interest for the
area of one lobe. For twist maps, this calculation carsystem without the modulation anlD,,(k, §») denote

be accomplished in terms of generating functions [3,4]flux across the same resonance of Kaeirn map when

A map is a twist map ifox,+;/dp, # 0 for all x, and the tune is modulated with a modulation frequeney=

p.. For a twist map, there exists a generating functionl/k. We conjecture that the effect of modulation can be
L(x,,x,+1) such that p, = —dL(x,,x,+1)/0x, and characterized by

DPn+l = a.L(x,,,x,,H)/aan. It can be shown [3,4] that ¢ = AD,(k,8v)/k — AD,,(1,0), (3)

the area in one lobe can be calculated as where AD,,(k, 5v)/k is the average flux per turn when
Flux = W({e;}) — W({hi}), (1) the tune is modulated andl is the increment of the flux

where{e;li = 0,...,m — 1} with e,, = ¢g and{h;|li = induced by tune modulation. It should be noted that even

0,...,m — 1} with h, = hy denote the phase-space co-though the dominant resonance in the phase-space region
ordinates for the elliptic and hyperbolic points, respec-of interest should be the first candidate for calculating
tively, and W({x;}) = f”;ol L(x;,x;+1) is the action of ¢, the correlation betweefi and the order of resonances
orbit {x;li =0,...,m — 1}. The flux acrossC is thus needs to be studied in detail. Since an irrational number
given by the difference of action between the ellipticcan be approximated by a sequence of rational numbers,
and hyperbolic orbits. This is independent of the waythe effect of tune modulation with an irrational frequency
C is constructed and, therefore, uniquely defines the flugan be studied by successively studying modulations with
through a resonance which is, in fact, the flux across theational frequencies.
stable and unstable manifolds of hyperbolic points. As an example, we study tune modulation on a ring
In a charge-particle storage ring, the betatron motion irwith one sextupole kick and otherwise linear. The one-
the horizontal plane can be described by a two-dimensiondlirn map for the betatron motion in the horizontal plane
one-turn map. Since the combination of any linear elementan be written as a time-dependent Henon map,
with any nonlinear element in thfe thir_1—|ens approximatior_l Xn+1 = cogu(n)lx, + silu(n)](p, — x2), @)
can be expressed as a symplectic twist map, the generating| , .\ = — sinu(n)lx, + codu(n)](p, — x2),
function for the one-turn map can be obtained as a sum
of the generating functions for the combined elements andihere w(n) = 27w v(n) and v(n) is given in Eg. (2).
the flux across a resonance can be calculated in terms &igure 2(a) shows the phase-space portrait of map (4)
Eqg. (1). The number of betatron oscillations for a particlewithout tune modulatiorid» = 0) asvy = 0.2114. The
traveling one turn around the ring is called the betatrordynamic aperture (stable boundary) is located between the
tune which is denoted as. Because of the power supply 21st-order resonance and the 5th-order resonance which
ripple, ground motion, or synchrobetatron couplingis is the dominant resonance limiting the dynamic aperture.
modulated with time. The modulation of the tune canThe orbits started inside the dynamic aperture stay inside
usually be modeled by for a long time. In order to have a general picture of
v(n) = vy + dvsinRmnw), (2) the phase space of the modulated system, we plotted,
in Figs. 2(b) and 2(c), the phase-space portraits of map

wherer,, 6v,andw are the designed betatron tune, mod- ; !
. . ; ; (4) and its 537-turn map when the tune is modulated as
ulation amplitude, and modulation frequency, respectively: * 1/537 and 8» — 103, It can be seen that some

nis the number of turns that the particle has circled around’

the ring. Because of modulation, the one-turn map for thé)rbits started inside the qriginal dynamic aperture become
betatron motion becomes time dependent. If the modul unstable when the wne is modulated. Figure 2(c) shows

tion frequency is a rational number, i.e,= [/k wherel hat the multitu.rn. map of a weakly modulated system
andk are relatively prime integers, theturn map is still possesses a similar resonance structure as that of the

a time-independent map. To study the effect of the tuné’”g'.nal system without t_he modulation. .
modulation, one can first consider the system without the W'thOUt tune modulathnp = »o and the action for a
modulation. After choosing a resonance in the phase-spa&?”()dm orbit of m?? @is
region of interest, flux across the resonance can be calcu- WO({x)) = mz{
lated with Eq. (1). When the tune is modulated, periodic moE

orbits of the one-turn map are no longer periodic, but as J

long as the modulation is weak, teturn map still pos- ~ 2010] = ?xn}' (5)
sesses the same resonance in the same phase-space re
Flux across the resonance of #irn map contains infor-
mation of additional particle escape caused by tune mod (k)1
lation and can be evaluated with the periodic orbits of the _«) . . 2 2
kturn map. The effect of tune modulation can thus be " ()= 2 {Zsin(,u(i)) {cogud] (xisy + x7)
studied with a comparison between flux for the system with 1

modulation and that without modulation. ~ 2xivixi] = ?xi}' (6)
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[codp) (x;p 41 + x7)

