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Abstract

This thesis is devoted to the study of the convergence in distribution of functionals of

Gaussian processes. Most of the problems that we present are addressed by using an

approach based on Malliavin calculus techniques.

Our main contributions are the following:

First we study the asymptotic law of the approximate derivative of the self-intersection

local time (SILT) in [0,T ] for the fractional Brownian motion. In order to do this, we

describe the asymptotic behavior of the associated chaotic components and show that

the first chaos approximates the SILT in L2.

Secondly, we examine the asymptotic law of the approximate self-intersection local

time process for the fractional Brownian motion. We achieve this in two steps: the first

part consists on proving the convergence of the finite dimensional distributions by using

the ‘multidimensional fourth moment theorem’. The second part consists on proving

the tightness property, for which we follow an approach based on Malliavin calculus

techniques.

The third problem consists on proving a non-central limit theorem for the process of

weak symmetric Riemann sums for a wide variety of self-similar Gaussian processes.

We address this problem by using the so-called small blocks-big blocks methodology

and a central limit theorem for the power variations of self-similar Gaussian processes.
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Finally, we address the problem of determining conditions under which the eigen-

values of an Hermitian matrix-valued Gaussian process collide with positive probabil-

ity.

The material we present is taken from the manuscripts [26], [27], [16], [28], which

are a joint work between professors David Nualart, Daniel Harnett and myself. With

the exception of [28], all of these papers have been accepted in peer reviewed journals.
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Introduction

The Malliavin calculus designates the theory and applications of a differential calculus,

whose operators act on functionals of general Gaussian processes. It was initiated by

Paul Malliavin and its motivation was the study of the regularity properties for the law

of Wiener functionals, such as the solutions of stochastic differential equations. The

range of its current applications, including density estimates, concentration inequalities,

anticipative stochastic calculus and computations of “Greeks” in mathematical finance,

has considerably broaden.

Our particular interest, is the relation of the theory of Malliavin calculus with limit

theorems in the Wiener space. This relation was first investigated by Nualart and Pec-

cati in a seminal paper of 2005, where a surprising central limit theorem for sequences

of multiple stochastic integrals of a fixed order (nowadays referred to as “fourth mo-

ment theorem”) was proved: in this context, convergence in distribution to the standard

normal law was proved to be equivalent to convergence of just the fourth moment.

There have been many refinements and applications of the fourth moment theo-

rem. Among them is the work by Nourdin and Peccati in [37], where estimations of

the distance in total variation between the law of multiple Itô integrals and the Gaus-

sian distribution are obtained by combining Malliavin calculus techniques with the so-

called Stein’s method, which can be roughly described as a collection of probabilistic
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techniques for estimating the distance between probability distributions by means of

differential operators.

Since the publication of the aforementioned results, the interaction between the the-

ory of Malliavin calculus and Stein’s method, has played a major role in the study of

limit theorems in the Wiener space, as it has led to some remarkable new results in-

volving central and non-central limit theorems for functionals of infinite-dimensional

Gaussian fields. One process for which this methodology has been particularly suc-

cessful, is the fractional Brownian motion (fBm for short).

The fBm of Hurst parameter H ∈ (0,1) is a self-similar Gaussian process with

stationary increments and self-similarity exponent H, which generalizes the classical

Brownian motion. It was first introduced by Kolmogorov for modeling turbulence in

liquids, and was further studied by Mandelbrot and Van Ness. The behavior of the fBm

is quite different as we vary the value for H: when H > 1
2 , its increments are positively

correlated and for H < 1
2 , they are negatively correlated. Moreover, for β ∈ (0,H), its

sample paths are Hölder continuous with index β and if H > 1
2 , it is a long memory

process. This flexibility on the behavior of the fBm, makes it very interesting for mod-

eling purposes, since the value for H can be adjusted to accurately fit the observations

of the random model we want to describe.

It is natural to ask if a stochastic calculus for fBm can be developed, which is

not obvious since in general this process is not a semimartingale. For this reason, it

is of great interest to investigate the theory of integration for the fractional Brownian

motion as well as its associated local time and self-intersection local time. The self-

intersection local time for the d-dimensional fractional Brownian motion (SILT), is a

stochastic process that measures the amount of time that the trajectories of the fBm

spend intersecting themselves. For the case H = 1/2, the SILT has been studied by
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many authors (see Albeverio, Hu and Zhou (1997), Calais and Yor (1987), He, Yang,

Yao and Wang (1995), Hu (1996), Imkeller, Pérez Abreu and Vives (1995), Varadhan

(1969), Yor (1985) and the references therein). The case H 6= 1
2 was first studied by

Rosen in [49] for the planar case (d = 2), and further investigated using techniques

from Malliavin calculus by Hu and Nualart in [23].

One of the objectives of this dissertation, is to address the problem of determining

the fluctuations of the approximations of the SILT, as well as those of the derivative of

the SILT. We will show that, depending on the values of H and d, and after a suitable

renormalization, the SILT converges in law to either a scalar multiple of a Brown-

ian motion or a Rosenblatt process. We prove as well a central limit theorem for the

derivative of the SILT and its chaotic components. Our approach relies heavily on the

multivariated version of the fourth moment theorem and on techniques from Malliavin

calculus. Proving a functional limit theorem for the approximations of the SILT repre-

sents a big challenge, due to the fact that the standard approach for proving tightness

for a sequence of processes is hard to apply in this case. In order to overcome this diffi-

culty, we developed a technique for proving tightness, based on Malliavin calculus and

Meyer inequalities. This technique is new, and of independent interest in probability

theory.

A second problem that we address concerns the integration with respect to self-

similar Gaussian processes. It is well known that if X = {Xt}t≥0 is a general Gaus-

sian process and g is a real smooth function, the integral of g(X) with respect to X

doesn’t exist in a general path-wise sense. Nevertheless, in [15], Gradinaru, Nourdin,

Russo and Vallois proved that when X is a fBm with Hurst parameter H, this integral

can be defined as the limit in probability of suitable ν-symmetric Riemann sums, for

some symmetric measure ν in [0,1], if the Hurst parameter is strictly bigger than a
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maximal threshold of the form (4`(ν)+ 2)−1, for some integer `(ν) > 0. In the case

where the measure ν is given by ν(dx) = 1
2(δ0 + δ1), ν(dx) = 1

6(δ0 + 4δ1/2 + δ1) or

ν(dx) = 1
90(7δ0 + 32δ1/4 + 12δ1/2 + 32δ3/4 + 7δ1), the associated Riemann sums are

the Trapezoidal rule, Simpson’s rule and Milne’s rule approximations respectively. The

behavior at the critical value H = (4`(ν)+2)−1 was latter studied by Binotto and Nour-

din in [5], where it was proved that the Symmetric Riemann sums converge in law to

the stochastic integral of g(2`(ν))(Xt) with respect to a standard Brownian motion inde-

pendent of X .

It is natural to ask whether these results hold for more general Gaussian processes.

Part of this thesis consists on determining the behavior of the ν-symmetric Riemann

sums of X , in the case where X is self-similar of order β and has increment exponent

α (which is defined by the property E
[
(Xt+s−Xt)

2] = O(sα)). The results cover the

cases where X is a fractional, bifractional and subfractional Brownian motion, as well

the case where X is either the Gaussian process introduced by Durieu and Wang in

[13] or those introduced by Swanson in [52]. It is worth mentioning that when X is a

fractional Brownian motion of Hurst parameter H, and H = (2`(ν)+ 1)−1, our proof

requires g to have only derivatives of order 8`(ν)+ 1, thus extending the results from

[5], where g is required to have derivatives of order 20`(ν)+4 and moderate growth.

The approach we present here is based on the description of the asymptotic behav-

ior of the Hermite variations of X , which is a topic with an interest on its own, and

wasn’t addressed before for general self-similar Gaussian processes (although it has

been widely studied for the fractional Brownian motion in recent years). We prove that

the process of Hermite variations of X , converges stably to a Gaussian process inde-
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pendent of X , satisfying the property of independent increments. In contrast with the

case where X is a fractional Brownan motion (where the limit of the Hermite variations

is a multiple of a standard Brownian motion), for a general self-similar X , the limit

processes obtained from the Hermite variations might not be stationary. Surprisingly,

the transition in the behavior of the symmetric Riemann sums doesn’t occur neces-

sarily when the self-similarity β reaches the critical value (4`(ν) + 2)−1, but rather

when the increment exponent α reaches (2`(ν)+ 1)−1. To be precise, we prove con-

vergence in probability for the ν-symmetric Riemann sums of X in the case where

α > (2`(ν)+1)−1, while in the case α = (2`(ν)+1)−1, we prove that the ν-symmetric

Riemann sums converge to the integral of g(2`(ν))(Xt) with respect to a suitable Gaus-

sian martingale, independent of X .

The final topic we present is related to the study of the eigenvalues of matrix valued

Gaussian processes. One big technical difficulty related to the study of this topic, is

that the function Φ that associates a d×d symmetric matrix to its d-dimensional vec-

tor of ordered eigenvalues, is not smooth around matrices with at least one repeated

eigenvalue. For this reason, it is of great interest to determine conditions under which

the eigenvalues of a matrix-valued Gaussian process of dimension d, don’t collide. The

problem of collision of eigenvalues has been previously studied by Dyson in the Brow-

nian motion case, and more recently by Nualart and Pérez-Abreu in [44] for the fBm

with H > 1
2 .

In this thesis, we determine sharp conditions for general matrix-valued Hermitian

Gaussian fields (including both the case of Hermitian complex matrices and symmetric

real matrices), under which the associated eigenvalues collide. As an application, we

show that the eigenvalues of a real symmetric matrix-valued fractional Brownian mo-
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tion of Hurst parameter H ∈ (0,1), collide when H < 1
2 and don’t collide when H > 1

2 ,

while those of a complex Hermitian fractional Brownian motion collide when H < 1
3

and don’t collide when H > 1
3 . Our approach is based on the relation between hit-

ting probabilities for Gaussian processes with the capacity and Hausdorff dimension of

measurable sets.
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Chapter 1

Background

Our main goal for this chapter is to introduce the basic definitions and results related to

Gaussian processes, with particular emphasis on the fractional Brownian motion. The

random elements defined in the sequel will be assumed to be defined in a probability

space (Ω,G ,P).

1.1 Fractional Brownian motion

Let r ≥ 2. A random vector G = (G1, . . . ,Gr) defined in (Ω,G ,P) is said to have r-

dimensional Gaussian distribution if, for every λ1, . . . ,λr, the random variable ∑
r
k=1 Gk

has Gaussian distribution. When G has r-dimensional Gaussian distribution we say that

G1, . . . ,Gr are jointly Gaussian.

Notice that the distribution of any r-dimensional Gaussian distribution G=(G1, . . . ,Gr)

is uniquely determined by its mean E[G] = (E[G1], . . . ,E[Gr]) and its covariance matrix

Cov[G] = {Σi, j}1≤i, j≤r, which is given by

Σi, j = Cov[Gi,G j].
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Next we introduce the notion of Gaussian process

Definition 1.1.1. A stochastic process X = {Xt}t≥0 defined in (Ω,G ,P) is said to be

Gaussian if, for all r ≥ 1 (Xt1, . . . ,Xtr) is an r-dimensional Gaussian vector.

The finite dimensional distributions of X are uniquely determined by the mean func-

tion µ : R+ → R, defined by µ(t) := E[Xt ] and the covariance function R : R2
+ → R

given by R(s, t) := Cov[Xs,Xt ]. We will say that X is a centered Gaussian process if

µ(t) = 0 for all t ≥ 0.

One of the most important examples of Gaussian processes is the classical Brow-

nian motion, which is a centered Gaussian process W = {Wt}t≥0 characterized by the

property

R(s, t) = E[WsWt ] = s∧ t.

The Brownian motion has been a powerful tool for mathematical modeling. It has been

particularly useful for modeling of stock prices, thermal noise in electrical circuits,

queuing and inventory systems, and random perturbations in a variety of other physical,

biological, economic, and management systems. The existence of a Brownian motion

with continuous trajectories can be easily obtained by means of the Kolmogorov exis-

tence theorem and Kolmogorov’s continuity criterion. We refer the interested reader to

[31] for the proof of this claims, as well as for a comprehensive presentation of other

basic properties of the Brownian motion.

A closely related stochastic process is the fractional Brownian motion B = {Bt}t≥0

of Hurst parameter H ∈ (0,1), which is a centered Gaussian process with covariance
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function

E[BsBt ] = R(s, t) :=
1
2
(s2H + t2H−|t− s|2H).

Notice that when H = 1
2 , B is a classical Brownian motion. The fractional Brownian

motion was first introduced by Kolmogorov for modeling turbulence in liquids, and was

further studied by Mandelbrot and Van Ness. The behavior of the fractional Brownian

motion is quite different as we vary the value for H: when H > 1
2 , its increments are

positively correlated and for H < 1
2 , they are negatively correlated. Moreover, for β ∈

(0,H), its sample paths are Hölder continuous with index β , namely,

sup
0<s<t<T

|Bt−Bs|
t− s

< ∞, P-a.e.

for every T > 0. Moreover, if H > 1
2 , B is a long memory process, in the sense that

∞

∑
k=1
|Cov[Bt+kh,Bt ]|= ∞

for all h, t > 0. This flexibility on the behavior of the fractional Brownian motion makes

it very interesting for modeling purposes, since by adjusting the value for H we can ac-

curately fit the observations of the random model we want to describe.

The fractional Brownian motion satisfies the following properties

1. Selfsimilarity: For all c > 0, {c−HBct}t≥0
Law
= {Bt}t≥0.

2. Stationarity of increments: For all h > 0, (Bt+h−Bt)
Law
= Bh.

3. Time inversion: {t2HB1/t}t>0
Law
= {Bt}t>0.
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The fractional Brownian motion can be constructed as a Volterra process in the follow-

ing manner

{Bt}t≥0
Law
=
∫ t

0
KH(s, t)dW (t), (1.1.1)

where {Wt}t≥0 is a classical Brownian motion and

KH(s, t) := cH

((
t/s
)H− 1

2 (t− s)H− 1
2 − (H−1/2)s

1
2−H

∫ t

s
uH− 3

2 (u− s)H− 1
2 du
)
,

where cH := (2H)−
1
2 (1− 2H)

∫ 1
0 (1− x)−2HxH− 1

2 dx. The integration in (1.1.1) should

be understood in the Itô sense (see [31] for details). We refer the interested reader to

[35] for a proof of the identity (1.1.1), and for a detailed treatment of the basic properties

of the fractional Brownian motion.

1.2 Some elements of Malliavin calculus

In the sequel, ~X = {(X (1)
t , . . . ,X (d)

t )}t≥0 will denote a d-dimensional centered Gaus-

sian process with covariance R(s, t) defined in (Ω,G ,P), namely, the components of

~X are independent and identically distributed centered Gaussian processes with covari-

ance R(s, t). In the case where ~X is a fractional Brownian motion of Hurst parameter

H ∈ (0,1), the notation ~X and (X (1), . . . ,X (d)) will be replaced by ~B and (B(1), . . . ,B(d))

respectively.

We will denote by F the σ -algebra generated by ~X , by L2(Ω) the space of real

square integrable functions measurable with respect to G and by L2(Ω;F ) the space of

real square integrable functions measurable with respect to F .
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Next we introduce the basic operators from the theory of Malliavin calculus and

state some of their properties. The results we present in this section will be stated

without proofs, and the reader will be refered to [43, Chapter 1] for a detailed treatment

of these topics.

Denote by H the Hilbert space obtained by taking the completion of the space of

real step functions on [0,∞), endowed with the inner product

〈
1[a,b],1[c,d]

〉
H

:= E
[(

X (1)
b −X (1)

a
)(

X (1)
d −X (1)

c
)]

, for 0≤ a≤ b, and 0≤ c≤ d.

For every 1≤ j≤ d fixed, the mapping 1[0,t] 7→ X ( j)
t can be extended to linear isometry

between H and the Gaussian subspace of L2 (Ω) generated by the process X ( j). We will

denote this isometry by X ( j)( f ), for f ∈ H. If f ∈ Hd is of the form f = ( f1, . . . , fd),

with f j ∈H, we set ~X( f ) :=∑
d
j=1 X ( j)( f j). Then f 7→ ~X( f ) is a linear isometry between

Hd and the Gaussian subspace of L2 (Ω) generated by ~X .

For any integer q ≥ 1, we denote by (Hd)⊗q and (Hd)�q the qth tensor product of

Hd , and the qth symmetric tensor product of Hd , respectively. The qth Wiener chaos of

L2(Ω), denoted by Hq, is the closed subspace of L2(Ω) generated by the variables

{
d

∏
j=1

Hq j(X
( j)( f j)) |

d

∑
j=1

q j = q, and f1, . . . , fd ∈ H,
∥∥ f j
∥∥
H
= 1

}
,

where Hq is the qth Hermite polynomal, defined by

Hq(x) := (−1)qe
x2
2

dq

dxq e−
x2
2 .
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We observe that any monomial of the form x2`+1, for `∈N, can be expressed as a linear

combination of odd Hermite polynomials with integer coefficients c j,r, namely,

x2r+1 =
r

∑
j=0

c j,rH2(r− j)+1(x). (1.2.1)

For q ∈N, with q≥ 1, and f ∈Hd of the form f = ( f1, . . . , fd), with
∥∥ f j
∥∥
H
= 1, we can

write

f⊗q =
d

∑
i1,...,iq=1

fi1⊗·· ·⊗ fiq.

For such f , we define the mapping

Iq( f⊗q) :=
d

∑
i1,...,iq=1

d

∏
j=1

Hq j(i1,...,iq)(X
( j)( f j)),

where q j(i1, . . . , iq) denotes the number of indices in (i1, . . . , iq) equal to j. The range

of Iq is contained in Hq. Furthermore, this mapping can be extended to a linear isom-

etry between H�q (equipped with the norm
√

q!‖·‖(Hd)⊗q) and Hq (equipped with the

L2(Ω)-norm).

It is well known that every F -measurable, square integrable random variable has a

chaos decomposition of the type

F = E [F ]+
∞

∑
q=1

Iq( fq),

for some fq ∈ (Hd)�q. In what follows, we will denote by Jq(F), for q≥ 1, the projec-

tion of F over the qth Wiener chaos Hq, and by J0(F) the expectation of F .
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Let {en}n≥1 be a complete orthonormal system in Hd . Given f ∈ (Hd)�p, g ∈

(Hd)�q and r ∈ {0, . . . , p∧ q}, the rth-order contraction of f and g is the element of

(Hd)⊗(p+q−2r) defined by

f ⊗r g =
∞

∑
i1,...,ir=1

〈 f ,ei1⊗·· ·⊗ eir〉(Hd)⊗r ⊗〈g,ei1⊗·· ·⊗ eir〉(Hd)⊗r ,

where f ⊗0 g = f ⊗g, and for p = q, f ⊗q g = 〈 f ,g〉(Hd)⊗q .

Let S denote the set of all cylindrical random variables of the form

F = g(~X(h1), . . . ,~X(hn)),

where g : Rn → R is an infinitely differentiable function with compact support, and

h j ∈ Hd . In the sequel, for every Hilbert space V , we will denote by L2(Ω;V ) the set

of square integrable V -valued random variables. The Malliavin derivative of F with

respect to X , is the element of L2(Ω;Hd), defined by

DF =
n

∑
i=1

∂g
∂xi

(~X(h1), . . . ,~X(hn))hi.

By iteration, one can define the rth derivative Dr for every r ≥ 2, which is an element

of L2(Ω;(Hd)⊗r).

For p ≥ 1 and r ≥ 1, the space Dr,p denotes the closure of S with respect to the

norm ‖·‖Dr,p , defined by

‖F‖Dr,p :=

(
E [|F |p]+

r

∑
i=1

E
[∥∥DiF

∥∥p
(Hd)⊗i

]) 1
p

.
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The operator Dr can be consistently extended to the space Dr,p. We denote by δ the

adjoint of the operator D, also called the divergence operator. A random element u ∈

L2(Ω;Hd) belongs to the domain of δ , denoted by Domδ , if and only if satisfies

∣∣E[〈DF,u〉Hd

]∣∣≤CuE
[
F2] 1

2 , for every F ∈ D1,2,

where Cu is a constant only depending on u. If u ∈ Domδ , then the random variable

δ (u) is defined by the duality relationship

E [Fδ (u)] = E
[
〈DF,u〉Hd

]
,

which holds for every F ∈ D1,2. The operator L is defined on the Wiener chaos by

LF :=
∞

∑
q=1
−qJqF, for F ∈ L2(Ω),

and coincides with the infinitesimal generator of the Ornstein-Uhlenbeck semigroup

{Pθ}θ≥0, which is defined by

Pθ :=
∞

∑
q=0

e−qθ Jq.

A random variable F belongs to the domain of L if and only if F ∈ D1,2, and DF ∈

Domδ , in which case

δDF =−LF.
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We also define the operator L−1 as

L−1F =
∞

∑
q=1
−1

q
JqF, for F ∈ L2(Ω).

Notice that L−1 is a bounded operator and satisfies LL−1F = F −E [F ] for every F ∈

L2(Ω), so that L−1 acts as a pseudo-inverse of L. The operator L−1 satisfies the follow-

ing contraction property for every F ∈ L2(Ω) with E [F ] = 0,

E
[∥∥DL−1F

∥∥2
Hd

]
≤ E

[
F2] .

Next we state Meyers inequalities (see [43, Theorem 1.5.1]), which is a fundamental

result in the theory of Malliavin calculus, as it implies the continuity of the operator

δ over the space ∆1,2. The most general version of Meyer’s inequalities, sates that for

every p > 1, there exists a constant cp > 0 such that

‖δ q(u)‖Dk−q,p ≤ ck,p ‖Du‖Dk,p(H⊗q) . (1.2.2)

Using (1.2.2), we can show that for every F ∈ D2,p, with E [F ] = 0,

∥∥δ (DL−1F)
∥∥

Lp(Ω)
≤ cp(

∥∥D2L−1F
∥∥

Lp(Ω;(Hd)⊗2)
+
∥∥E[DL−1F

]∥∥
(H)d). (1.2.3)

The proof of this claim can be found in [43, Proposition 1.5.8].

Assume that X̃ is an independent copy of ~X , and such that ~X , X̃ are defined in the

product space (Ω×Ω̃,F⊗F̃ ,P⊗ P̃). Given a random variable F ∈ L2(Ω), measurable

with respect to the σ -algebra generated by X , we can write F = ΨF(~X), where ΨF is a

measurable mapping from RHd
to R, determined P-a.s. Then, for every θ ≥ 0 we have
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the Mehler formula

Pθ F = Ẽ
[
ΨF(e−θ~X +

√
1− e−2θ X̃)

]
, (1.2.4)

where Ẽ denotes the expectation with respect to P̃. The operator L−1 can be expressed

in terms of Pθ , as follows

L−1F =
∫

∞

0
Pθ Fdθ , for F such that E [F ] = 0. (1.2.5)

We end this section by stating the following lemma, which has been proved in [38,

Lemma 2.1]:

Lemma 1.2.1. Let q ≥ 1 be an integer. Suppose that F ∈ Dq,2, and let u be a sym-

metric element in Domδ q. Assume that, for any 0 ≤ r + j ≤ q,
〈
DrF,δ j(u)

〉
H⊗r ∈

L2(Ω;H⊗q−r− j). Then, for any r = 0, . . . ,q− 1, 〈DrF,u〉H⊗r belongs to the domain of

δ q−r and we have

Fδ
q(u) :=

q

∑
r=0

(
q
r

)
δ

q−r(〈DrF,u〉H⊗r).

1.2.1 Hermite process

In this section we assume that ~X = ~B is a d-dimensional fractional fractional Brownian

motion with Hurst parameter H ∈ (0,1). When H > 1
2 , the inner product in the space

H can be written, for every step functions ϕ,ϑ on [0,∞), as

〈ϕ,ϑ〉H = H(2H−1)
∫
R2
+

ϕ(ξ )ϑ(ν) |ξ −ν |2H−2 dξ dν . (1.2.6)
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Following [36], we introduce the Hermite process {X j
T }T≥0 of order 2, associated to

the jth component of B, {B( j)
t }t≥0, and describe some of its properties. The family of

kernels {ϕε
j,T | T ≥ 0,ε ∈ (0,1)} ⊂ (Hd)⊗2, defined, for every multi-index i = (i1, i2),

1≤ i1, i2 ≤ d, by

ϕ
ε
j,T (i,x1,x2) := ε

−2
∫ T

0
δ j,i1δ j,i21[s,s+ε](x1)1[s,s+ε](x2)ds, (1.2.7)

satisfies the following relation for every H > 3
4 , and T ≥ 0

lim
ε,η→0

〈
ϕ

ε
j,T ,ϕ

η

j,T

〉
(Hd)⊗2

= H2(2H−1)2
∫
[0,T ]2
|s1− s2|4H−4 ds1ds2 = cHT 4H−2,

(1.2.8)

where cH := H2(2H−1)
4H−3 . This implies that ϕε

j,T converges, as ε → 0, to an element of

(Hd)⊗2, denoted by π
j

T . In particular, for every K > 0,
∥∥∥ϕε

j,K

∥∥∥
(Hd)⊗2

is bounded by

some constant CK,H , only depending on K and H. On the other hand, by (1.2.6) and

(1.2.7), we deduce that for every T ∈ [0,K], it holds
∥∥∥ϕε

j,T

∥∥∥
(Hd)⊗2

≤
∥∥∥ϕε

j,K

∥∥∥
(Hd)⊗2

, and

hence

sup
T1,T2∈(0,K]
ε,η∈(0,1)

∣∣∣∣〈ϕ
ε
j,T1

,ϕη

j,T2

〉
(Hd)⊗2

∣∣∣∣≤ sup
T1,T2∈(0,K]
ε,η∈(0,1)

∥∥ϕ
ε
j,T1

∥∥
(Hd)⊗2

∥∥∥ϕ
η

j,T2

∥∥∥
(Hd)⊗2

≤ sup
ε∈(0,1)

∥∥ϕ
ε
j,K
∥∥2
(Hd)⊗2 ≤CK,H . (1.2.9)

17



The element π
j

T , can be characterized as follows. For any vector of step functions with

compact support fi = ( f (1)i , . . . , f (d)i ) ∈ Hd , i = 1,2, we have

〈
π

j
t , f1⊗ f2

〉
(Hd)⊗2

= lim
ε→0

〈
ϕ

ε
j,t , f1⊗ f2

〉
(Hd)⊗2

= lim
ε→0

ε
−2H2(2H−1)2

×
∫ T

0
∏

i=1,2

∫ s+ε

s

∫ T

0
|ξ −η |2H−2 f ( j)

i (η)dηdξ ds

and hence

〈
π

j
t , f1⊗ f2

〉
(Hd)⊗2

= H2(2H−1)2
∫ T

0
∏

i=1,2

∫ T

0
|s−η |2H−2 f ( j)

i (η)dηds. (1.2.10)

We define the second order Hermite process {X j
T }T≥0, with respect to {B( j)

t }t≥0, as

X j
T := I2(π

j
T ).

1.2.2 Central limit theorems via chaos expansion

In the seminal paper [44], Nualart and Peccati established a central limit theorem for

sequences of multiple stochastic integrals of a fixed order. In this context, assuming

that the variances converge, convergence in distribution to a centered Gaussian law

is actually equivalent to convergence of just the fourth moment. Shortly afterwards,

in [47], Peccati and Tudor gave a multidimensional version of this characterization.

More recent developments on these type of results have been addressed by using Stein’s

method and Malliavin techniques (see the monograph by Nourdin and Peccati [37] and

the references therein).

We will need the following modification of the Peccati-Tudor criterion, in which

we will make use of the notation introduced in Chapter 1

18



Theorem 1.2.1. Let 1 < q1 < q2 < · · ·< qd be positive integers. Consider a sequence

of stochastic processes F i
n = {F i

n(t)}t≥0 of the form F i
n(t) = Iqi(h

i
n(t)), where each hi

n(t)

is an element of H⊗qi and 1≤ i≤ d. Suppose in addition, that the following conditions

hold for every t ≥ 0 and 1≤ i≤ d:

(i) There exist c1, . . . ,cd > 0, such that for every s, t ≥ 0

lim
n→∞

〈
hi

n(s),h
i
n(t)
〉
H⊗qi =

c2
i

qi!
Σ(s, t). (1.2.11)

(ii) For all i = 1, . . . ,d and r = 1, . . . ,qi−1,

lim
n→∞

∥∥hi
n(t)⊗r hi

n(t)
∥∥
H⊗2(qi−r) = 0. (1.2.12)

Then the finite dimensional distributions of the process ∑
d
i=1 F i

n converge stably to those

of ∑
d
i=1
√

qi!ciY i.

We will use as well the following multivariate central limit theorem obtained by

Peccati and Tudor in [47] (see also Theorems 6.2.3 and 6.3.1 in [37]).

Theorem 1.2.2. For r ∈ N fixed, consider a sequence {Fn}n≥1 of random vectors of

the form Fn = (F(1)
n , . . . ,F(r)

n ). Suppose that for i = 1, . . . ,r and n ∈ N, the random

variables F(i)
n belong to L2(Ω), and have chaos decomposition

F(i)
n =

∞

∑
q=1

Iq( fq,i,n),

for some fq,i,n ∈ (Hd)⊗q. Suppose, in addition, that for every q ≥ 1, there is a real

symmetric non negative definite matrix Cq = {Ci, j
q | 1≤ i, j≤ r}, such that the following

conditions hold:
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(i) For every fixed q ≥ 1, and 1 ≤ i, j ≤ r, we have q!
〈

fq,i,n, fq, j,n
〉
(Hd)⊗q →Ci, j

q as

n→ ∞.

(ii) There exists a real symmetric nonnegative definite matrix C = {Ci, j | 1≤ i, j≤ r},

such that Ci, j = limQ→∞ ∑
Q
q=1Ci, j

q .

(iii) For all q ≥ 1 and i = 1, . . . ,r, the sequence {Iq( fq,i,n)}n≥1 converges in law to a

centered Gaussian distribution as n→ ∞.

(iv) limQ→∞ supn≥1 ∑
∞
q=Q q!

∥∥ fq,i,n
∥∥2
(Hd)⊗q = 0, for all i = 1, . . . ,r.

Then, Fn converges in law as n→ ∞, to a centered Gaussian vector with covariance

matrix C.
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Chapter 2

Self-intersection local time for the fractional Brownian

motion

Let ~B = {~Bt}t≥0 be a d-dimensional fractional Brownian motion of Hurst parameter

H ∈ (0,1). Fix T > 0. The self-intersection local time of ~B in the interval [0,T ] is

formally defined by

I :=
∫ T

0

∫ t

0
δ (~Bt−~Bs)dsdt,

where δ denotes the Dirac delta function. A rigorous definition of this random variable

may be obtained by approximating the delta function by the heat kernel

pε(x) := (2πε)−
d
2 exp

{
− 1

2ε
‖x‖2

}
, x ∈ Rd.

In the case H = 1
2 , ~B is a classical Brownian motion, and its self-intersection local

time has been studied by many authors (see the work by Albeverio (1995), Hu (1996),

Imkeller, Pérez-Abreu and Vives (1995), Varadhan (1969) and Yor (1985) in [1], [22],

[25], [55], [58]). In the case H 6= 1
2 , the self-intersection local time for ~B was first stud-

ied by Rosen in [49] in the planar case and it was further investigated using techniques

from Malliavin calculus by Hu and Nualart in [23]. In particular, it was proved that the
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approximation of the self-intersection local time of ~B in [0,T ], defined by

Iε
T :=

∫ T

0

∫ t

0
pε(~Bt−~Bs)dsdt, (2.0.1)

converges in L2(Ω) when H < 1
d . Furthermore, it was shown that when 1

d ≤ H < 3
2d ,

Iε
T −E [Iε

T ] to converges in L2(Ω), and for the case 3
2d < H < 3

4 , the following limit

theorem holds (see [23, Theorem 2]).

Theorem 2.0.1. If 3
2d < H < 3

4 , then ε
d
2−

3
4H (Iε

T −E [Iε
T ]) converges in law to a centered

Gaussian distribution with variance σ2T , as ε → 0, where the constant σ2 is given by

(2.2.3).

The case H = 3
2d was addressed as well in [23], where it was shown that the se-

quence (log(1/ε))−
1
2 (Iε

T −E [Iε
T ]) converges in law to a centered Gaussian distribution

with variance σ2
log, as ε → 0, where σ2

log is the constant given by [23, Equation (42)].

The aim of this paper is to prove a functional version of Theorem 2.0.1, and extend

it to the case 3
4 ≤ H < 1. Our main results are Theorems 2.0.2, 2.0.3 and 2.0.4.

Theorem 2.0.2. Let 3
2d < H < 3

4 , d ≥ 2 be fixed. Then,

{ε
d
2−

3
4H (Iε

T −E [Iε
T ])}T≥0

Law→ {σWT}T≥0, (2.0.2)

in the space C[0,∞), endowed with the topology of uniform convergence on compact

sets, where W is a standard Brownian motion, and the constant σ2 is given by (2.2.3).

We briefly outline the proof of (2.0.2). The proof of the convergence of the finite-

dimensional distributions, is based on the application of a multivariate central limit

theorem established by Peccati and Tudor in [47] (see Section 1.2.2), and follows ideas

similar to those presented in [23]. On the other hand, proving the tightness property for
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the process

Ĩε
T := ε

d
2−

3
4H (Iε

T −E [Iε
T ]),

presents a great technical difficulty. In fact, by the Billingsley criterion (see [4, Theo-

rem 12.3]), the tightness property can be obtained by showing that there exists p > 2,

such that for every 0≤ T1 ≤ T2,

E
[∣∣∣Ĩε

T2
− Ĩε

T1

∣∣∣p]≤C |T2−T1|
p
2 , (2.0.3)

for some constant C > 0 independent of T1,T2 and ε . The problem of finding a bound

like (2.0.3) comes from the fact that the smallest even integer such that p > 2 is p = 4,

and a direct computation of the moment of order four E
[
|Ĩε

T2
− Ĩε

T1
|4
]

is too complicated

to be handled. To overcome this difficulty, in this paper we introduce a new approach

to prove tightness based on the techniques of Malliavin calculus. Let us describe the

main ingredients of this approach.

First, we write the centered random variable Z := Ĩε
T2
− Ĩε

T1
as

Z =−δDL−1Z,

where δ , D and L are the basic operators in Malliavin calculus. Then, taking into

consideration that E
[
DL−1Z

]
= 0 we apply Meyer’s inequalities to obtain a bound of

the type

‖Z‖Lp(Ω) ≤ cp‖D2L−1Z‖Lp(Ω;(Hd)⊗2), (2.0.4)
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for any p > 1, where the Hilbert space H is defined in Section 1.2. Notice that

Z = ε
d
2−

3
4H

∫
0≤s≤t,T1≤t≤T2

(
pε(~Bt−~Bs)−E

[
pε(~Bt−~Bs)

])
dsdt.

Applying Minkowski’s inequality and (2.0.4), we obtain

‖Z‖Lp(Ω) ≤ cpε
d
2−

3
4H

∫
0≤s≤t,T1≤t≤T2

‖D2L−1 pε(~Bt−~Bs)‖pdsdt.

Then, we get the desired estimate by choosing p > 2 close to 2, using the self-similarity

of the fractional Brownian motion, the expression of the operator L−1 in terms of the

Ornstein-Uhlenbeck semigroup, Mehler’s formula and Gaussian computations. In this

way, we reduce the problem to showing the finiteness of an integral (see Lemma 2.4.3),

similar to the integral appearing in the proof of the convergence of the variances. It

is worth mentioning that this approach for proving tightness has not been used before,

and has its own interest.

In the case H > 3
4 , the process ε

d
2−

3
2H +1(Iε

T −E [Iε
T ]) also converges in law, in the

topology of C[0,∞), but the limit is no longer a multiple of a Brownian motion, but a

multiple of a sum of independent Hermite processes of order two. More precisely, if

{X j
T }T≥0 denotes the second order Hermite process, with respect to {B( j)

t }t≥0, defined

in Section 1.2, then {Ĩε}ε∈(0,1) satisfies the following limit theorem

Theorem 2.0.3. Let H > 3
4 , and d ≥ 2 be fixed. Then, for every T > 0,

ε
d
2−

3
2H +1(Iε

T −E [Iε
T ])

L2(Ω)→ −Λ

d

∑
j=1

X j
T , (2.0.5)
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where the constant Λ is defined by

Λ :=
(2π)−

d
2

2

∫
∞

0
(1+u2H)−

d
2−1u2du. (2.0.6)

In addition,

{ε
d
2−

3
2H +1(Iε

T −E [Iε
T ])}T≥0

Law→ {−Λ

d

∑
j=1

X j
T }T≥0, (2.0.7)

in the space C[0,∞), endowed with the topology of uniform convergence on compact

sets.

We briefly outline the proof of Theorem 2.0.3. The convergence (2.0.5) is obtained

from the chaotic decomposition of Iε
T . It turns out that the chaos of order two completely

determines the asymptotic behavior of ε
d
2−

3
2H +1(Iε

T −E [Iε
T ]), and consequently, (2.0.5)

can be obtained by the characterization of the Hermite processes presented in [36],

applied to the second chaotic component of Iε
T . Similarly to the case 3

2d < H < 3
4 , we

show that the sequence ε
d
2−

3
2H +1(Iε

T −E [Iε
T ]) is tight, which proves the convergence in

law (2.0.7).

The technique we use to prove tightness doesn’t work for the case Hd ≤ 3
2 , so the

convergence in law of {log(1/ε)−
1
2 (Iε

T −E [Iε
T ])}T≥0 to a scalar multiple of a Brownian

motion for the case Hd = 3
2 still remains open. Nevertheless, for the critical case H = 3

4

and d ≥ 3, the technique does work, and we prove the following limit theorem

Theorem 2.0.4. Suppose H = 3
4 and d ≥ 3. Then,

{ ε
d
2−1√

log(1/ε)
(Iε

T −E [Iε
T ])}T≥0

Law→ {ρWT}T≥0, (2.0.8)
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in the space C[0,∞), endowed with the topology of uniform convergence on compact

sets, where W is a standard Brownian motion, and the constant ρ is defined by (2.2.52).

Remark

We impose the stronger condition d ≥ 3 instead of d ≥ 2, since the choice H = 3
4 , d = 2

gives Hd = 3
2 , and as mentioned before, it is not clear how to prove tightness for this

case.

We briefly outline the proof of Theorem 2.0.4. The proof of the tightness property

is analogous to the case 3
2d < H < 3

4 . On the other hand, the proof of the convergence of

the finite dimensional distributions requires a new approach. First we show that, as in

the case H > 3
4 , the chaos of order two determines the asymptotic behavior of {Iε

T}T≥0.

Then we describe the behavior of the second chaotic component of Iε
T , which we denote

by J2(Iε
T ), and is given by

J2(Iε
T ) =−

(2π)−
d
2 ε

2
3−

d
2

2

d

∑
j=1

∫ T

0

∫
ε
− 2

3 (T−s)

0

u
3
2

(1+u
3
2 )

d
2+1

H2

B( j)

s+ε
2
3 u
−B( j)

s

√
εu

3
4

duds,

(2.0.9)

where H2 denotes the Hermite polynomial of order 2. Then we show that we can

replace the domain of integration of u by [0,∞), and this integral can be approximated

by Riemann sums of the type

− 1
2M

M2M

∑
k=2

u(k)
3
2

(1+u(k)
2
3 )

d
2+1

∫ T

0
H2

B( j)
s+ε2M u(k)

−B( j)
s

√
εu(k)

3
4

ds, (2.0.10)
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where u(k) = k
2M , and M is some fixed positive number. By [11, Equation (1.4)], we

have that, for k fixed, the random variable

ξ
ε
k (T ) :=

ε
− 1

3√
log(1/ε)

∫ T

0
H2

B( j)

s+ε
2
3 u(k)
−B( j)

s

√
εu(k)

3
4

ds

converges in law to a Gaussian distribution as ε→ 0. Hence, after a suitable analysis of

the covariances of the process {ξ ε
k (T ) | 2≤ k≤M2M, and T ≥ 0} and an application

of the Peccati-Tudor criterion (see [47]), we obtain that the process (2.0.10) multiplied

by the factor (2π)−
d
2 ε
− 1

3

2
√

log(1/ε)
converges to a constant multiple of a Brownian motion ρMW ,

for some ρM > 0. The result then follows by proving that the approximations (2.0.10)

to the integrals in the right-hand side of (2.0.9) are uniform over ε ∈ (0,1/e) as M→∞,

and that ρM→ ρ as M→ ∞.

This chapter is organized as follows. In Section 2 we present some preliminary

results on the fractional Brownian motion and the chaotic decomposition of Iε
T . In Sec-

tion 3, we compute the asymptotic behavior of the variances of the chaotic components

of Iε
T as ε → 0. The proofs of the main results are presented in Section 4. Finally, in

Section 5 we prove some technical lemmas.
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2.1 Chaos decomposition for the self-intersection local

time

In this section we describe the chaos decomposition of the variable Iε
T defined by

(2.0.1). Let ε ∈ (0,1), and T ≥ 0 be fixed. Define the set

R := {(s, t) ∈ R2
+ | s≤ t ≤ 1}.

For every γ > 0, we will denote by γR the set γR := {γv | v ∈R}. First we write

Iε
T =

∫
R2
+

1TR(s, t)pε(~Bt−~Bs)dsdt. (2.1.1)

We can determine the chaos decomposition of the random variable pε(~Bt−~Bs) appear-

ing in (2.1.1) as follows. Given a multi-index in = (i1, . . . , in), n ∈ N, 1 ≤ i j ≤ d, we

set

α(in) := E [ζi1 · · ·ζin] ,

where the ζi are independent standard Gaussian random variables. Notice that

α(i2q) =
(2q1)! · · ·(2qd)!
(q1)! · · ·(qd)!2q , (2.1.2)

if n = 2q is even and for each k = 1, . . . ,d, the number of components of i2q equal to k,

denoted by 2qk, is also even, and α(in) = 0 otherwise. Proceeding as in [23, Lemma 7],
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we can prove that

pε(~Bt−~Bs) = E
[

pε(~Bt−~Bs)
]
+

∞

∑
q=1

I2q

(
f ε
2q,s,t

)
, (2.1.3)

where f ε
2q,s,t is the element of (Hd)⊗2q, given by

f ε
2q,s,t(i2q,x1, . . . ,x2q) := (−1)q (2π)−

d
2 α(i2q)

(2q)!
(ε +(t− s)2H)−

d
2−q

2q

∏
j=1

1[s,t](x j),

(2.1.4)

and

E
[

pε(~Bt−~Bs)
]
= (2π)−

d
2 (ε +(t− s)2H)−

d
2 . (2.1.5)

By (2.1.1), (2.1.3) and (2.1.5), it follows that the random variable Iε
T has the chaos

decomposition

Iε
T = E [Iε

T ]+
∞

∑
q=1

I2q(hε
2q,T ), (2.1.6)

where

hε
2q,T (i2q,x1, . . . ,x2q) :=

∫
R2
+

1TR(s, t) f ε
2q,s,t(i2q,x1, . . . ,x2q)dsdt, (2.1.7)

and

E [Iε
T ] = (2π)−

d
2

∫
R2
+

1TR(s, t)(ε +(t− s)2H)−
d
2 dsdt. (2.1.8)
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In Section 3, we will describe the behavior as ε → 0 of the covariance function of

the processes {Iε
T}T≥0 and {I2q(hε

2q,T )}T≥0. In order to address this problem, we will

first introduce some notation that will help us to describe the covariance function of

the variables pε(~Bt −~Bs) and its chaotic components, which ultimately will lead to an

expresion for the covariance function of Iε
T .

First we describe the inner product
〈

f ε
2q,s1,t1, f ε

2q,s2,t2

〉
(Hd)⊗2q

. From (2.1.4), we can

prove that for every 0≤ s1 ≤ t1 and 0≤ s2 ≤ t2,

〈
f ε
2q,s1,t1, f ε

2q,s2,t2

〉
(Hd)⊗2q

= ∑
q1+···+qd=q

(2q1, . . . ,2qd)!
(2π)−dα(i2q)

2

((2q)!)2 (ε +(t1− s1)
2H)−

d
2−q

× (ε +(t2− s2)
2H)−

d
2−q
〈
1
⊗2q
[s1,t1]

,1
⊗2q
[s2,t2]

〉
H⊗2q

, (2.1.9)

where (2q1, . . . ,2qd)! denotes the multinomial coefficient (2q1, . . . ,2qd)!=
(2q)!

(2q1)!···(2qd)!
.

To compute the term
〈
1
⊗2q
[s1,t1]

,1
⊗2q
[s2,t2]

〉
H⊗2q

appearing in the previous expression, we will

introduce the following notation. For every x,u1,u2 > 0, define

µ(x,u1,u2) := E
[
B(1)

u1

(
B(1)

x+u2
−B(1)

x

)]
. (2.1.10)

Define as well µ(x,u1,u2), for x < 0, by µ(x,u1,u2) := µ(−x,u2,u1). Using the prop-

erty of stationary increments of B, we can check that for every s1,s2, t1, t2 ≥ 0, such that

s1 ≤ t1 and s2 ≤ t2, it holds

E
[(

B(1)
t1 −B(1)

s1

)(
B(1)

t2 −B(1)
s2

)]
= µ(s2− s1, t1− s1, t2− s2). (2.1.11)
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As a consequence, by (2.1.2) and (2.1.9),

〈
f ε
2q,s1,t1, f ε

2q,s2,t2

〉
(Hd)⊗2q

=
αq

(2π)d(2q)!22q (ε +(t1− s1)
2H)−

d
2−q(ε +(t2− s2)

2H)−
d
2−q

×µ(s2− s1, t1− s1, t2− s2)
2q,

where the constant αq is defined by

αq := ∑
q1+···+qd=q

(2q1)! · · ·(2qd)!
(q1!)2 · · ·(qd!)2 . (2.1.12)

From here we can conclude that

〈
f ε
2q,s1,t1, f ε

2q,s2,t2

〉
(Hd)⊗2q

=
αq

(2π)d(2q)!22q G(q)
ε,s2−s1

(t1− s1, t2− s2), (2.1.13)

where G(q)
ε,x(u1,u2) is defined by

G(q)
ε,x(u1,u2) :=

(
ε +u2H

1
)− d

2−q (
ε +u2H

2
)− d

2−q
µ(x,u1,u2)

2q. (2.1.14)

Now we describe the covariance Cov
[

pε

(
~Bt1−~Bs1

)
, pε

(
~Bt2−~Bs2

)]
. Using the

chaos expansion (2.1.3) and (2.1.13), we obtain

Cov
[

pε

(
~Bt1−~Bs1

)
, pε

(
~Bt2−~Bs2

)]
=

∞

∑
q=1

αq

(2π)d22q G(q)
ε,s2−s1

(t1− s1, t2− s2).

(2.1.15)

On the other hand, using once more the property of stationary increments of ~B, we can

prove that for every s1 ≤ t1, and s2 ≤ t2,

Cov
[

pε

(
~Bt1−~Bs1

)
, pε

(
~Bt2−~Bs2

)]
= Fε,s2−s1(t1− s1, t2− s2), (2.1.16)
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where the function Fε,x(u1,u2), for u1,u2 > 0, is defined by

Fε,x(u1,u2) := Cov
[

pε(~Bu1), pε

(
~Bx+u2−~Bx

)]
, (2.1.17)

in the case x > 0, and by Fε,x(u1,u2) := Fε,−x(u2,u1) in the case x < 0. Proceeding as

in [23], equations (13)-(14), we can prove that for every u1,u2 ≥ 0, x ∈ R,

Fε,x(u1,u2) = (2π)−d
[(

(ε +u2H
1 )(ε +u2H

2 )−µ(x,u1,u2)
2)− d

2

− (ε +u2H
1 )−

d
2 (ε +u2H

2 )−
d
2

]
, (2.1.18)

and consequently,

Fε,x(u1,u2) = (2π)−d(ε +u2H
1 )−

d
2 (ε +u2H

2 )−
d
2

×

(1− µ(x,u1,u2)
2

(ε +u2H
1 )(ε +u2H

2 )

)− d
2

−1

 . (2.1.19)

From (2.1.15) and (2.1.16) it follows that the functions G(q)
ε,x(u1,u2) and Fε,x(u1,u2)

appearing in (2.1.13) and (2.1.19) are related in the following manner:

Fε,x(u1,u2) =
∞

∑
q=1

βqG(q)
ε,x(u1,u2), (2.1.20)

where βq is defined by

βq :=
αq

(2π)d22q . (2.1.21)

The functions G(q)
1,x(u1,u2) and F1,x(u1,u2) satisfy the following useful integrability con-

dition, which was proved in [23, Lemma 13], .
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Lemma 2.1.1. Let 3
2d < H < 3

4 , and q ∈ N, q ≥ 1 be fixed. Define G(q)
1,x(u1,u2) by

(2.1.14) and βq by (2.1.21). Then,

βq

∫
R3
+

G(q)
1,x(u1,u2)dxdu1du2 ≤

∫
R3
+

F1,x(u1,u2)dxdu1du2 < ∞.

Proof. By (2.1.20), it follows that βqG(q)
1,x(u1,u2) ≤ F1,x(u1,u2). The integrability of

the function F1,x(u1,u2) over x,u1,u2 ≥ 0, written as in (2.1.18), is proved in [23,

Lemma 13] (see equation (40) for notation reference).

With the notation previously introduced, we can compute the covariance functions

of the increments of the processes {Iε
T}T≥0 and {I2q(hε

2q,T )}T≥0 as follows. Define the

set KT1,T2 by

KT1,T2 := {(s, t) ∈ R2
+ | s≤ t, and T1 ≤ t ≤ T2}. (2.1.22)

By (2.1.1) and (2.1.7), for every T1 < T2, we can write

Iε
T2
−E[Iε

T2
]−
(
Iε
T1
−E[Iε

T1
]
)
=
∫
R2
+

1KT1,T2
(s, t)

(
pε(~Bt−~Bs)−E

[
pε(~Bt−~Bs)

])
dsdt,

and

I2q(hε
2q,T2

)− I2q(hε
2q,T1

) =
∫
R2
+

1KT1,T2
(s, t)I2q( f ε

2q,s,t)dsdt.

By (2.1.16), we deduce the following identity for every T1 ≤ T2 and T̃1 ≤ T̃2,

Cov
[
Iε
T2
− Iε

T1
, Iε

T̃2
− Iε

T̃1

]
=
∫
R4
+

1KT1,T2
(s1, t1)1KT̃1,T̃2

(s2, t2)Fε,s2−s1(t1−s1, t2−s2)ds1ds2dt1dt2.

(2.1.23)
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Similarly, by (2.1.13),

E
[
(I2q(hε

2q,T2
)− I2q(hε

2q,T1
))(I2q(hε

2q,T̃2
)− I2q(hε

2q,T̃1
))
]

= βq

∫
R4
+

1KT1,T2
(s1, t1)1KT̃1,T̃2

(s2, t2)G
(q)
ε,s2−s1

(t1− s1, t2− s2)ds1ds2dt1dt2, (2.1.24)

where βq is defined by (2.1.21).

We end this section by introducing some notation, which will be used throughout the

paper to describe expectations of the form E
[

pε(~Bt1−~Bs1)pε(~Bt2−~Bs2)
]
. For every n-

dimensional non-negative definite matrix A, we will denote by φA the density function

of a Gaussian vector with mean zero and covariance A. In addition, we will denote by

|A| the determinant of A, and by In the identity matrix of dimension n.

Let Σ be the covariance matrix of the 2-dimensional random vector (B(1)
t1 −B(1)

s1 ,B(1)
t2 −

B(1)
s2 ). Then, the covariance matrix of the 2d-dimensional random vector (~Bt1−~Bs1,~Bt2−

~Bs2) can be written as

Cov(~Bt1−~Bs1,~Bt2−~Bs2) = Id⊗Σ,

where in the previous identity ⊗ denotes the Kronecker product of matrices. Consider

the 2d-dimensional Gaussian density φεI2d(x,y) = pε(x)pε(y), where x,y ∈ Rd , and

denote by ∗ the convolution operation. Then we have that

E
[

pε(~Bt1−~Bs1)pε(~Bt2−~Bs2)
]
=
∫
R2d

φεI2d(x,y)φId⊗Σ(−x,−y)dxdy

= φεI2d ∗φId⊗Σ(0,0) = (2π)−d |εI2d + Id⊗Σ|−
1
2 .

34



From the previous equation it follows that

E
[

pε(~Bt1−~Bs1)pε(~Bt2−~Bs2)
]
= (2π)−d |εI2 +Σ|−

d
2 . (2.1.25)

The right-hand side of the previous identity can be rewritten as follows. Define the

function

Θε(x,u1,u2) := ε
2 + ε(u2H

1 +u2H
2 )+u2H

1 u2H
2 −µ(x,u1,u2)

2. (2.1.26)

Then, using (2.1.11), we can easily show that

|εI2 +Σ|= Θε(s2− s1, t1− s1, t2− s2),

which, by (2.1.25), implies that

E
[

pε(~Bt1−~Bs1)pε(~Bt2−~Bs2)
]
= (2π)−d

Θε(s2− s1, t1− s1, t2− s2)
− d

2 . (2.1.27)

Therefore, we can write E
[
(Iε

T )
2], as

E
[
(Iε

T )
2]= (2π)−d

∫
(TR)2

Θε(s2− s1, t1− s1, t2− s2)
− d

2 ds1ds2dt1dt2. (2.1.28)

Finally, we prove the following inequality, which estimates the function Fε,x(u1,u2),

defined in (2.1.17), in terms of Θε(x,u1,u2)

Fε,x(u1,u2)≤ (2π)−d
(

d
2
+1
)

µ(x,u1,u2)
2

u2H
1 u2H

2
Θε(x,u1,u2)

− d
2 . (2.1.29)
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Indeed, using relation (2.1.19), as well as the binomial theorem, we deduce that

Fε,x(u1,u2) =(2π)−d(ε +u2H
1 )−

d
2−1(ε +u2H

2 )−
d
2−1

µ(x,u1,u2)
2

×
∞

∑
q=0

(d
2 )

q+1

(q+1)!

(
µ(x,u1,u2)

2

(ε +u2H
1 )(ε +u2H

2 )

)q

,

where an denotes the n-th raising factorial of a. Hence, using the fact that

(d
2 )

q+1

(q+1)!
=

(d
2 +q)
q+1

(d
2 )

q

q!
≤
(

d
2
+1
)
(d

2 )
q

q!
,

we deduce that

Fε,x(u1,u2)≤ (2π)−d
(

d
2
+1
)
(1+u2H

1 )−
d
2 (1+u2H

2 )−
d
2

µ(x,u1,u2)
2

(ε +u2H
1 )(ε +u2H

2 )

×
∞

∑
q=0

(d
2 )

q

q!

(
µ(x,u1,u2)

2

(ε +u2H
1 )(ε +u2H

2 )

)q

,

which, by the binomial theorem, implies (2.1.29).

Due to relations (2.1.24) and (2.1.27), the integrals

∫
[0,T ]3

G(q)
ε (x,u1,u2)dxdu1du2 and

∫
[0,T ]3

Fε(x,u1,u2)dxdu1du2 (2.1.30)

will frequently appear throughout the paper, and their asymptotic behavior as ε → 0

will depend on the value Hurst parameter H. In order to simplify the study of such
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integrals, we introduce the following sets

S1 := {(x,u1,u2) ∈ R3
+ | x+u2−u1 ≥ 0,u1− x≥ 0},

S2 := {(x,u1,u2) ∈ R3
+ | u1− x−u2 ≥ 0},

S3 := {(x,u1,u2) ∈ R3
+ | x−u1 ≥ 0}. (2.1.31)

The sets S1,S2 and S3 satisfy R3
+ = ∪3

i=1Si, and |Si∩S j|= 0 for i 6= j. In addition,

they satisfy the property that the integrals of G(q)
ε and Fε over [0,T ]3∩Si are consid-

erably simpler to handle than the integrals (2.1.30). This phenomenon arises from the

local nondeterminism property of the factional Brownian motion (see Lemma 2.4.1).

2.2 Behavior of the covariances of the approximate self-

intersection local time and its chaotic components

In this section we describe the behavior as ε → 0 of the covariance of Iε
T1

and Iε
T2

, as

well as the covariance of I2q(hε
2q,T1

) and I2q(hε
2q,T2

), for 0≤ T1 ≤ T2.

Theorem 2.2.1. Let T1,T2 ≥ 0 be fixed. Then, if 3
2d < H < 3

4 ,

lim
ε→0

ε
d− 3

2H E
[
I2q(hε

2q,T1
)I2q(hε

2q,T2
)
]
= σ

2
q (T1∧T2),

where

σ
2
q := 2βq

∫
R3
+

G(q)
1,x(u1,u2)dxdu1du2, (2.2.1)
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βq is defined by (2.1.21) and G(q)
1,x(u1,u2) by (2.1.14). Moreover, we have

∞

∑
q=1

σ
2
q = σ

2, (2.2.2)

where σ2 is a finite constant given by

σ
2 := 2

∫
R3
+

F1,x(u1,u2)dxdu1du2, (2.2.3)

and F1,x(u1,u2) is defined in (2.1.17).

Proof. To prove the result, it suffices to show that for each a < b < α < β ,

lim
ε→0

ε
d− 3

2H E
[
(I2q(hε

2q,b)− I2q(hε
2q,a))(I2q(hε

2q,β )− I2q(hε
2q,α))

]
= 0, (2.2.4)

and

lim
ε→0

ε
d− 3

2H E
[
(I2q(hε

2q,b)− I2q(hε
2q,a))

2
]
= σ

2
q (b−a). (2.2.5)

First we prove (2.2.4). Set

Φ
ε = E

[
(I2q(hε

2q,b)− I2q(hε
2q,a))(I2q(hε

2q,β )− I2q(hε
2q,α))

]
.

Define the set KT1,T2 by (2.1.22), and γ := α−b
2 > 0. We can easily check that for every

(s1, t1) ∈Ka,b, and (s2, t2) ∈Kα,β , it holds that either t2− s2 > γ , or s2− s1 ≥ γ , and
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hence, by taking T1 = a, T2 = b, T̃1 = α , T̃2 = β in (2.1.24), we get

|Φε | ≤ βq

∫
[0,β ]4

1(γ,∞)(t2− s2)G
(q)
ε,s2−s1

(t1− s1, t2− s2)ds1ds2dt1dt2

+βq

∫
[0,β ]4

1(γ,∞)(s2− s1)G
(q)
ε,s2−s1

(t1− s1, t2− s2)ds1ds2dt1dt2.(2.2.6)

Changing the coordinates (s1,s2, t1, t2) by (s := s1,x := s2− s1,u1 := t1− s1,u2 := t2−

s2) for s2 ≥ s2, and by (s := s2,x := s1− s2,u1 := t1− s1,u2 := t2− s2) for s2 ≤ s1, in

(2.2.6), using the fact that G(q)
ε,−x(u1,u2) = G(q)

ε,x(u2,u1), and integrating the s1 variable,

we can prove that

|Φε | ≤ βqβ

∫
[0,β ]3

(
1(γ,∞)(u1)+1(γ,∞)(u2)+1(γ,∞)(x)

)
G(q)

ε,x(u1,u2)dxdu1du2.

Next, changing the coordinates (x,u1,u2) by (ε−
1

2H x,ε−
1

2H u1,ε
− 1

2H u2), and using the

fact that G(q)

ε,ε
1

2H x
(ε

1
2H u1,ε

1
2H u2) = ε−dG(q)

1,x(u1,u2), we get

|Φε | ≤ε
3

2H−d
βqβ

∫
[0,ε−

1
2H β ]3

(
1(γ,∞)(ε

1
2H u1)+1(γ,∞)(ε

1
2H u2)+1(γ,∞)(ε

1
2H x)

)
×G(q)

1,x(u1,u2)dxdu1du2.

Since γ > 0, the arguments in the previous integrals converge to zero pointwise, and are

dominated by the function 3βqβG(q)
1,x(u1,u2), which is integrable by Lemma 2.1.1 due

to the condition 3
2d < H < 3

4 . Hence, by the dominated convergence theorem,

lim
ε→0

ε
d− 3

2H |Φε |= 0,
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as required. Next we prove (2.2.5). By taking T1 = T̃1 = a, and T2 = T̃2 = b in (2.1.24),

we deduce that

E
[
(I2q(hε

2q,b)− I2q(hε
2q,a))

2
]
= 2βq

∫
[0,b]4

1{s1≤s2}1Ka,b(s1, t1)1Ka,b(s2, t2)

×G(q)
ε,s2−s1

(t1− s1, t2− s2)ds1ds2dt1dt2.

Changing the coordinates (s1,s2, t1, t2) by (s1,x := s2− s1,u1 := t1− s1,u2 := t2− s2),

we get

E
[
(I2q(hε

2q,b)− I2q(hε
2q,a))

2
]

= 2βq

∫
[0,b]4

1Ka,b(s1,s1 +u1)1Ka,b(s1 + x,s1 + x+u2)G
(q)
ε,x(u1,u2)ds1dxdu1du2

= 2βq

∫
[0,b]3

∫ (b−u1)+∧(b−x−u2)+

(a−u1)+∨(a−x−u2)+
ds1G(q)

ε,x(u1,u2)dxdu1du2.

(2.2.7)

Notice that G(q)

ε,ε
1

2H x
(ε

1
2H u1,ε

1
2H u2) = ε−dG1,x(u1,u2). Therefore, integrating the vari-

able s1, and changing the coordinates (x,u1,u2) by (ε−
1

2H x,ε−
1

2H u1,ε
− 1

2H u2) in (2.2.7),

we conclude that

ε
d− 3

2H E
[
(I2q(hε

2q,b)− I2q(hε
2q,a))

2
]
= 2βq

∫
[0,ε−

1
2H b]3

G(q)
1,x(u1,u2)

×
[
(b− ε

1
2H u1)+∧ (b− ε

1
2H (x+u2))+

−(a− ε
1

2H u1)+∨ (a− ε
1

2H (x+u2))+

]
dxdu1du2.(2.2.8)

The integrand in (2.2.8) converges increasingly to 2(b−a)G(q)
1,x(u1,u2) as ε→ 0, which

is integrable by Lemma 2.1.1. Identity (2.2.5) then follows by applying the dominated

convergence theorem in (2.2.8).
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Relation (2.2.2) is obtained by integrating both sides of relation (2.1.20) over the

variables x,u1,u2 ≥ 0, for ε = 1, and then using the monotone convergence theorem.

The constant σ2 is finite by Lemma 2.1.1. The proof is now complete.

In order to determine the behavior of the covariances of Iε
T for the case H = 3

4 , we

will first prove that the second chaotic component I2(hε
2,T ) characterizes the asymptotic

behavior of Iε
T −E [Iε

T ] as ε → ∞, for every H ≥ 3
4 .

We start by showing that, after a suitable rescaling, the sequence I2(hε
2,T ) approx-

imates Iε
T −E [Iε

T ] in L2(Ω) for H > 3
4 . This result will be latter used in the proof of

Theorem 2.0.3.

Lemma 2.2.2. Let 3
4 < H < 1 be fixed. Then,

lim
ε→0

ε
d
2−

3
2H +1 ‖Iε

T −E [Iε
T ]− J2(Iε

T )‖L2(Ω) = 0.

Proof. For T > 0 fixed, define the quantity

Qε := ‖Iε
T −E [Iε

T ]− J2(Iε
T )‖

2
L2(Ω) .

From the chaos decomposition (2.1.6), we get

Qε = E
[
(Iε

T )
2]−E [Iε

T ]
2−E

[
J2(Iε

T )
2]

= E
[
(Iε

T )
2]−E [Iε

T ]
2−2

∥∥hε
2,T
∥∥2
(Hd)⊗2

= E
[
(Iε

T )
2]−E [Iε

T ]
2−2

∥∥∥∥∫TR
f ε
2,s,tdsdt

∥∥∥∥2

(Hd)⊗2
. (2.2.9)
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By (2.1.8) and (2.1.28), the first two terms in the right-hand side of the previous identity

can be written as

E
[
(Iε

T )
2]= (2π)−d

∫
(TR)2

Θε(s2− s1, t1− s1, t2− s2)
− d

2 ds1ds2dt1dt2, (2.2.10)

and

E [Iε
T ]

2
= (2π)−d

∫
(TR)2

G(0)
ε,s2−s1

(t1− s1, t2− s2)ds1ds2dt1dt2, (2.2.11)

where G(q)
ε,x(u1,u2) and Θε(x,u1,u2) are given by (2.1.14) and (2.1.26), respectively. To

handle the third term in (2.2.9), recall that the constants αq are given by (2.1.12), and

notice that α1 = 2d. Hence, from (2.1.13), we deduce that

∥∥∥∥∫TR
f ε
2,s,tdsdt

∥∥∥∥2

(Hd)⊗2
=

d(2π)−d

4

∫
(TR)2

G(1)
ε,s2−s1

(t1− s1, t2− s2)ds1ds2dt1dt2.

(2.2.12)

From equations (2.2.9)-(2.2.12), we conclude that

Qε = (2π)−d
∫
(TR)2

(
Θε(s2− s1, t1− s1, t2− s2)

− d
2

−G(0)
ε,s2−s1

(t1− s1, t2− s2)−
d
2

G(1)
ε,s2−s1

(t1− s1, t2− s2)

)
ds1ds2dt1dt2. (2.2.13)

The integrand appearing in the right-hand side is positive. Indeed, if we define

ρε(x,u1,u2) := µ(x,u1,u2)
2(ε +u2H

1 )−1(ε +u2H
2 )−1,
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then, applying relations (2.1.14), (2.1.26) we obtain

Θε(x,u1,u2)
− d

2−G(0)
ε,x(u1,u2)−

d
2

G(1)
ε,x(u1,u1) = 2(2π)−d(ε +u2H

1 )−
d
2 (ε +u2H

2 )−
d
2

×
(
(1−ρε(x,u1,u2))

− d
2 −1− d

2
ρε(x,u1,u2)

)
(2.2.14)

and the right-hand side of the previous identity is positive by the binomial theorem.

As a consequence, by changing the coordinates (s1,s2, t1, t2) by (s1,x := s2− s1,u1 :=

t1− s1,u2 := t2− s2), and integrating the variable s1 in (2.2.13), we get

Qε ≤ 2(2π)−dT
∫
[0,T ]3

(
Θε(x,u1,u2)

− d
2 −G(0)

ε,x(u1,u2)−
d
2

G(1)
ε,x(u1,u2)

)
dxdu1du2.

In addition, by the binomial theorem, we have that for every 0 < y < 1,

(1− y)−
d
2 −1− d

2
y =

∞

∑
q=2

(−1)q

 −d
2

q

yq = y2
∞

∑
q=0

(d
2 )

q+2

(q+2)!
yq,

where (x)q denotes the raising factorial (x)q := x(x + 1) . . .(x + q− 1). Hence, by

(2.2.14),

Qε ≤ 2(2π)−dT
∫
[0,T ]3

(ε +u2H
1 )−

d
2 (ε +u2H

2 )−
d
2

×ρε(x,u1,u2)
2

∞

∑
q=0

(d
2 )

q+2

(q+2)!
ρε(x,u1,u2)

qdxdu1du2. (2.2.15)

Since

(d
2 )

q+2

(q+2)!
=

(d
2 )

q

q!
(d

2 +q)(d
2 +q+1)

(q+1)(q+2)
≤
(

d
2
+1
)2 (d

2 )
q

q!
,
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then, by (2.2.15),

Qε ≤ 2(2π)−dT
(

d
2
+1
)2 ∫

[0,T ]3
(ε +u2H

1 )−
d
2 (ε +u2H

2 )−
d
2

×ρε(x,u1,u2)
2

∞

∑
q=0

(d
2 )

q

q!
ρε(x,u1,u2)

qdxdu1du2,

which, by the binomial theorem, implies that there exists a constant C > 0 only depend-

ing on T and d, such that

Qε ≤C
∫
[0,T ]3

µ(x,u1,u2)
4

(ε +u2H
1 )2(ε +u2H

2 )2 Θε(x,u1,u2)
− d

2 dxdu1du2. (2.2.16)

Hence, to prove the lemma it suffices to show that

lim
ε→0

ε
d− 3

H +2
∫
[0,T ]3

Ψε(x,u1,u2)dxdu1du2 = 0, (2.2.17)

where

Ψε(x,u1,u2) :=
µ(x,u1,u2)

4

(ε +u2H
1 )2(ε +u2H

2 )2 Θε(x,u1,u2)
− d

2 . (2.2.18)

In order to prove (2.2.17), we proceed as follows. First we decompose the domain of

integration of (2.2.17) as [0,T ]3 = S̃1∪ S̃2∪ S̃3, where

S̃1 := {(x,u1,u2) ∈ [0,T ]3 | x+u2−u1 ≥ 0,u1− x≥ 0},

S̃2 := {(x,u1,u2) ∈ [0,T ]3 | u1− x−u2 ≥ 0},

S̃3 := {(x,u1,u2) ∈ [0,T ]3 | x−u1 ≥ 0}. (2.2.19)
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Then, it suffices to show that

lim
ε→0

ε
d− 3

H +2
∫
S̃i

Ψε(x,u1,u2)dxdu1du2 = 0, (2.2.20)

for i = 1,2,3.

First prove (2.2.20) in the cases i= 1,2. Changing the coordinates (x,u1,u2) by (ε−
1

2H x,ε−
1

2H u1,ε
− 1

2H u2),

and using the fact that Ψε(ε
1

2H x,ε
1

2H u1,ε
1

2H u2) = ε−dΨ1(x,u1,u2), we get

ε
d− 3

H +2
∫
S̃i

Ψε(x,u1,u2)dxdu1du2 ≤ ε
2− 3

2H

∫
Si

Ψ1(x,u1,u2)dxdu1du2,

where the sets Si are defined by (2.1.31). Therefore, using the inequality µ(x,u1,u2)
2≤

(u1u2)
2H , we obtain

ε
d− 3

H +2
∫
S̃i

Ψε(x,u1,u2)dxdu1du2 ≤ ε
2− 3

2H

∫
Si

µ(x,u1,u2)
2

(u1u2)2H Θ1(x,u1,u2)
− d

2 dxdu1du2.

(2.2.21)

The integral appearing in the right-hand side of the previous inequality is finite by

Lemma 2.4.3 (see equation (2.4.6) for p = 2 and i = 1,2). Relation (2.2.20) for i = 1,2

is then obtained by taking ε → 0 in (2.2.21).

It then remains to prove (2.2.20) for i = 3. Changing the coordinates (x,u1,u2) by

(a := u1,b := x−u1,c := u2), we get

∫
S̃3

Ψε(x,u1,u2)dxdu1du2 ≤
∫
[0,T ]3

Ψε(a+b,a,c)dadbdc. (2.2.22)
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We bound the right-hand side of the previous inequality as follows. First we write

µ(a+b,a,c) =
1
2
((a+b+ c)2H +b2H− (b+ c)2H− (a+b)2H)

= H(2H−1)ac
∫
[0,1]2

(b+av1 + cv2)
2H−2dv1dv2. (2.2.23)

Notice that if a > c, then b+av1 + cv2 ≥ v1(b+a)≥ v1(b+ a
2 +

c
2), and if c > a, then

b+ av1 + cv2 ≥ v2(b+ c) ≥ v2(b+ a
2 +

c
2). Therefore, since H > 3

4 , by (2.2.23) we

deduce that there exists a constant K > 0, such that

µ(a+b,a,c)≤ Kac(a+b+ c)2H−2. (2.2.24)

On the other hand, if Σ denotes the covariance matrix of (Ba,Ba+b+c−Ba+b), we can

write

Θε(a+b,a,c) = ε
2 + ε(a2H + c2H)+ |Σ|.

As a consequence, by part (3) of Lemma 2.4.1, we deduce that Θε(a+b,a,c) ≥ ε2 +

δ (ac)2H for some constant δ ∈ (0,1). Hence, by (2.2.18) and (2.2.24), that there exists

a constant C > 0, such that

Ψε(a+b,a,c)≤C(ac)4−4H(a+b+ c)8H−8(ε2 +(ac)2H)−
d
2 . (2.2.25)

Next we bound the right-hand side of (2.2.25) by using Young’s inequality. Since H > 3
4

and Hd > 3
2 , then

0 <
3−2H

Hd
<

3
2Hd

< 1. (2.2.26)
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Using the relation (2.2.26), as well as the fact that 3
4 < H < 1, we deduce that there

exists a constant y > 0, such that

4H−4+4Hdy < 0, (2.2.27)

4H−3−4Hdy > 0, (2.2.28)

3−2H
Hd

+ y < 1. (2.2.29)

By (2.2.29), the constant γ := 3−2H
Hd + y belongs to (0,1), and hence, by Young’s in-

equality, we have

(1− γ)ε2 + γ(ac)2H ≥ ε
2(1−γ)(ac)2Hγ . (2.2.30)

In addition, by (2.2.27), we have

(a+b+ c)8H−8 = (a+b+ c)4H−4−4Hdy(a+b+ c)4H−4+4Hdy

≤ b4H−4−4Hdy(a+ c)4H−4+4Hdy

≤ b4H−4−4Hdy(2
√

ac)4H−4+4Hdy, (2.2.31)

where the last inequality follows from the arithmetic mean-geometric mean inequality.

Hence, by (2.2.25), (2.2.30) and (2.2.31), we obtain

ε
d− 3

H +2
∫
[0,T ]3

Ψε(a+b,a,c)≤ ε
d− 3

H +2−d(1−γ)C
∫
[0,T ]3

b4H−4−4Hdy(ac)2−2H+2Hdy−Hdγdadbdc

= ε
dyC

∫
[0,T ]3

b4H−4−4Hdy(ac)−1+Hdydadbdc. (2.2.32)

The integral in the right-hand side is finite by (2.2.28). Relation (2.2.20) for i = 3 then

follows from (2.2.22) and (2.2.32).
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The next result extends Lemma 2.2.2 to the case H = 3
4 .

Lemma 2.2.3. Let d ≥ 3 be fixed. Then, if H = 3
4 ,

lim
ε→0

ε
d
2−1√

log(1/ε)
‖Iε

T −E [Iε
T ]− J2(Iε

T )‖L2(Ω) = 0. (2.2.33)

Proof. For T > 0 fixed, define the quantity

Qε := ‖Iε
T −E [Iε

T ]− J2(Iε
T )‖

2
L2(Ω) .

As in the proof of equation (2.2.16) in Lemma 2.2.2, we can show that there exists a

constant C > 0 such that

Qε ≤C
∫
[0,T ]3

Ψε(x,u1,u2)dxdu1du2, (2.2.34)

where

Ψε(x,u1,u2) :=
µ(x,u1,u2)

4

(ε +u
3
2
1 )

2(ε +u
3
2
2 )

2
Θε(x,u1,u2)

− d
2 . (2.2.35)

Hence, by splitting the domain of integration in (2.2.34) as [0,T ]3 =
⋃3

i=1 S̃i, where

the sets S̃i are defined by (2.2.19), we deduce that the relation (2.2.33) holds, provided

that

lim
ε→0

εd−2

log(1/ε)

∫
S̃i

Ψε(x,u1,u2)dxdu1du2 = 0, (2.2.36)

for i = 1,2,3. To prove (2.2.36) for i = 1,2, we change the coordinates (x,u1,u2) by

(ε−
2
3 x,ε−

2
3 u1,ε

− 2
3 u2) and use the fact that Ψε(ε

2
3 x,ε

2
3 u1,ε

2
3 u2) = ε−dΨ1(x,u2,u2), in
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order to get

εd−2

log(1/ε)

∫
S̃i

Ψε(x,u1,u2)dxdu1du2 ≤
1

log(1/ε)

∫
Si

Ψ1(x,u1,u2)dxdu1du2, (2.2.37)

where the sets Si are defined by (2.1.31). As a consequence, by applying the inequality

µ(x,u1,u2)
2 ≤ (u1u2)

3
2 , we get

εd−2

log(1/ε)

∫
S̃i

Ψε(x,u1,u2)dxdu1du2 ≤
1

log(1/ε)

∫
Si

µ(x,u1,u2)
2

(u1u2)
3
2

Θ1(x,u1,u2)
− d

2 dxdu1du2.

(2.2.38)

The integral appearing the right-hand side of the previous inequality is finite for i = 1,2

by Lemma 2.4.3 (see equation (2.4.6) for p = 2). Relation (2.2.36) for i = 1,2 is then

obtained by taking ε → 0 in (2.2.38).

It then suffices to handle the case i = 3. Define the function K(x,u1,u2) by

K(x,u1,u2) :=
µ(x,u1,u2)

4

(u1u2)3 Θ1(x,u1,u2)
− d

2 . (2.2.39)

Notice that

1
log(1/ε)

∫
S3

Ψ1(x,u1,u2)dxdu1du2 ≤
1

log(1/ε)

∫
S3

K(x,u1,u2)dxdu1du2. (2.2.40)

Using the representation

µ(a+b,a,c) = H(2H−1)ac
∫
[0,1]2

(b+aξ + cη)2H−2dξ dη ,
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we get

µ(a+b,a,c)≤ 3ac
8

∫
[0,1]2

(bξ η +aξ η + cξ η)−
1
2 dξ dη =

3ac
2

(a+b+ c)−
1
2 .

As a consequence,

K(a+b,a,c)≤ 34

24 ac(a+b+ c)−2
Θ1(a+b,a,c)−

d
2 .

Notice that Θ1(a+b,a,c) = 1+a
3
2 + c

3
2 + |Σ|, where Σ denotes the covariance matrix

of (Ba,Ba+b+c−Ba+b). Therefore, by part (3) of Lemma 2.4.1, we deduce that

Θ1(a+b,a,c)≥ 1+a
3
2 + c

3
2 +δ (ac)

3
2 ,

for some constant δ ∈ (0,1). From here, it follows that there exists a constant C > 0,

such that

K(a+b,a,c)≤Cac(a+b+ c)−2
(

1+a
3
2 + c

3
2 +a

3
2 c

3
2

)− d
2
.

From here it follows that there exists a constant C > 0 such that the following inequali-

ties hold

K(a+b,a,c)≤Cac−1
(

1+ c
3
2 +a

3
2 c

3
2

)− d
2 if a≤ b≤ c,

K(a+b,a,c)≤Ca−1c
(

1+a
3
2 +a

3
2 c

3
2

)− d
2 if c≤ b≤ a,

K(a+b,a,c)≤Cacb−2
(

1+(a∨ c)
3
2 +a

3
2 c

3
2

)− d
2 if a,c≤ b,

K(a+b,a,c)≤Cac−1
(

1+ c
3
2 +a

3
2 c

3
2

)− d
2 if b≤ a≤ c,

K(a+b,a,c)≤Ca−1c
(

1+a
3
2 +a

3
2 c

3
2

)− d
2 if b≤ c≤ a.
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Using the previous inequalities, as well as the condition d ≥ 3, we can easily check that

K(a+b,a,c) is integrable in R3
+, which in turn implies that K(x,u1,u2) is integrable in

S3. Using this observation, as well as relations (2.2.37) and (2.2.40), we obtain

lim
ε→0

εd−2

log(1/ε)

∫
S̃3

Ψε(x,u1,u2)dxdu1du2 = 0,

as required. The proof is now complete.

The next result provides a useful approximation for I2(hε
2,T ).

Lemma 2.2.4. Assume that H = 3
4 and d ≥ 3. Let hε

2,T be defined as in (2.1.7) and

consider the following approximation of I2(hε
2,T )

J̃ε
T :=−(2π)−

d
2 ε−

d
2+1

2

d

∑
j=1

∫ T

0

∫
∞

0

u
3
2

ε
1
3 (1+u

3
2 )

d
2+1

H2

B( j)

s+ε
2
3 u
−B( j)

s

√
εu

3
2

duds.

(2.2.41)

Then we have that

lim
ε→0

ε
d
2−1√

log(1/ε)

∥∥∥I2(hε
2,T )− J̃ε

T

∥∥∥
L2(Ω)

= 0.

Proof. Using (2.1.4), we can easily check that

I2(hε
2,T ) =−

(2π)−
d
2

2

d

∑
j=1

∫ T

0

∫ T−u

0

u
3
2

(ε +u
3
2 )

d
2+1

H2

(
B( j)

s+u−B( j)
s

u
3
4

)
dsdu.
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Making the change of variables v := ε
− 2

3 u, we get

I2(hε
2,T ) =−

(2π)−
d
2 ε
− d

2+
2
3

2

d

∑
j=1

∫ T

0

∫
ε
− 2

3 (T−s)

0

v
3
2

(1+ v
3
2 )

d
2+1

H2

B( j)

s+ε
2
3 v
−B( j)

s

√
εv

3
4

dvds,

and hence,

J̃ε
T − I2(hε

2,T ) =−
(2π)−

d
2 ε
− d

2+
2
3

2

d

∑
j=1

∫ T

0

∫
∞

ε
− 2

3 (T−s)

v
3
2

(1+ v
3
2 )

d
2+1

H2

B( j)

s+ε
2
3 u
−B( j)

s

√
εu

3
4

duds.

(2.2.42)

Set

Φ
ε = ε

d−2
∥∥∥J̃ε

T − I2(hε
2,T )
∥∥∥2

L2(Ω)
.

Using (2.2.42), as well as the fact that

E

[
H2

(
B( j)

s1+v1
−B( j)

s1

vH
1

)
H2

(
B( j)

s2+v2
−B( j)

s2

vH
2

)]
= 2(v1v2)

−2H
µ(s2− s1,v1,v2)

2,

(2.2.43)

for all s1,s2,v1,v2 ≥ 0, we can easily check that

Φ
ε =

d(2π)−d

2

∫
[0,T ]2

∫
R2
+

1[T,∞)(s1 + ε
2
3 u1)1[T,∞)(s2 + ε

2
3 u2)Vε,s2−s1(u1,u2)du1du2ds1ds2,

where

Vε,x(u1,u2) := ε
− 8

3 ψ(u1,u2)µ(x,ε
2
3 u1,ε

2
3 u2)

2,
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and

ψ(u1,u2) := (1+u
3
2
1 )
− d

2−1(1+u
3
2
2 )
− d

2−1. (2.2.44)

Hence, using the fact that µ(x,v1,v2) = µ(−x,v2,v1), we can write

Φ
ε = d(2π)−d

∫ T

0

∫ s2

0

∫
R2
+

1[T,∞)(s1 + ε
2
3 u1)1[T,∞)(s2 + ε

2
3 u2)Vε,s2−s1(u1,u2)du1du2ds1ds2.

(2.2.45)

Changing the coordinates (s1,s2,u1,u2) by (s := s1,x := s2− s1,u1,u2) in the expres-

sion (2.2.45), and then integrating the variable s, we obtain

|Φε |= d(2π)−d
∫ T

0

∫
R2
+

(T − (T − ε
2
3 u1)+∨ (T − x− ε

2
3 u2)+)Vε,x(u1,u2)du1du2dx,

and consequently, there exists a constant C > 0 such that

|Φε | ≤C
∫ T

0

∫
R2
+

r
ε

2
3
(u1)Vε,x(u1,u2)du1du2dx, (2.2.46)

where rδ (u1) := T − (T −δu1)+. Making the change of variable v := ε
− 2

3 x in (2.2.46)

and using the fact that V
ε,ε

2
3 v
(u1,u2) = ε

− 2
3 G(1)

1,v(u1,u2), we get

|Φε | ≤C
∫

ε
− 2

3 T

0

∫
R2
+

r
ε

2
3
(u1)G

(1)
1,v(u1,u2)du1du2dv.

Therefore, defining N := ε
− 2

3 , so that log(1/ε) = 3logN
2 , we obtain

|Φε |
log(1/ε)

≤ 2C
3logN

∫ NT

0

∫
R2
+

r 1
N
(u1)G

(1)
1,x(u1,u2)du1du2dx.
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To bound the right-hand side of the previous relation we split the domain of integration

as follows. Define the sets Si, for i = 1,2,3, by (2.1.31). Then

limsup
ε→0

|Φε |
log(1/ε)

≤ limsup
N→∞

2C
3logN

∫ NT

0

∫
R2
+

r 1
N
(x,u1)G

(1)
1,x(u1,u2)du1du2dx (2.2.47)

≤ 2C
3

3

∑
i=1

limsup
N→∞

1
logN

∫ NT

0

∫
R2
+

1Si(x,u1,u2)r 1
N
(u1)G

(1)
1,x(u1,u2)du1du2dx.

By relations (2.1.20) and (2.1.29), there exists a constant C > 0, such that

G(1)
1,x(u1,u2)≤C

µ2(x,u1,u2)

(u1u2)
3
2

Θ1(x,u1,u2)
− d

2 . (2.2.48)

Hence, by Lemma 2.4.3, the terms with i = 1 and i = 2 in the sum in the right-hand

side of (2.2.47) converge to zero. From this observation, we conclude that there exists

a constant C > 0, such that

limsup
ε→0

|Φε |
log(1/ε)

≤ limsup
N→∞

C
logN

∫ NT

0

∫
R2
+

1S3(x,u1,u2)r 1
N
(u1)G

(1)
1,x(u1,u2)du1du2dx.

(2.2.49)

Using Lemma 2.4.2, we can easily show that there exists a constant C > 0, such for

every (x,u1,u2) ∈S3, the following inequality holds

G(1)
1,x(u1,u2) = ψ(u1,u2)µ(x,u1,u2)

2 ≤Cψ(u1,u2)(x+u1 +u2)
−1(u1u2)

2, (2.2.50)

where ψ(u1,u2) is defined in (2.2.44). From (2.2.49) and (2.2.50), it follows that

limsup
ε→0

|Φε |
log(1/ε)

≤ limsup
N→∞

C
logN

∫ NT

0

∫
R2
+

r 1
N
(u1)(x+u1 +u2)

−1(u1u2)
2
ψ(u1,u2)du1du2dx.
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In addition, we have that

limsup
N→∞

1
logN

∫ 1

0

∫
R2
+

r 1
N
(u1)(x+u1 +u2)

−1(u1u2)
2
ψ(u1,u2)du1du2dx

≤ limsup
N→∞

T
logN

∫ 1

0

∫
R2
+

(u1 +u2)
−1(u1u2)

2
ψ(u1,u2)du1du2 = 0,

and consequently,

limsup
ε→0

|Φε |
log(1/ε)

≤ limsup
N→∞

C
logN

∫ NT

1

∫
R2
+

r 1
N
(u1)x−1(u1u2)

2
ψ(u1,u2)du1du2dx.

For δ > 0 fixed, let M > 1 be such that

∫
∞

M

∫
∞

0
(u1u2)

2
ψ(u1,u2)du2du1 < δ . (2.2.51)

Using (2.2.51), as well as the fact that r 1
N
(u) is increasing on u, we obtain

1
logN

∫ NT

1

∫
∞

M

∫
∞

0
x−1(u1u2)

2
ψ(u1,u2)du1du2dx≤ δ

(
1+

log(T )
logN

)
,

and

limsup
N→∞

1
logN

∫ NT

1

∫ M

0

∫
∞

0
r 1

N
(u1)x−1(u1u2)

2
ψ(u1,u2)du1du2dx

≤ limsup
N→∞

(
1+

log(T )
logN

)∫
R2
+

r 1
N
(M)(u1u2)

2
ψ(u1,u2)du1du2 = 0.

As a consequence,

limsup
ε→0

|Φε |
log(1/ε)

≤Cδ .
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Hence, taking δ → 0, we get

lim
ε→0

Φε

log(1/ε)
= 0,

as required.

Finally, we describe the behavior of the covariance function of I2(hε
2,T ) for the case

H = 3
4 .

Theorem 2.2.5. Let T1,T2 ≥ 0 be fixed. Then, if d ≥ 3 and H = 3
4 ,

lim
ε→0

εd−2

log(1/ε)
E
[
I2(hε

2,T1
)I2(hε

2,T2
)
]
= ρ

2(T1∧T2),

where ρ is a finite constant defined by

ρ :=

√
3d

2
d+5

2 π
d
2

∫
∞

0
(1+u

3
2 )−

d
2−1u2du. (2.2.52)

Proof. Consider the approximation J̃ε
T of I2(hε

2,T ), introduced in (2.2.41). By Lemma

2.2.4,

lim
ε→0

εd−2

log(1/ε)

∥∥∥J̃ε
T − I2(hε

2,T )
∥∥∥2

L2(Ω)
→ 0.

Therefore, it suffices to show that

lim
ε→0

εd−2

log(1/ε)
E
[
J̃ε

T1
J̃ε

T2

]
= ρ

2(T1∧T2). (2.2.53)

As in Lemma 2.2, to prove (2.2.53), it suffices to show that for each a < b < α < β ,

lim
ε→0

εd−2

log(1/ε)
E
[
(J̃ε

b − J̃ε
a )(J̃

ε

β
− J̃ε

α)
]
= 0, (2.2.54)
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and

lim
ε→0

εd−2

log(1/ε)
E
[
(J̃ε

b − J̃ε
a )

2
]
= ρ

2(b−a). (2.2.55)

First we prove (2.2.54). Set

Φ
ε = ε

d−2E
[
(J̃ε

b − J̃ε
a )(J̃

ε

β
− J̃ε

α)
]
.

Using (2.2.43) and (2.2.41), we can easily check that

Φ
ε =

d(2π)−d

2

∫
β

α

∫ b

a

∫
R2
+

Vε,s2−s1(u1,u2)du1du2ds1ds2, (2.2.56)

where

Vε,x(u1,u2) := ε
− 8

3 ψ(u1,u2)µ(x,ε
2
3 u1,ε

2
3 u2)

2,

and ψ(u1,u2) is defined by (2.2.39). Changing the coordinates (s1,s2,u1,u2) by (s :=

s1,x := s2− s1,u1,u2) in (2.2.56), and then integrating the variable s, we can show that

|Φε | ≤ d(2π)−d
β

∫
β

γ

∫
R2
+

Vε,x(u1,u2)du1du2dx, (2.2.57)

where the constant γ is defined by γ := α−b. Making the change of variable v := ε
− 2

3 x

and using the fact that

V
ε,ε

2
3 v
(u1,u2) = ε

− 2
3 G(1)

1,v(u1,u2),
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we get

|Φε | ≤ d(2π)−d
β

∫
ε
− 2

3 β

ε
− 2

3 γ

∫
R2
+

G(1)
1,v(u1,u2)du1du2dv.

Therefore, defining N := ε
− 2

3 , so that log(1/ε) = 3logN
2 , we obtain

|Φε |
log(1/ε)

≤ 2d(2π)−dβ

3logN

∫ Nβ

Nγ

∫
R2
+

G(1)
1,x(u1,u2)du1du2dx.

To bound the right-hand side of the previous relation we split the domain of integration

as follows. Define the sets Si, for i = 1,2,3, by (2.1.31). Then, there exists a constant

C > 0, such that

limsup
ε→0

|Φε |
log(1/ε)

≤ limsup
N→∞

C
logN

∫ Nβ

Nγ

∫
R2
+

G(1)
1,x(u1,u2)du1du2dx

≤
3

∑
i=1

limsup
N→∞

C
logN

∫ Nβ

Nγ

∫
R2
+

1Si(x,u1,u2)G
(1)
1,x(u1,u2)du1du2dx.

(2.2.58)

Taking into account (2.2.48), by Lemma 2.4.3, the terms with i = 1 and i = 2 in the sum

in the right-hand side of (2.2.58) converge to zero. From this observation, we conclude

that

limsup
ε→0

|Φε |
log(1/ε)

≤ limsup
N→∞

C
logN

∫ Nβ

Nγ

∫
R2
+

1S3(x,u1,u2)G
(1)
1,x(u1,u2)du1du2dx.

(2.2.59)
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By Lemma 2.4.2, there exists a constant C > 0, such for every (x,u1,u2) ∈ S3, the

following inequality holds

G(1)
1,x(u1,u2) = ψ(u1,u2)µ(x,u1,u2)

2 ≤Cψ(u1,u2)x−1(u1u2)
2. (2.2.60)

From (2.2.59) and (2.2.60), we obtain

limsup
ε→0

|Φε |
log(1/ε)

≤C limsup
N→∞

log(Nβ )− log(Nγ)

logN

∫
R2
+

ψ(u1,u2)(u1u2)
2du1du2,

for some constant C > 0. The function (1+u
3
2 )−

d
2−1u2 is integrable for u in R+ due to

the condition d ≥ 3, and hence, from the previous inequality we conclude that

limsup
ε→0

|Φε |
log(1/ε)

= 0. (2.2.61)

Relation (2.2.54) then follows from (2.2.61).

Next we prove (2.2.55). By taking α = a and β = b in relation (2.2.56), we obtain

ε
d−2E

[
(J̃ε

b − J̃ε
a )

2
]
= d(2π)−d

∫ b

a

∫ s2

a

∫
R2
+

Vε,s2−s1(u1,u2)du1du2ds1ds2.

Changing the coordinates (s1,s2, t1, t2) by (s1,x := ε
− 2

3 (s2−s1),u1 := t1−s1,u2 := t2−

s2), integrating the variable s1 and using the fact that V
ε,ε

2
3 x̂
(u1,u2) = ε

− 2
3 G(1)

1,x̂(u1,u2),

we deduce that

ε
d−2E

[
(J̃ε

b − J̃ε
a )

2
]
= d(2π)−d

∫
ε
− 2

3 (b−a)

0

∫
R2
+

(b− ε
2
3 x−a)ε

2
3V

ε,ε
2
3 x
(u1,u2)du1du2dx

= d(2π)−d
∫

ε
− 2

3 (b−a)

0

∫
R2
+

(b− ε
2
3 x−a)G(1)

1,x(u1,u2)du1du2dx.
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Therefore, defining N := ε
− 2

3 , so that log(1/ε) = 3logN
2 , we obtain

εd−2

log(1/ε)
E
[
(J̃ε

b − J̃ε
a )

2
]

=
2d(2π)−d

3logN

∫ N(b−a)

0

∫
R2
+

(b− x
N
−a)G(1)

1,x(u1,u2)du1du2dx

=
2d(2π)−d

3logN

3

∑
i=1

∫ N(b−a)

0

∫
R2
+

(b− x
N
−a)1Si(x,u1,u2)G

(1)
1,x(u1,u2)du1du2dx.

(2.2.62)

By inequality (2.2.48) and Lemma 2.4.3, the terms with i = 1 and i = 2 in the sum in

the right-hand side of (2.2.62) converge to zero. From this observation, it follows that

lim
ε→0

εd−2

log(1/ε)
E
[
(J̃ε

b − J̃ε
a )

2
]

= lim
N→∞

2d(2π)−d

3logN

∫ N(b−a)

0

∫
R2
+

(b− x
N
−a)1S3(x,u1,u2)G

(1)
1,x(u1,u2)du1du2dx

= lim
N→∞

2d(2π)−d

3logN

∫ N(b−a)

0

∫
R2
+

(b−a)1S3(x,u1,u2)G
(1)
1,x(u1,u2)du1du2dx

− lim
N→∞

2d(2π)−d

3N logN

∫ N(b−a)

0

∫
R2
+

1S3(x,u1,u2)xG(1)
1,x(u1,u2)du1du2dx,

(2.2.63)

provided that the limits in the right-hand side exist. By (2.2.60), there exists a constant

C > 0 such that

1
N logN

∫ N(b−a)

0

∫
R2
+

1S3(x,u1,u2)xG(1)
1,x(u1,u2)du1du2dx

≤ C
N logN

∫ N(b−a)

0

∫
R2
+

ψ(u1,u2)(u1u2)
2du1du2dx

=
C(b−a)

logN

∫
R2
+

ψ(u1,u2)(u1u2)
2du1du2.
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Since d ≥ 3, the integral in the right-hand side is finite, and hence

lim
N→∞

1
N logN

∫ N(b−a)

0

∫
R2
+

1S3(x,u1,u2)xG(1)
1,x(u1,u2)du1du2dx = 0.

Therefore, by (2.2.63),

lim
ε→0

εd−2

log(1/ε)
E
[
(J̃ε

b − J̃ε
a )

2
]

= lim
N→∞

2d(2π)−d

3logN

∫ N(b−a)

0

∫
R2
+

(b−a)1S3(x,u1,u2)G
(1)
1,x(u1,u2)du1du2dx. (2.2.64)

Applying L’Ĥopital’s rule in (2.2.64), we get

lim
ε→0

εd−2

log(1/ε)
E
[
(J̃ε

b − J̃ε
a )

2
]

= lim
N→∞

2d(2π)−d

3

∫
R2
+

N(b−a)2
1S3(N(b−a),u1,u2)G

(1)
1,N(b−a)(u1,u2)du1du2dx.

(2.2.65)

By (2.2.60), the integrand in the right-hand side is bounded by the function

Cψ(u1,u2)(u1u2)
2

for some constant C > 0. On the other hand, using (1.2.6), we can easily check that

|µ(x,v1,v2)|=
∣∣∣〈1[0,v1],1[x,x+v2]

〉
H

∣∣∣
= H(2H−1)v1v2

∫
[0,1]2
|x+ v2w2− v1w1|2H−2 dw1dw2

=
3v1v2

8

∫
[0,1]2
|x+ v2w2− v1w1|−

1
2 dw1dw2,
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so that

lim
N→∞

N(b−a)µ(N(b−a),u1,u2)
2 =

32(u1u2)
2

26 ,

and hence,

lim
N→∞

N(b−a)1S3(N(b−a),u1,u2)G
(1)
1,N(b−a)(u1,u2) =

32

26 ψ(u1,u2)(u1u2)
2.

Therefore, by applying the dominated convergence theorem to (2.2.65), we get

lim
ε→0

εd−2

log(1/ε)
E
[
(J̃ε

b − J̃ε
a )

2
]
= (b−a)

3d
2d+5πd

(∫
R+

(1+u
3
2 )−

d
2−1u2du

)2

.

Relation (2.2.55) follows from the previous inequality. The proof is now complete.

2.3 Proof of Theorems 2.0.2, 2.0.3 and 2.0.4

In the sequel, W = {Wt}t≥0 will denote a standard one-dimensional Brownian motion

independent of B, and X j = {X j
t }t≥0 will denote the second order Hermite process

introduced in Section 1.2.

Proof of Theorem 2.0.2

We start with the proof of Theorem 2.0.2, which will be done in two steps.
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Step 1. First we prove the convergence of the finite dimensional distributions, namely,

we will show that for every r ∈ N, and T1, . . . ,Tr ≥ 0 fixed, it holds

ε
d
2−

3
4H
(
(Iε

T1
, . . . , Iε

Tr
)−E

[
(Iε

T1
, . . . , Iε

Tr
)
]) Law→ σ(WT1, . . . ,WTr), (2.3.1)

as ε→ 0, where σ is the finite constant defined by (2.2.3). To this end, define the kernels

hε
2q,Ti

by (2.1.7), and the constants σ2
q by (2.2.1), for q ∈ N. Notice that the constants

σ2
q are well defined due to the condition 3

2d < H < 3
4 . Define as well the matrices

Cq = {Ci, j
q | 1 ≤ i, j ≤ r} and C = {Ci, j | 1 ≤ i, j ≤ r}, by Ci, j

q := σ2
q (Ti ∧ Tj), and

Ci, j := σ2(Ti ∧Tj). Since Iε
Ti

has chaos decomposition (2.1.6), by Theorem 1.2.2, we

deduce that in order to prove the convergence (2.3.1), it suffices to show the following

properties:

(i) For every fixed q≥ 1, and 1≤ i, j ≤ r, we have

ε
d− 3

2H (2q)!
〈

hε
2q,Ti

,hε
2q,Tj

〉
(Hd)⊗2q

→ σ
2
q (Ti∧Tj), as ε → 0.

(ii) The constants σ2
q satisfy ∑

∞
q=1 σ2

q = σ2. In particular, Ci, j = limQ→∞ ∑
Q
q=1Ci, j

q ,

(iii) For all q≥ 1 and i = 1, . . . ,r, the random variables ε
d
2−

3
4H I2q(hε

2q,Ti
) converge in

law to a centered Gaussian distribution as ε → 0,

(iv) limQ→∞ supε∈(0,1) εd− 3
2H ∑

∞
q=Q(2q)!

∥∥∥hε
2q,Ti

∥∥∥2

(Hd)⊗2q
= 0, for every i = 1, . . . ,r.

Part (i) follows from Theorem 2.2.1. Condition (ii) follows from equation (2.2.2). In

[23, Theorem 2], it was proved that for T > 0 fixed, ε
d
2−

3
4H I2q(hε

2q,T ) converges in law

to a centered Gaussian random variable when ε → 0, and

lim
Q→∞

sup
ε∈(0,1)

ε
d− 3

2H

∞

∑
q=Q

(2q)!
∥∥∥hε

2q,T

∥∥∥2

(Hd)⊗2q
= 0,
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which proves conditions (iii) and (iv). This finishes the proof of (2.3.1).

Step 2. We are going to show the tightness of the sequence of processes {ε d
2−

3
4H (Iε

T −

E [Iε
T ])}T≥0. To this end, we will prove that there exists a sufficiently small p > 2,

depending only on d and H, such that for every 0≤ T1 ≤ T2, it holds

sup
ε∈(0,1)

E
[∣∣∣ε d

2−
3

4H
(
Iε
T2
−E

[
Iε
T2

]
−
(
Iε
T1
−E

[
Iε
T1

]))∣∣∣p]≤C |T2−T1|
p
2 , (2.3.2)

for some constant C > 0 only depending on d, p and H. The tightness property for

{ε d
2−

3
4H (Iε

T −E [Iε
T ])}T≥0 then follows from the Billingsley criterion (see [4, Theo-

rem 12.3]).

In order to prove (2.3.2) we proceed as follows. Define, for 0 ≤ T1 ≤ T2 fixed, the

random variable Zε = Zε(T1,T2), by

Zε := Iε
T2
−E

[
Iε
T2

]
−
(
Iε
T1
−E

[
Iε
T1

])
. (2.3.3)

From the chaos decomposition (2.1.6), we can easily check that J0(L−1Zε)= J1(L−1Zε)=

0, which in turn implies that

E
[
DL−1Zε

]
= J0(DL−1Zε) = DJ1(L−1Zε) = 0.

Hence, by (1.2.3), there exists a constant cp > 0 such that

‖Zε‖Lp(Ω) ≤ cp
∥∥D2L−1Zε

∥∥
Lp(Ω;(Hd)⊗2)

. (2.3.4)
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The right-hand side of the previous inequality can be estimated as follows. From

(1.2.5), we can easily check that

D2L−1Zε =
∫

∞

0

∫
KT1,T2

D2Pθ [pε(~Bt−~Bs)]dsdtdθ , (2.3.5)

where KT1,T2 is defined by (2.1.22). Let B̃ be an independent copy of ~B. Using Mehler’s

formula (1.2.4) and the semigroup property of the heat kernel, we obtain

Pθ [pε(~Bt−~Bs)] = Ẽ
[

pε(e−θ (~Bt−~Bs)+
√

1− e−2θ (B̃t− B̃s))
]

(2.3.6)

= pλε (θ ,s,t)(e
−θ (~Bt−~Bs)),

where the function λε = λε(θ ,s, t) is defined by

λε(θ ,s, t) := ε +(1− e−2θ )(t− s)2H . (2.3.7)

This implies that for every multi-index i = (i1, i2), with 1≤ i1, i2 ≤ d, we have

D2Pθ [pε(~Bt−~Bs)](i,x1,x2) = e−2θ
1[s,t](x1)1[s,t](x2)

×λε(θ ,s, t)−1 pλε (θ ,s,t)(e
−θ (~Bt−~Bs))gi,λε (θ ,s,t)(e

−θ (~Bt−~Bs)), (2.3.8)

where the function gi,λ , for λ > 0, is defined by

gi,λ (x1, . . . ,xd) =

 λ−1x2
i1−1 if i1 = i2

λ−1xi1xi2 if i1 6= i2.
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From (2.3.5) and (2.3.8), we deduce that

∥∥D2L−1Zε

∥∥2
(Hd)⊗2 =

∫
R2
+

∫
K 2

T1,T2

e−2θ−2β
µ(s2− s1, t1− s1, t2− s2)

2

× (λε(θ ,s1, t1)λε(β ,s2, t2))−1 pλε (θ ,s1,t1)(e
−θ (~Bt1−~Bs1))

× pλε (β ,s2,t2)(e
−β (~Bt2−~Bs2))∑

i
gi,λε (θ ,s1,t1)

(
e−θ (~Bt1−~Bs1)

)
×gi,λε (β ,s2,t2)

(
e−β (~Bt2−~Bs2)

)
ds1dt1ds2dt2dθdβ , (2.3.9)

where the sum runs over all the possible muti-indices i = (i1, i2), with 1 ≤ i1, i2 ≤ d.

Using Minkowski inequality, as well as (2.3.4) and (2.3.9), we deduce that

‖Zε‖2
Lp(Ω) ≤ c2

p
∥∥D2L−1Zε

∥∥2
Lp(Ω;(Hd)⊗2)

= c2
p

∥∥∥∥∥D2L−1Zε

∥∥2
(Hd)⊗2

∥∥∥
L

p
2 (Ω)

≤ c2
p

∫
R2
+

∫
K 2

T1,T2

e−2θ−2β
µ(s2− s1, t1− s1, t2− s2)

2

× (λε(θ ,s1, t1)λε(β ,s2, t2))−1∥∥pλε (θ ,s1,t1)(e
−θ (~Bt1−~Bs1))

× pλε (β ,s2,t2)(e
−β (~Bt2−~Bs2))∑

i
gi,λε (θ ,s1,t1)

(
e−θ (~Bt1−~Bs1)

)
×gi,λε (β ,s2,t2)

(
e−β (~Bt2−~Bs2)

)∥∥
L

p
2 (Ω)

ds1dt1ds2dt2dθdβ . (2.3.10)

Next we bound the L
p
2 (Ω)-norm in the right-hand side of the previous inequality. Let

y ∈ (0,1) be fixed. We can easily check that there exists a constant C > 0 only depend-

ing on y, such that for every λ1,λ2 > 0 and η ,ξ ∈Rd , and every multi-index i = (i1, i2),

with 1≤ i1, i2 ≤ d,

∣∣gi,λ1(η)gi,λ2(ξ )
∣∣≤ (1+λ

−1
1 ‖η‖

2)(1+λ
−1
2 ‖ξ‖

2)≤Ce
y
2 (λ

−1
1 ‖η‖

2+λ
−1
2 ‖ξ‖

2).

(2.3.11)
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From (2.3.10) and (2.3.11), it follows that there exists a constant C > 0, not depending

on ε,T1,T2, such that

‖Zε‖2
Lp(Ω)

≤C
∫
R2
+

∫
K 2

T1,T2

e−2θ−2β
µ(s2− s1, t1− s1, t2− s2)

2

× (λε(θ ,s1, t1)λε(β ,s2, t2))−1

×
∥∥∥∥p λε (θ ,s1,t1)

1−y
(e−θ (~Bt1−~Bs1))p λε (β ,s2,t2)

1−y
(e−β (~Bt2−~Bs2))

∥∥∥∥
L

p
2 (Ω)

ds1dt1ds2dt2dθdβ .

(2.3.12)

Proceeding as in the proof of (2.1.25), we can easily check that

E
[

p λε (θ ,s1,t1)
1−y

(e−θ (~Bt1−~Bs1))
p
2 p λε (β ,s2,t2)

1−y
(e−β (~Bt2−~Bs2))

p
2

]
= (2π)−

d(p−2)
2

(
λε(θ ,s1, t1)λε(β ,s2, t2)

(1− y)2

)− d p
4 + d

2 2d

pd ed(θ+β )

×E

[
p 2λε (θ ,s1,t1)e

2θ

p(1−y)

(~Bt1−~Bs1)p 2λε (β ,s2,t2)e
2β

p(1−y)

(~Bt2−~Bs2)

]

= (2π)−
d(p−2)

2

(
λε(θ ,s1, t1)λε(β ,s2, t2)

(1− y)2

)− d p
4 + d

2 2d

pd ed(θ+β )

×

∣∣∣∣∣∣∣
2

p(1− y)

 λε(θ ,s1, t1)e2θ 0

0 λε(β ,s2, t2)e2β

+Σ

∣∣∣∣∣∣∣
− d

2

,

where Σ = {Σi, j}1≤i, j≤2, denotes the covariance matrix of (B(1)
t1 − B(1)

s1 ,B(1)
t2 − B(1)

s2 ),

whose components are given by Σ1,1 = (t1− s1)
2H , Σ1,2 = Σ2,1 = µ(s2− s1, t1− s1, t2−

s2), and Σ2,2 = (t2− s2)
2H . Therefore, there exists a constant C > 0 only depending on
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p and d, such that

E
[

p λ (θ ,s1,t1)
1−y

(e−θ (~Bt1−~Bs1))
p
2 p λ (β ,s2,t2)

1−y
(e−β (~Bt2−~Bs2))

p
2

]
≤C(λε(θ ,s1, t1)λε(β ,s2, t2))−

d p
4 + d

2

× ed(θ+β )

∣∣∣∣∣∣∣
2

p(1− y)

 λε(θ ,s1, t1)e2θ 0

0 λε(β ,s2, t2)e2β

+Σ

∣∣∣∣∣∣∣
− d

2

.

Choosing y < 1− 2
p , so that p(1−y)

2 Σ≥ Σ, we deduce that there exists a constant C > 0

only depending on p,y and d, such that

E
[

p λε (θ ,s1,t1)
1−y

(e−θ (~Bt1−~Bs1))
p
2 p λε (β ,s2,t2)

1−y
(e−β (~Bt2−~Bs2))

p
2

]
≤C(λε(θ ,s1, t1)λε(β ,s2, t2))−

d p
4 + d

2

× ed(θ+β )

∣∣∣∣∣∣∣
 λε(θ ,s1, t1)e2θ +(t1− s1)

2H µ(s2− s1, t1− s2, t2− s2)

µ(s2− s1, t1− s2, t2− s2) λε(β ,s2, t2)e2β +(t2− s2)
2H


∣∣∣∣∣∣∣
− d

2

.

Hence, by the multilinearity of the determinant function,

E
[

p λε (θ ,s1,t1)
1−y

(e−θ (~Bt1−~Bs1))
p
2 p λε (β ,s2,t2)

1−y
(e−β (~Bt2−~Bs2))

p
2

]
≤C(λε(θ ,s1, t1)λε(β ,s2, t2))−

d p
4 + d

2

×

∣∣∣∣∣∣∣
 λε(θ ,s1, t1)+ e−2θ (t1− s1)

2H e−2β µ(s2− s1, t1− s2, t2− s2)

e−2θ µ(s2− s1, t1− s2, t2− s2) λε(β ,s2, t2)+ e−2β (t2− s2)
2H


∣∣∣∣∣∣∣
− d

2

.

(2.3.13)
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By relation (2.3.7), we have that λε(θ ,s, t)+ e−2θ (t− s)2H = ε +(t− s)2H for every

θ ,s, t > 0. As a consequence, relation (2.3.13) can be written as

E
[

p λε (θ ,s1,t1)
1−y

(e−θ (~Bt1−~Bs1))
p
2 p λε (β ,s2,t2)

1−y
(e−β (~Bt2−~Bs2))

p
2

]
≤C(λε(θ ,s1, t1)λε(β ,s2, t2))−

d p
4 + d

2

×
(

ε
2 + ε((t1− s1)

2H +(t2− s2)
2H)+(t1− s1)

2H(t2− s2)
2H− e−2β−2θ

µ
2
)− d

2

≤C(λε(θ ,s1, t1)λε(β ,s2, t2))−
d p
4 + d

2 Θε(s2− s1, t1− s1, t2− s2)
− d

2 ,

(2.3.14)

where Θε(x,u1,u2) is defined by (2.1.26). From (2.3.7), (2.3.12) and (2.3.14), it follows

that

‖Zε‖2
Lp(Ω) ≤C

∫
R2
+

∫
S 2

T1,T2

e−2θ−2β
µ(s2− s1, t1− s1, t2− s2)

2

× ((ε +(1− e−2θ )(t1− s1)
2H)(ε +(1− e−2β )(t2− s2)

2H))−1− d
2+

d
p

×Θε(s2− s1, t1− s1, t2− s2)
− d

p ds1dt1ds2dt2dθdβ . (2.3.15)

Changing the coordinates (s1, t1,s2, t2) by (s1,x := s2− s1,u1 := t1− s1,u2 := t2− s2)

in (2.3.15), we get

‖Zε‖2
Lp(Ω) ≤ 2C

∫
R2
+

e−2θ−2β

∫
[0,T2]3

∫ (T2−u1)+∧(T2−x−u2)+

(T1−u1)+∨(T1−x−u2)+
ds1

×µ(x,u1,u2)
2((ε +(1− e−2θ )u2H

1 )(ε +(1− e−2β )u2H
2 ))−1− d

2+
d
p

×Θε(x,u1,u2)
− d

p dxdu1du2dθdβ .
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Integrating the variable s1, and making the change of variables η := 1− e−2θ , and

ξ := 1− e−2β , we deduce that there exists a constant C > 0, such that

‖Zε‖2
Lp(Ω) ≤C(T2−T1)

∫
[0,T2]3

µ(x,u1,u2)
2
Θε(x,u1,u2)

− d
p

×
∫
[0,1]2

((ε +ηu2H
1 )(ε +ξ u2H

2 ))−1− d
2+

d
p dηdξ dxdu1du2. (2.3.16)

Changing the coordinates (x,u1,u2) by (ε−
1

2H x,ε−
1

2H u1,ε
− 1

2H u2) in (2.3.16), and using

the fact that Θε(ε
− 1

2H x,ε−
1

2H u1,ε
− 1

2H u2) = ε2Θ1(x,u1,u2), we get

∥∥∥ε
d
2−

3
4H Zε

∥∥∥2

Lp(Ω)
≤C(T2−T1)

∫
R3
+

µ(x,u1,u2)
2
Θ1(x,u1,u2)

− d
p

×
∫
[0,1]2

((1+ηu2H
1 )(1+ξ u2H

2 ))−1− d
2+

d
p dηdξ dxdu1du2.

Integrating the variables η and ξ , we obtain

∥∥∥ε
d
2−

3
4H Zε

∥∥∥2

Lp(Ω)
≤C(1+

d
2
− d

p
)(T2−T1)

∫
R3
+

µ(x,u1,u2)
2

u2H
1 u2H

2
Θ1(x,u1,u2)

− d
p

× (1− (1+u2H
1 )−

d
2+

d
p )(1− (1+u2H

2 )−1− d
2+

d
p )dxdu1du2.

Hence, choosing p > 2, we deduce that there exists a constant C only depending on

H,d and p, such that

∥∥∥ε
d
2−

3
4H Zε

∥∥∥2

Lp(Ω)
≤C(T2−T1)

∫
R3
+

µ(x,u1,u2)
2

u2H
1 u2H

2
Θ1(x,u1,u2)

− d
p dxdu1du2. (2.3.17)

Since Hd > 3
2 , we can choose p so that 2 < p < 4Hd

3 . For this choice of p, the integral

in the right-hand side of (2.3.17) is finite by Lemma 2.4.3. Therefore, from (2.3.17),

it follows that there exists a constant C > 0, independent of T1,T2 and ε , such that
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∥∥∥ε
d
2−

3
4H Zε

∥∥∥2

Lp(Ω)
≤C(T2−T1), which in turn implies that

E
[∣∣∣ε d

2−
3

4H Zε

∣∣∣p]≤C(T2−T1)
p
2 . (2.3.18)

Relation (2.3.2) then follows from (2.3.18). This finishes the proof of Theorem 2.0.2.

Proof of Theorem 2.0.3

Now we proceed with the proof of Theorem 2.0.3, in which we will prove (2.0.5) and

(2.0.7) in the case H > 3
4 . In order to prove (2.0.5), it suffices to show that for every

T > 0,

ε
d
2−

3
2H +1(Iε

T −E [Iε
T ]− J2(Iε

T ))
L2(Ω)→ 0, (2.3.19)

and

ε
d
2−

3
2H +1J2(Iε

T )
L2(Ω)→ −Λ

d

∑
j=1

X j
T , (2.3.20)

as ε → 0. Relation (2.3.19) follows from Lemma 2.2.2. In order to prove the conver-

gence (2.3.20) we proceed as follows. Using (2.1.4), we can easily check that

J2(Iε
T ) =−

(2π)−
d
2

2

d

∑
j=1

∫ T

0

∫ T−u

0
(ε +u2H)−

d
2−1u2HH2

(
B( j)

s+u−B( j)
s

uH

)
dsdu.
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Making the change of variable v := ε−
1

2H u, we get

ε
d
2−

3
2H +1J2(Iε

T ) =−
(2π)−

d
2

2

d

∑
j=1

∫
ε
− 1

2H T

0

∫ T−ε
1

2H v

0
(1+ v2H)−

d
2−1v2H

ε
1− 1

H H2

B( j)

s+ε
1

2H v
−B( j)

s
√

εvH

dv

=−(2π)−
d
2

2

d

∑
j=1

∫
ε
− 1

2H T

0
(1+u2H)−

d
2−1u2I2(ϕ

ε
1

2H u

j,T−ε
1

2H u
)du, (2.3.21)

where the kernel ϕε
1

2H u

j,T−ε
1

2H u
is defined by (1.2.7). From (2.3.21), it follows that for every

ε,η > 0,

E
[
ε

d
2−

3
2H−1J2(Iε

T )η
d
2−

3
2H−1J2(I

η

T )
]

=
(2π)−d

2

d

∑
j=1

∫
ε
− 1

2H T

0

∫
η
− 1

2H T

0
(1+u2H

1 )−
d
2−1(1+u2H

2 )−
d
2−1

× (u1u2)
2
〈

ϕ
ε

1
2H u1

j,T−ε
1

2H u1

,ϕη
1

2H u2

j,T−η
1

2H u1

〉
(Hd)⊗2

du1du2.

(2.3.22)

By (1.2.8),

lim
ε→0

〈
ϕ

ε
1

2H u1

j,T−ε
1

2H u1

,ϕη
1

2H u2

j,T−η
1

2H u1

〉
(Hd)⊗2

= H2(2H−1)2
∫
[0,T ]2
|s1− s2|4H−4 ds1ds2

=
H2(2H−1)

4H−3
T 4H−2. (2.3.23)

On the other hand, by (1.2.9), there exists a constant CH,T > 0, only depending on H

and T , such that

0≤
〈

ϕ
ε

1
2H u1

j,T−ε
1

2H u1

,ϕη
1

2H u2

j,T−η
1

2H u1

〉
(Hd)⊗2

≤CH,K.
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Hence, using the pointwise convergence (2.3.23), we can apply the dominated conver-

gence theorem to (2.3.22), in order to obtain

lim
ε,ν→0

E
[
ε

d
2−

3
2H−1J2(Iε

T )η
d
2−

3
2H−1J2(I

η

T )
]
=

d(2π)−dΛ2H2(2H−1)T 4H−2

2(4H−3)
,

where the constant Λ is defined by (2.0.6). From the previous identity, it follows that

ε
d
2−

3
2H−1J2(Iε

T ) converges to some h̃T ∈ (Hd)⊗2, as ε → 0.

Recall that the element π
j

T ∈ (Hd)⊗d , is defined as the limit in (Hd)⊗2, as ε → 0, of

ϕε
j,T , and is characterized by relation (1.2.10). In order to prove (2.3.20), it suffices to

show that h̃T = Λ∑
d
j=1 π

j
T , or equivalently, that

〈
h̃T , f1⊗ f2

〉
(Hd)⊗2

=−Λ

d

∑
j=1

〈
π

j
T , f1⊗ f2

〉
(Hd)⊗2

,

for vectors of step functions with compact support fi = ( f (1)i , . . . , f (d)i ) ∈ Hd , i = 1,2.

By (2.3.21),

lim
ε→0

〈
h̃T , f1⊗ f2

〉
(Hd)⊗2

= lim
ε→0
−(2π)−

d
2

2

∫
ε
− 1

2H T

0
(1+u2H)−

d
2 u2
〈

ϕ
ε

1
2H u

j,T−ε
1

2H u
, f1⊗ f2

〉
(Hd)⊗2

du.

(2.3.24)

Proceeding as in the proof of (2.3.23), we can easily check that

lim
ε→0

〈
ϕ

ε
1

2H u

j,T−ε
1

2H u
, f1⊗ f2

〉
(Hd)⊗2

=−H2(2H−1)2
d

∑
j=1

∫ T

0
∏

i=1,2

∫ T

0
|s−η |2H−2 f ( j)

i (η)dηds.
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Moreover, by (1.2.9),

∣∣∣∣∣
〈

ϕ
ε

1
2H u

j,T−ε
1

2H u
, f1⊗ f2

〉
(Hd)⊗2

∣∣∣∣∣≤
∥∥∥∥ϕ

ε
1

2H u

j,T−ε
1

2H u

∥∥∥∥
(Hd)⊗2

‖ f1‖Hd ‖ f2‖Hd ≤CH,T ‖ f1‖Hd ‖ f2‖Hd ,

for some constant CH,T > 0 only depending on T and H. Therefore, applying the

dominated convergence theorem in (2.3.24), we get

lim
ε→0

〈
h̃T , f1⊗ f2

〉
(Hd)⊗2

=−ΛH2(2H−1)2
d

∑
j=1

∫ T

0
∏

i=1,2

∫ T

0
|s−η |2H−2 f ( j)

i (η)dηds,

(2.3.25)

and from the characterization (1.2.10), we conclude that h̃T =−Λ∑
d
j=1 π

j
T , as required.

This finishes the proof of (2.3.20), which, by (2.3.19), implies that the convergence

(2.0.5).

It only remains to prove (2.0.7). By (2.0.5), it suffices to show the tightness property

for ε
d
2−

3
2H +1(Iε

T −E [Iε
T ]), which, as in the proof of (2.0.2), can be reduced to proving

that there exists p > 2, such that for every 0≤ T1 ≤ T2 ≤ K,

E
[∣∣∣ε d

2−
3

2H +1Zε

∣∣∣p]≤C(T2−T1)
p
2 , (2.3.26)

where Zε is defined by (2.3.3), and C is some constant only depending on d,H,K and

p. Changing the coordinates (x,u1,u2) by (x,ε−
1

2H u1,ε
− 1

2H u2) in (2.3.16), and using

the fact that

Θε(x,ε
1

2H u1,ε
1

2H u2) = ε
2
Θ1(ε

− 1
2H x,u1,u2),
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we can easily check that

∥∥∥ε
d
2−

3
2H +1Zε

∥∥∥2

Lp(Ω)
≤C(T2−T1)

∫
R2
+

∫ T2

0
ε
− 2

H µ(x,ε
1

2H u1,ε
1

2H u2)
2

×Θ1(ε
− 1

2H x,u1,u2)
− d

p

∫
[0,1]2

((1+ηu2H
1 )(1+ξ u2H

2 ))−1− d
2+

d
p dηdξ dxdu1du2,

and hence, if p > 2, we obtain

∥∥∥ε
d
2−

3
2H +1Zε

∥∥∥2

Lp(Ω)
≤C(T2−T1)

∫
R2
+

∫ T2

0
ε
− 2

H µ(x,ε
1

2H u1,ε
1

2H u2)
2(u1u2)

−2H

×Θ1(ε
− 1

2H x,u1,u2)
− d

p dxdu1du2. (2.3.27)

By Lemma 2.4.4, if T1,T2 ∈ [0,K], for some K > 0, the integral in the right-hand side

of the previous inequality is bounded by a constant only depending on H,d, p and K.

Relation (2.3.26) then follows from (2.3.27). This finishes the proof of the tightness

property for ε
d
2−

3
2H +1(Iε

T −E [Iε
T ]) in the case H > 3

4 .

Proof of Theorem 2.0.4

Finally we prove Theorem 2.0.4. First we show the convergence of the finite dimen-

sional distributions, namely, that for every r ∈ N and T1, . . . ,Tr ≥ 0 fixed, it holds

ε
d
2−1√

log(1/ε)

(
(Iε

T1
, . . . , Iε

Tr
)−E

[
(Iε

T1
, . . . , Iε

Tr
)
]) Law→ ρ(WT1, . . . ,WTr), (2.3.28)

where ρ is defined by (2.2.52). Consider the random variable J̃ε
T introduced in (2.2.41).

By Lemma 2.2.3, we have

lim
ε→0

ε
d
2−1√

log(1/ε)

∥∥Iε
T −E [Iε

T ]− I2(hε
2,T )
∥∥

L2(Ω)
= 0, (2.3.29)
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and by Lemma 2.2.4

lim
ε→0

ε
d
2−1√

log(1/ε)

∥∥∥I2(hε
2,T )− J̃ε

T

∥∥∥
L2(Ω)

= 0. (2.3.30)

Consequently,

lim
ε→0

ε
d
2−1√

log(1/ε)

∥∥∥Iε
T −E [Iε

T ]− J̃ε
T

∥∥∥
L2(Ω)

= 0,

and hence, relation (2.3.28) is equivalent to

ε
d
2−1√

log(1/ε)

(
J̃ε

T1
, . . . , J̃ε

Tr

)
Law→ ρ(WT1, . . . ,WTr). (2.3.31)

By the Peccati-Tudor criterion, the convergence (2.3.31) holds provided that J̃ε
t satisfies

the following conditions:

(i) For every 1≤ i, j ≤ r,

εd−2

log(1/ε)
E
[
J̃ε

Ti
J̃ε

Tj

]
→ ρ

2(Ti∧Tj), as ε → 0.

(ii) For all i= 1, . . . ,r, the random variables ε
d
2−1√

log(1/ε)
J̃ε

Ti
converge in law to a centered

Gaussian distribution as ε → 0.

Relation (i) follows from relation (2.3.30), as well as Theorem 2.2.5. Hence, it suffices

to check (ii). To this end, consider the following Riemann sum approximation for J̃ε
T

Rε
T,M :=−

clogε
2
3−

d
2

2M

M2M

∑
k=2

∫ T

0

d

∑
j=1

u(k)
3
2

(1+u(k)
3
2

H2

B( j)

s+ε
2
3 u(k)
−B( j)

s

√
εu(k)

3
4

ds, (2.3.32)
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where clog := (2π)−
d
2

2 and u(k) := k
2M , for k = 2, . . . ,M2M. We will prove that

ε
d
2−1√

log(1/ε)
(Rε

T,M− J̃ε
T )

converges to zero uniformly in ε ∈ (0,1/e), and ε
d
2−1√

log(1/ε)
Rε

T,M
Law→ TN (0, ρ̃2

M) as

ε → 0 for some constant ρ̃2
M satisfying ρ̃2

M → ρ2 as M → ∞. The result will then

follow by a standard approximation argument. We will separate the argument in the

following steps.

Step I

We prove that ε
d
2−1√

log(1/ε)
(Rε

T,M− J̃ε
T )→ 0 in L2(Ω) as M→∞ uniformly in ε ∈ (0,1/e),

namely,

lim
M→∞

sup
ε∈(0,1/e)

ε
d
2−1√

log(1/ε)

∥∥∥Rε
T,M− J̃ε

T

∥∥∥
L2(Ω)

= 0. (2.3.33)

For ε ∈ (0,1/e) fixed, we decompose the term J̃ε
T as

J̃ε
T = J̃ε,M

T,1 + J̃ε,M
T,2 , (2.3.34)

where

J̃ε,M
T,1 :=−clogε

3
2−

d
2

∫ T

0

∫ M

2−M

d

∑
j=1

u
3
2

(1+u
3
2 )

d
2+1

H2

B( j)

s+ε
2
3 u
−B( j)

s

√
εu

3
4

duds
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and

J̃ε,M
T,2 :=−clogε

3
2−

d
2

∫ T

0

∫
∞

0
1(0,2−M)∪(M,∞)(u)

d

∑
j=1

u
3
2

(1+u
3
2 )

d
2+1

H2

B( j)

s+ε
2
3 u
−B( j)

s

√
εu

3
4

duds.

From (2.3.34), we deduce that the relation (2.3.33) is equivalent to

lim
M→∞

sup
ε∈(0,1/e)

ε
d
2−1√

log(1/ε)

∥∥∥Rε
T,M− J̃ε,M

T,1

∥∥∥
L2(Ω)

= 0, (2.3.35)

provided that

lim
M→∞

sup
ε∈(0,1/e)

ε
d
2−1√

log(1/ε)

∥∥∥J̃ε,M
T,2

∥∥∥
L2(Ω)

= 0. (2.3.36)

To prove (2.3.36) we proceed as follows. First we use the relation (2.2.43) to write

εd−2

log(1/ε)

∥∥∥J̃ε,M
T,2

∥∥∥2

L2(Ω)
=

2dc2
log

log(1/ε)

∫
[0,T ]2

∫
[0,ε−

2
3 T ]

∏
i=1,2

1(0,2−M)∪(M,∞)(ui)

×ψ(u1,u2)ε
−8/3

µ(s2− s1,ε
2
3 u1,ε

2
3 u1)

2ds1ds2du1du2,

where ψ(u1,u2) is defined by (2.2.39). Changing the coordinates (s1,s2,u1,u2) by (s :=

s1,x := ε
− 2

3 (s2− s1),u1,u2) when s1 ≤ s2, and by (s := s2,x := ε
− 2

3 (s1− s2),u1,u2)

when s1 ≥ s2, integrating the variable s, and using the identity µ(ε
2
3 x,ε

2
3 u1,ε

2
3 u2)

2 =

ε2µ(x,u1,u2), we get

εd−2

log(1/ε)

∥∥∥J̃ε,M
T,2

∥∥∥2

L2(Ω)
≤

4T dc2
log

log(1/ε)

∫
[0,ε−

2
3 T ]3

∏
i=1,2

1(0,2−M)∪(M,∞)(ui)G
(1)
1,x(u1,u2)dxdu1du2,

(2.3.37)
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where the function G(1)
1,x(u1,u2) is defined by (2.1.14). Define the regions Si by (2.1.31).

Splitting the domain of integration of the right-hand side of (2.3.37) into [0,T ]3 =⋃3
i=1([0,ε

− 2
3 T ]3∩Si), we obtain

εd−2

log(1/ε)

∥∥∥J̃ε,M
T,2

∥∥∥2

L2(Ω)
≤

4T dc2
log

log(1/ε)

3

∑
i=1

∫
[0,ε−

2
3 T ]3

1Si(x,u1,u2)

× ∏
i=1,2

1(0,2−M)∪(M,∞)(ui)G
(1)
1,x(u1,u2)dxdu1du2,

and hence, dropping the normalization term 1
log(1/ε) in the regions S1,S2, we obtain

εd−2

log(1/ε)

∥∥∥J̃ε,M
T,2

∥∥∥2

L2(Ω)
≤

4T dc2
log

log(1/ε)

∫
[0,ε−

2
3 T ]3

1S3(x,u1,u2)

× ∏
i=1,2

1(0,2−M)∪(M,∞)(ui)G
(1)
1,x(u1,u2)dxdu1du2

+4T dc2
log

2

∑
i=1

∫
[0,ε−

2
3 T ]3

1Si(x,u1,u2)

× ∏
i=1,2

1(0,2−M)∪(M,∞)(ui)G
(1)
1,x(u1,u2)dxdu1du2.

The integrands corresponding to i = 1,2 converge pointwise to zero as M→∞, and are

bounded by the functions 1Si(x,u1,u2)G
(1)
1,x(u1,u2), which, by relations (2.1.20) and

(2.1.29), are in turn bounded by

1Si(x,u1,u2)C
µ(x,u1,u2)

2

(u1u2)2H Θ1(x,u1,u2)
− d

2 , (2.3.38)
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for some constant C > 0. In addition, by Lemma 2.4.3, the function (2.3.38) is inte-

grable for i = 1,2, and hence, by the dominated convergence theorem,

limsup
M→∞

sup
ε∈(0,1/e)

εd−2

log(1/ε)

∥∥∥J̃ε,M
T,2

∥∥∥2

L2(Ω)
≤ limsup

M→∞

sup
ε∈(0,1/e)

4T dc2
log

log(1/ε)

∫
[0,ε−

2
3 T ]3

1S3(x,u1,u2)

(2.3.39)

× ∏
i=1,2

1(0,2−M)∪(M,∞)(ui)G
(1)
1,x(u1,u2)dxdu1du2.

On the other hand, by equation (2.4.5) in Lemma 2.4.2, we deduce that there exists a

constant C > 0, such that for every (x,u1,u2) ∈S3,

G(1)
1,x(u1,u2)≤C(x+u1 +u2)

−1(u1u2)
2
ψ(u1,u2). (2.3.40)

Therefore, from (2.3.39) we deduce that

limsup
M→∞

sup
ε∈(0,1/e)

εd−2

log(1/ε)

∥∥∥J̃ε,M
T,2

∥∥∥2

L2(Ω)

≤ limsup
M→∞

sup
ε∈(0,1/e)

4Cdc2
logT

log(1/ε)

∫
ε
− 2

3 T

0

∫
R2
+

∏
i=1,2

1(0,2−M)∪(M,∞)(ui)

× (x+u1 +u2)
−1(u1u2)

2
ψ(u1,u2)du1du2dx,

so that there exists a constant C > 0 such that

limsup
M→∞

sup
ε∈(0,1/e)

εd−2

log(1/ε)

∥∥∥J̃ε,M
T,2

∥∥∥2

L2(Ω)

≤ limsup
M→∞

sup
ε∈(0,1/e)

CT
∫
R2
+

∏
i=1,2

1(0,2−M)∪(M,∞)(ui)ψ(u1,u2)

×

(
log(ε−

2
3 T +u1 +u2)− log(u1 +u2)

log(1/ε)

)
(u1u2)

2du1du2 = 0,
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where the last equality easily follows from the dominated convergence theorem. This

finishes the proof of (2.3.36).

To prove (2.3.35) we proceed as follows. Define the intervals Ik := (k−1
2M , k

2M ]. Then,

we can write Rε
T,M and J̃M

T,1, as

Rε
T,M =−

M2M

∑
k=2

clogε
3
2−

d
2

∫ T

0

∫
R+

d

∑
j=1

1Ik(u)
u(k)

3
2

(1+u(k)
3
2 )

d
2+1

H2

B( j)

s+ε
2
3 u(k)
−B( j)

s

√
εu(k)

3
4

duds,

and

J̃ε,M
T,1 =−

M2M

∑
k=2

clogε
3
2−

d
2

∫ T

0

∫
R+

d

∑
j=1

1Ik(u)
u(k)

3
2

(1+u(k)
3
2 )

d
2+1

H2

B( j)

s+ε
2
3 u
−B( j)

s

√
εu

3
4

duds.

Notice that by (2.2.43),

E

H2

B
s1+ε

2
3 v1
−Bs1

√
εv

3
4
1

H2

B
s1+ε

2
3 v2
−Bs2

√
εv

3
4
2

= 2(v1v2)
− 3

2 µ(ε−
2
3 (s2− s1),v1,v2)

2,

and hence,

εd−2

log(1/ε)

∥∥∥J̃ε,M
T,1 −Rε

T,M

∥∥∥2

L2(Ω)
=

2dc2
log

log(1/ε)

∫
[0,T ]2

∫
R2
+

M2M

∑
k1,k2=2

1Ik1
(u1)1Ik2

(u2)

× ε
− 2

3 AM
k1,k2

(ε−
2
3 (s2− s1),u1,u2)ds1ds2du1du2,

where the function AM
k1,k2

(x,u1,u2) is defined by

AM
k1,k2

(x,u1,u2) :=
(
G(1)

1,x(u1,u2)−G(1)
1,x(u(k1),u2)

−G(1)
1,x(u1,u(k2))+G(1)

1,x(u(k1),u(k2))
)
.
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Changing the coordinates (s1,s2,u1,u2) by (s := s1,x := ε
− 2

3 (s2−s1),u1,u1) in the case

s2 ≥ s1 and by (s := s2,x := ε
− 2

3 (s1− s2),u1,u1) in the case s1 ≥ s2, and integrating the

variable s, we deduce that there exists a constant C > 0, such that

εd−2

log(1/ε)

∥∥∥J̃ε,M
T,1 −Rε

T,M

∥∥∥2

L2(Ω)
≤ CT

log(1/ε)

∫
ε
− 2

3 T

0

∫
R2
+

M2M

∑
k1,k2=2

1Ik1
(u1)1Ik2

(u2)

×
∣∣AM

k1,k2
(x,u1,u2)

∣∣du1du2dx. (2.3.41)

In order to bound the term
∣∣∣AM

k1,k2
(x,u1,u2)

∣∣∣ we proceed as follows. Consider the func-

tion

DM
x (u1,u2) := ψ(u1−2−M,u2−2−M)µ(x,u1 +2−M)2

−ψ(u1 +2−M,u2 +2−M)µ(x,u1−2−M)2,

where ψ(u1,u2) is defined by (2.2.44). By relation (1.2.6), we have that

µ(x,u1,u2) =
3
8

∫ u1

0

∫ x+u2

x
|v1− v2|−

1
2 dv1dv2

=
3u1u2

8

∫
[0,1]2
|x+ v2u2− v1u1|−

1
2 dv1dv2, (2.3.42)

and consequently, µ(x,u1,u2) ≤ µ(x,v1,v2) for every u1 ≤ v1 and u2 ≤ v2. Using this

observation, we can easily show that for every v1 ∈ [u1− 2−M,u1 + 2−M] and v2 ∈

[u2−2−M,u2 +2−M], the following inequality holds

ψ(u1 +2−M,u2 +2−M)−
d
2 µ(x,u1−2−M)2

≤ G(1)
1,x(v1,v2)≤ ψ(u1−2−M,u2−2−M)−

d
2 µ(x,u1 +2−M)2.
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Hence, for every u1 ∈ Ik1 and u2 ∈ Ik2 ,

∣∣AM
k1,k2

(u1,u2)
∣∣≤ 2DM

x (u1,u2). (2.3.43)

Using relations (2.3.41) and (2.3.43), as well as the fact that

M2M

∑
k1,k2=2

1Ik1
(u1)1Ik2

(u2) = 1[2−M ,M]2(u1,u2),

we obtain

εd−2

log(1/ε)

∥∥∥J̃ε,M
T,1 −Rε

T,M

∥∥∥2

L2(Ω)
≤ CT

log(1/ε)

∫
ε
− 2

3 T

0

∫
R2
+

1[2−M ,M]2(u1,u2)DM
x (u1,u2)du1du2dx.

(2.3.44)

To bound the integral in the right-hand side we proceed as follows. Define N := ε
− 2

3 ,

so that log(1/ε) = 3logN
2 . Then, applying L’Hôpital’s rule in (2.3.44), we deduce that

there is a constant C > 0, such that

limsup
ε→0

εd−2

log(1/ε)

∥∥∥J̃ε,M
T,1 −Rε

T,M

∥∥∥2

L2(Ω)

≤ limsup
N→∞

CT
logN

∫ NT

0

∫
R2
+

1[2−M ,M]2(u1,u2)DM
x (u1,u2)du1du2dx

= limsup
N→∞

CT
∫
R2
+

1[2−M ,M]2(u1,u2)NT DM
NT (u1,u2)du1du2.

(2.3.45)

On the other hand, using (2.3.42) and equation (2.4.5) in Lemma 2.4.2, we get that for

every (x,u1,u2) ∈S3,

lim
x→∞

xµ(x,u1,u2)
2 =

32u2
1u2

2
26 , (2.3.46)
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and

xµ(x,u1,u2)
2 ≤ x(x+u1 +u2)

−1(u1u2)
2 ≤ (u1u2)

2.

Hence, by applying the dominated convergence theorem in (2.3.45), we deduce that

there is a constant C > 0, such that

limsup
ε→0

εd−2

log(1/ε)

∥∥∥J̃ε,M
T,1 −Rε

T,M

∥∥∥2

L2(Ω)

≤CT
∫
R2
+

1[2−M ,M]2(u1,u2)

(
ψ(u1−2−M,u2−2−M)((u1 +2−M)(u1 +2−M))2

−ψ(u1 +2−M,u2 +2−M)((u1−2−M)(u1−2−M))2
)

du1du2. (2.3.47)

Let M0 ∈N and δ > 0 be fixed. Using the fact that integrands in (2.3.47) are decreasing

on M and

M02M0

∑
k1,k2=2

1Ik1
(x1)1Ik2

(x2) = 1[2−M0 ,M0]
(x1)1[2−M0 ,M0]

(x2)≤ 1,

we can easily check from the definition of the convergence (2.3.47), that there exists

γ = γ(M0,δ )> 0 such that for every M > M0, the following inequality holds

sup
ε∈(0,γ)

εd−2

log(1/ε)

∥∥∥J̃ε,M
T,1 −Rε

T,M

∥∥∥2

L2(Ω)

≤ δ +CT
∫
R2
+

(
ψ(u1−2−M0,u2−2−M0)((u1 +2−M0)(u1 +2−M0))2

−ψ(u1 +2−M0,u2 +2−M0)((u1−2−M0)(u1−2−M0))2
)
. (2.3.48)
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To handle the term supε∈(γ,1/e)
εd−2

log(1/ε)

∥∥∥J̃ε,M
T,1 −Rε

T,M

∥∥∥2

L2(Ω)
, we use (2.3.44) to get

sup
ε∈(γ,1/e)

εd−2

log(1/ε)

∥∥∥J̃ε,M
T,1 −Rε

T,M

∥∥∥2

L2(Ω)
≤CT

∫
γ
− 2

3 T

0

∫
R2
+

1[2−M ,M]2(u1,u2)DM
x (u1,u2)du1du2dx.

(2.3.49)

From (2.3.48) and (2.3.49), we conclude that there exists a constant C > 0, only de-

pending on T , such that for every M > M0,

sup
ε∈(0,1/e)

εd−2

log(1/ε)

∥∥∥J̃ε,M
T,1 −Rε

T,M

∥∥∥2

L2(Ω)

≤ δ +CT
∫
R2
+

M02M0

∑
k1,k2=2

(
ψ(u1−2−M0,u2−2−M0)((u1 +2−M0)(u1 +2−M0))2

−ψ(u1 +2−M0,u2 +2−M0)((u1−2−M0)(u1−2−M0))2
)

+CT
∫

γ
− 2

3 T

0

∫
R2
+

1[2−M ,M]2(u1,u2)DM
x (u1,u2)du1du2dx.

(2.3.50)

Taking first the limit as M → ∞ and then as M0 → ∞ in (2.3.50), and applying the

dominated convergence theorem, we get

limsup
M→∞

sup
ε∈(0,1)

εd−2

log(1/ε)

∥∥∥J̃ε,M
T,1 −Rε

T,M

∥∥∥2

L2(Ω)
≤ δ .

Relation (2.3.35) is then obtained by taking δ → 0 in the previous inequality.

Step II

Next we prove that

lim
ε→0

εd−2

log(1/ε)
E
[
(Rε

T,M)2]= T ρ̃
2
M, (2.3.51)
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where ρ̃M is given by

ρ̃M =

√
3d

2
d+5

2 π
d
2 2M

M2M

∑
k=2

(1+u(k)
3
2 )−

d
2−1u(k)2, (2.3.52)

and u(k) = k
2M . Notice that in particular, ρ̃2

M satisfies

lim
M→∞

ρ̃
2
M = ρ

2,

where ρ2 is defined by (2.2.52). To prove (2.3.52) we proceed as follows. Recall that

the constant clog is defined by clog = (2π)−
d
2

2 . Then, from the definition of Rε
T,M (see

equation (2.3.32)), it easily follows that

εd−2

log(1/ε)
E
[
(Rε

T,M)2]= 2dc2
log

log(1/ε)22M

∫
[0,T ]2

M2M

∑
k1,k2=2

ε
− 2

3 G(1)

1,ε−
2
3 (s2−s1)

(u(k1),u(k2))ds1ds2.

Changing the coordinates (s1,s2) by (s1,x := s2− s1), and then integrating the variable

s1, we get

εd−2

log(1/ε)
E
[
(Rε

T,M)2]= 4dc2
log

log(1/ε)22M

∫ T

0
T

M2M

∑
k1,k2=2

ε
− 2

3 G(1)

1,ε−
2
3 x
(ε

2
3 u(k1),ε

2
3 u(k2))dx

−
4dc2

log

log(1/ε)22M

∫ T

0
x

M2M

∑
k1,k2=2

ε
− 2

3 G(1)

1,ε−
2
3 x
(ε

2
3 u(k1),ε

2
3 u(k2))dx.

Using relation (2.2.60) as well as the Cauchy-Schwarz inequality µ(x,u1,u2)≤ (u1u2)
3
4 ,

we can easily deduce that there exists a constant C > 0, depending on u1, . . . ,uM2M , but

not on x or ε , such that

G(1)

1,ε−
2
3 x
(u(k1),u(k2))≤Cε

2
3 x−1,
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and hence,

lim
ε→0

1
log(1/ε)

∫ T

0
x

M2M

∑
k1,k2=2

ε
− 2

3 G(1)

1,ε−
2
3 x
(u(k1),u(k2))dx = 0,

which implies that

lim
ε→0

εd−2

log(1/ε)
E
[
(Rε

T,M)2]= lim
ε→0

4dc2
logT

log(1/ε)22M

∫ T

0

M2M

∑
k1,k2=2

ε
− 2

3 G
1,ε−

2
3 x
(u(k1),u(k2))dx

= lim
ε→0

4dc2
logT

log(1/ε)22M

∫
ε
− 2

3 T

0

M2M

∑
k1,k2=2

G1,x(u(k1),u(k2))dx,

where the last equality follows by making the change of variables x̃ := ε
− 2

3 x. Hence,

writing N := ε
− 2

3 , so that log(1/ε) = 2logN
3 , and using L’Hôpital’s rule, we get

lim
ε→0

εd−2

log(1/ε)
E
[
(Rε

T,M)2]= lim
N→∞

8dc2
logT

3logN22M

∫ NT

0

M2M

∑
k1,k2=2

G(1)
1,x(u(k1),u(k2))dx

= lim
N→∞

8dc2
logT

3 ·22M

M2M

∑
k1,k2=2

NT G(1)
1,NT (u(k1),u(k2))dx = ρ̃

2
M,

(2.3.53)

where the last identity follows from (2.1.14) and (2.3.46). This finishes the proof of

(2.3.51).

Step III

Next we prove the convergence in law of ε
d
2−1√

log(1/ε)
J̃ε

T to a Gaussian random variable

with variance ρ2. From Steps I and II, it suffices to show that

Rε
T,M

Law→ N (0, ρ̃2
M), as ε → 0, (2.3.54)
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In order to prove (2.3.54) we proceed as follows. Define the random vector

Dε = (Dε
k)

M2M

k=2 ,

where

Dε
k :=−

clogu(k)
3
2

2M(1+u(k)
3
2 )

d
2+1

d

∑
j=1

1

ε
1
3
√

log(1/ε)

∫ T

0
H2

B( j)

s+ε
2
3 u(k)
−B( j)

s

√
εu(k)

3
4

ds,

and clog =
(2π)−

d
2

2 . Notice that

ε
d
2−1√

log(ε)
Rε

T,M =
M2M

∑
k=2

Dε
k .

We will prove that Dε converges to a centered Gaussian vector. By the Peccati-Tudor

criterion (see [47]), it suffices to prove that the components of the vector Dε converge

to a Gaussian distribution, and the covariance matrix of Dε is convergent. To prove the

former statement, define

Ψ
j
k1,k2

(ε) := E

∫ T

0
H2

B( j)

s1+ε
2
3 u(k1)

−B( j)
s1

√
εu(k1)

3
4

ds1

∫ T

0
H2

B( j)

s2+ε
2
3 u(k2)

−B( j)
s2

√
εu(k2)

3
4

ds2

 .
Proceeding as in the proof of (2.3.53), we can show that for 2≤ k1,k2 ≤M2M,

Ψ
j
k1,k2

(ε) =
2(u(k1)u(k2))

− 3
2

ε
8
3 log(1/ε)

∫
[0,T ]2

µ(s2− s1,ε
2
3 u(k1),ε

2
3 u(k2))

2ds1ds2

=
8(u(k1)u(k2))

− 3
2

3log(ε−
2
3 )

∫
ε
− 2

3 T

0

∫ T−ε
2
3 x

0
µ(x,u(k1),u(k2))

2dsdx.
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As in the proof of (2.3.53), we can use L’Hôpital’s rule, (2.3.46) and the previous

identity, to get

lim
ε→0

Ψ
i, j
n = lim

ε→0

8(u(k1)u(k2))
− 3

2 T

3log(ε−
2
3 )

∫
ε
− 2

3 T

0
µ(x,u(k1),u(k2))

2dsdx =
3
23 T

√
u(k)u( j).

From here, it follows that

lim
ε→0

E
[
Dε

k1
Dε

k2

]
= Σi, j :=

3dT
2d+5πd22M ψ(u(k1),u(k2))(u(k1)u(k2))

2,

namely, the covariance matrix of Dε converges to the matrix Σ = (Σk, j)2≤k, j≤M2M . In

addition, by [11, Equation(1.4)] , for 2 ≤ k ≤ M2M fixed, the sequence of random

variables Dε
k converges to a Gaussian random variable as ε → 0. Therefore, by the

Peccati-tudor criterion, the random vector D converges to a jointly Gaussian vector

Z = (Zk)
M2M

k=2 , with mean zero and covariance Σ. In particular, we have

ε
d
2−1√

log(ε)
Rε

T,M =
M2M

∑
k=2

Dε
k

Law→ N

(
0,

M2M

∑
j,k=2

Σk, j

)
as ε → 0.

Relation (2.3.54) easily follows from the previous identity.

Since (2.3.28) holds, in order to finish the proof of Theorem 2.0.4 it suffices to prove

tightness. As before, we define, for T1 ≤ T2 belonging to a compact interval [0,K] the

random variable Zε by the formula (2.3.3). Then, by the Billingsley criterion, it suffices

to prove that there exist constants C > 0 and p > 2, only depending on K, such that

E

[∣∣∣∣∣ ε
d
2−1√

log(1/ε)
Zε

∣∣∣∣∣
p]
≤C(T2−T1)

p
2 . (2.3.55)
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Using relation (2.3.27) with H = 3
4 , we can easily check that

εd−2

log(1/ε)
‖Zε‖2

Lp(Ω) ≤
C(T2−T1)

log(1/ε)

∫
R2
+

∫ T2

0
ε
− 8

3 µ(x,ε
2
3 u1,ε

2
3 u2)

2(u1u2)
−2H

×Θ1(ε
− 2

3 x,u1,u2)
− d

p dxdu1du2 (2.3.56)

≤ sup
ε∈(0,1/e)

C(T2−T1)

log(1/ε)

∫
R2
+

∫ T2

0
ε
− 8

3 µ(x,ε
2
3 u1,ε

2
3 u2)

2(u1u2)
−2H

×Θ1(ε
− 2

3 x,u1,u2)
− d

p dxdu1du2.

The right-hand side in the previous identity is finite for p > 2 sufficiently small by

Lemma 2.4.5, and hence, there exists a constant p > 2 such that

εd−2

log(1/ε)
E [|Zε |p]≤C(T2−T1)

p
2 .

This finishes the proof of the tightness property for ε
d
2−1√

log(1/ε)
(Iε

T −E
[
Iε
T1

]
). The proof

of Theorem 2.0.4 is now complete.

2.4 Technical lemmas

In this section we prove some technical lemmas, which where used in the proof of

Theorems 2.0.2, 2.0.3 and 2.0.4.

Lemma 2.4.1. Let s1,s2, t1, t2 ∈R+ be such that s1 ≤ s2, and si ≤ ti for i = 1,2. Denote

by Σ the covariance matrix of (B(1)
t1 −B(1)

s1 ,B(1)
t2 −B(1)

s2 ). Then, there exists a constants

0 < δ < 1 and k > 0, such that the following inequalities hold
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1. If s1 < s2 < t1 < t2,

|Σ| ≥ δ ((a+b)2Hc2H +(b+ c)2Ha2H), (2.4.1)

where a := s2− s1, b := t1− s2 and c := t2− t1.

2. If s1 < s2 < t2 < t1,

|Σ| ≥ δb2H(a2H + c2H), (2.4.2)

where a := s2− s1, b := t2− s2 and c := t1− t2.

3. If s1 < t1 < s2 < t2,

|Σ| ≥ δa2Hc2H , (2.4.3)

where a := t1− s1 and c := t2− s2.

Proof. Relations (2.4.1)-(2.4.3) follow from Lemma B.1. in [29]. The inequalities

(2.4.1) and (2.4.3) where also proved in [23, Lemma 9], but the lower bound given in

this lemma for the case s1 < s2 < t2 < t1 is not correct.

Lemma 2.4.2. There exists a constant k > 0, such that for every s1 < t1 < s2 < t2,

µ(a+b,a,c)≤ kb2H−2ac, (2.4.4)

where a := t1− s1, b := s2− t1 and c := t2− s2. In addition, if H > 1
2 ,

µ(x,u1,u2)≤ k(x+u1 +u2)
2H−2u1u2, (2.4.5)
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where x := s2− s1, u1 := t1− s1 and u2 := t2− s2.

Proof. We can easily check that

µ(a+b,a,c) =
1
2
((a+b+ c)2H +b2H− (b+ c)2H− (a+b)2H),

and hence,

µ(a+b,a,c) = H(2H−1)ac
∫
[0,1]2
|b+av1 + cv2|2H−2 dv1dv2,

Relation (2.4.4) follows by dropping the term av1 + cv2 in the previous integral, while

(2.4.5) follows from the following computation, which is valid for every H > 1
2 ,

µ(a+b,a,c) = H(2H−1)ac
∫
[0,1]2
|b+av1 + cv2|2H−2 dv1dv2

≤ H(2H−1)ac
∫ 1

0
|(a∨b∨ c)v|2H−2 dv

= Hac |a∨b∨ c|2H−2 ≤ H42H−2ac |2a+b+ c|2H−2

= 42H−2H(x+u1 +u2)
2H−2u1u2.

Lemma 2.4.3. Define the functions µ and Θ1 by (2.1.10) and (2.1.26) respectively. Let

3
2d < H < 1, and 0 < p < 4Hd

3 be fixed. Then, the following integral is convergent

∫
Si

µ(x,u1,u2)
2

u2H
1 u2H

2
Θ1(x,u1,u2)

− d
p dxdu1du2 < ∞, (2.4.6)
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for i = 1,2, where the sets Si are defined by (2.1.31). Moreover, if H < 3
4 , then

∫
R3
+

µ(x,u1,u2)
2

u2H
1 u2H

2
Θ1(x,u1,u2)

− d
p dxdu1du2 < ∞. (2.4.7)

Proof. Denote the integrand in (2.4.7) and (2.4.6) by Ψ(x,u1,u2), namely,

Ψ(x,u1,u2) = µ(x,u1,u2)
2(u1u2)

−2H
Θ1(x,u1,u2)

− d
p . (2.4.8)

We can decompose the domain of integration of (2.4.7), as R3
+ =S1∪S2∪S3, where

S1,S2,S3 are defined by (2.1.31). Then, it suffices to show that

∫
Si

Ψ(x,u1,u2)dxdu1du2 < ∞, (2.4.9)

for i = 1,2 provided that 0 < p < 4Hd
3 , and for i = 3, provided that 0 < p < 4Hd

3 and

H < 3
4 . First consider the case i = 1. Changing the coordinates (x,u1,u2) by (a :=

x,b := u1− x,c := x+u2−u1) in (2.4.9) for i = 1, we get

∫
S1

Ψ(x,u1,u2)dxdu1du2 =
∫
R3
+

Ψ(a,a+b,b+ c)dadbdc.

To bound the integral in the right-hand side we proceed as follows. First we notice that

the term µ(a,a+b,b+ c) is given by

µ(a,a+b,b+ c) =
1
2
((a+b+ c)2H +b2H− c2H−a2H).
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By the Cauchy-Schwarz inequality, |µ(a,a+b,b+ c)| ≤ (a+b)H(b+c)H . In addition,

by (2.4.1) there exists a constant δ > 0 such that

(a+b)2H(b+ c)2H−µ(a,a+b,b+ c)2 ≥ δ ((a+b)2Hc2H +(b+ c)2Ha2H). (2.4.10)

As a consequence,

Ψ(a,a+b,b+ c)≤
(
1+(a+b)2H +(b+ c)2H +δ ((a+b)2Hc2H +(b+ c)2Ha2H)

)− d
p .

Hence, we deduce that there exists a constant K > 0 such that the following inequalities

hold

Ψ(a,a+b,b+ c)≤ K
(
1+ c2H + c2Hb2H)− d

p if a≤ b≤ c,

Ψ(a,a+b,b+ c)≤ K
(
1+ c2H + c2Ha2H)− d

p if b≤ a≤ c,

Ψ(a,a+b,b+ c)≤ K
(
1+b2H + c2Hb2H)− d

p if a≤ c≤ b,

Ψ(a,a+b,b+ c)≤ K
(
1+b2H +b2Ha2H)− d

p if c≤ a≤ b,

Ψ(a,a+b,b+ c)≤ K
(
1+a2H + c2Ha2H)− d

p if b≤ c≤ a,

Ψ(a,a+b,b+ c)≤ K
(
1+a2H +b2Ha2H)− d

p if c≤ b≤ a.

Using the condition p < 4Hd
3 , as well as the previous inequalities, we can easily check

that Ψ(a,a+b,b+ c) is integrable in R3
+, which in turn implies that Ψ(x,u1,u2) is in-

tegrable in S1, as required.

Next we consider the case i = 2. Changing the coordinates (x,u1,u2) by (a := x,b :=
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u2,c := u1− x−u2) in (2.4.9) for i = 2, we get

∫
S2

Ψ(x,u1,u2)dxdu1du2 =
∫
R3
+

Ψ(a,a+b+ c,b)dadbdc.

To bound the integral in the right-hand side we proceed as follows. First notice that the

term µ(a,a+b+ c,b) is given by

µ(a,a+b+ c,b) =
1
2
((b+ c)2H +(a+b)2H− c2H−a2H). (2.4.11)

By the Cauchy-Schwarz inequality, |µ(a,a+b+ c,b)| ≤ bH(a+ b+ c)H . In addition,

by (2.4.2), there exists a constant δ > 0 such that

b2H(a+b+ c)2H−µ(a,a+b+ c,b)2 ≥ δb2H(a2H + c2H).

As a consequence,

Ψ(a,a+b+ c,b)≤
(
1+b2H +(a+b+ c)2H +δb2H(a2H + c2H)

)− d
p .

From here it follows that there exists a constant K > 0 such that the following inequal-

ities hold

Ψ(a,a+b+ c,b)≤ K
(
1+ c2H +b2Hc2H)− d

p if a≤ b≤ c,

Ψ(a,a+b+ c,b)≤ K
(
1+b2H +b2Hc2H)− d

p if a≤ c≤