1
= 2sin(u)

ion. . . .
gWhen tune is modulated with = [/k, the action for a
Jperiodm orbit of thek-turn map is

i=0
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FIG. 2. Phase-space portraits of map (4) whgn= 0.2114.
(&) Tune is not modulatedé» = 0); (b) tune is modulated
with @ = 1/537 and§» = 1073; and (c) phase-space portrait
of 537-turn map when tune is modulated as (b).

has a positive Lyapunov exponent and the Lyapunov
exponent of the hyperbolic orbit of thkturn map is
aboutk times larger than that of the one-turn map. A
very large positive Lyapunov exponent implies a very fast
exponential growth of numerical errors so that the method
of the iteration of the map cannot be used on kkern
map. To locate highly unstable periodic orbits, one has to
solve the Lagrange equations for the orbits. The details
of the computation of the periodic orbits can be found in
Ref. [8].

In order to examine the effect of the modulation

when w is irrational, / was calculated on the fifth-order
resonance whem approached irrational numbers with
sequences of continued-fraction approximations [8]. It
was found that whew approaches the irrational number,
{ converges very fast and no singularity was observed.
This suggests that the effect of tune modulation can
be understood by only considering rational modulation
frequencies.

In Fig. 3, { calculated on the fifth-order resonance is
plotted as a function of modulation frequency for differ-
ent modulation amplitude asy = 0.2114. The calcu-
lation on higher-order resonances nearby the fifth-order
resonance reveals a similar amplitude and frequency de-
pendence of. Figure 3 shows that the particle loss rate
due to tune modulation strongly depends on the mod-
ulation amplitude but weakly depends on the modula-
tion frequency. This phenomenon has been observed in
the CERN Super Proton Synchrotron (SPS) experiments
[1]. The effect of tune modulation increases more than
linearly with the modulation amplitude as it was con-
firmed by the experiments [1]. In Table |, a comparison
is given between the amplitude dependence @ind the
amplitude dependence of the particle loss rate measured
in the SPS experiments when the dominant resonance is
fifth order [1]. As v is increased fromi.1 X 1073 to
1.65 X 1073, both ¢ and the loss rate are doubled. The
particle loss due to tune modulation is therefore well
characterized by, when the modulation is weak. As
Sv is further increased t@.2 X 1073, the particle loss
rate is increased by a factor of 10 whileis only in-
creased by a factor of 4. This discrepancy could be due
to the additional particle escape along the vertical plane
in the experiments when the modulation is strong. Even
though flat beams were used and the linear coupling was
well corrected in the experiments, particle escape along
the vertical plane can be significant when the modulation
is strong as it was observed in the experiments [Z].
here, however, only characterizes particle escape along
the horizontal plane.

To further examine transport theory, a multiparticle

Evaluating the flux across a resonance by using Egs. (Xjacking study has been conducted [8] with an ensemble of
and (5) or (6) requires the knowledge of the phaseinitial phase-space points chosen within a band covering
space coordinates of the elliptic and hyperbolic pointsa phase-space region containing the fifth-order resonance
For the one-turn map, a search for the elliptic andand bounded by the 21st-order resonance. Ngidv)
hyperbolic points can be accomplished by using theand N,(0) denote the number of points escaped after
Newton method with the map. The hyperbolic orbititerations of map (4) with and without tune modulation,

3973



VOLUME 76, NUMBER 21 PHYSICAL REVIEW LETTERS 20 My 1996

1.2 ing particle escape from single resonances or particle loss
[ along the horizontal plane when tune is weakly modu-
lated v < vy and w <K vg). In the case of strong
modulation, the resonance structure of the system is se-

verely distorted and, consequently, particle escape can-

1.0}

0.8}

tf\ - . not be well characterized by and the calculation of
S 0.6 av=30%10 ‘ will also become too difficult to be practical. This, how-
:: / ever, appears to not be a problem for tune modulation in
0.4F . storage rings since most cases there involve only weak
! su=2.0x10° ] tune modulation. In order to have a complete under-
0.2 —__,M standing of the effect of tune modulation on the betatron
F L _ 6v=1.0x10"° ‘ motion in storage rings especially in proton machines,
0.01 — é — 3 s "1 particle escape, however, needs to be investigated in the

four-dimensional transverse phase space. To extend trans-
3 port theory to the four-dimensional case, the challenge
w (10°7) is to evaluate the flux on a three-dimensional manifold
FIG. 3. ¢ as a function ofw for different 6» when vy = (manif_olds (.)f codimensional Qne) Wh'Ch partitions the
0.2114 (solid curves). Asterisk points are the scaled rate offour-dimensional phase space into disjoint regions. It was
the particle loss due to the modulation estimated from theshown that single resonances may possess the manifolds
multiparticle tracking. The scaling was done in such a wayof codimensional one, the three-dimensional stable and
that the I'Osséat? eq”afsit“’ le/z‘“ and 5f” =h107‘é%m2he unstable manifolds of a two-dimensional normally hyper-
E)hoel?tgf ?hzttgurv?eov[/]ﬁicehai% i:?(;éatggrgﬁ t?]rg CS{V;G SAMEAS  polic invariant manifold (NHIM), and the flux across the
resonance can be evaluated if NHIM can be located [5].
The difficulty here is a lack of the general algorithm for
computation of arbitrary NHIMs except for some special
respectively. [N,(8v) — N,(0)]/n is the average of the cases [6]. A thorough study of the properties of NHIMs
escape due to tune modulationrnniterations. It should in accelerator models is therefore needed.
be noted thah, the number of iterations, should be larger The author is indebted to the European Organization
than the period of tune modulation but not be too largefor Nuclear Research where this work was begun. He
since, as a large number of points have been lost, pointhianks Dr. J. Gareyte and Dr. W. Scandale for their
remaining in the ensemble are too few to give a significantidvice and warm hospitalities. He also thanks Professor
statistical result. When is several hundred of the mod- S. Ohnuma for encouraging his study of this problem and
ulation period, we found thaf ~ [N, (8v) — N,(0)]/n.  for many stimulating discussions. This work is supported
In Fig. 3, the scaledN, (6v) — N,(0)]/n is plotted as by the U.S. Department of Energy Grant No. DE-FG03-
asterisk points where the scaling has been done in sud¥ER40853.
a way that{N,(6v) — N,(0)]/n equals{ at w = 1/241
andsv = 1073, (This point for the scaling is arbitrarily
chosen with relatively weak modulation since the track-
ing result and the flux-calculation result are expected to
agree with each other best there.) Very good agreement
was found between .the reSUIt of 'Fhe flux calculation and [1] W. Fischer et al., in Proceedings of the 1993 IEEE
the result of the multiparticle tracking. _ Particle Accelerator Confereno¢EEE, New York, 1993),
This work shows that the concept of chaotic transport |, 246; in Proceedings of the 4th European Particle
in terms of flux across resonances is very useful to the  Accelerator Conferencedited by V. Suller and Ch. Petit-
understanding of particle escape due to tune modulation.  Jean-Gonaz (World Scientific, Singapore, 1994), p. 950.
It provides a computationally efficient means of study- [2] O. Bruning and F. Willeke, inProceedings of the
4th European Particle Accelerator Conferengief. [1]),
p. 991.

[3] D. Bensimon and L.P. Kadanoff, Physica (Amsterdam)

TABLE I. A comparison of theS v dependence of the particle 13D, 82 (1984).

loss rate measured in the SPS experiments andD,; and

41, are the values of the loss rate aticht 5 = 1.1 X 1073, [4] R. MacKay, J.D. Meiss, and I.C. Percival, Physica
respectively. (Amsterdam)13D, 55 (1984).
[5] S. Wiggins, Chaotic Transport in Dynamical Systems
dv (1079 Loss rate { (Springer-Verlag, Berlin, 1992).
1.1 Dy, G [6] R.E. Gillilan and G.S. Ezra, J. Chem. Phy&4, 2648
1.65 2 X Dy, 2 X &g (1991). _
2.2 10 X Dy, 4% 4, [7] J.D. Meiss, Part. Accell7, 9 (1985).

[8] J. Shi (to be published).

3974



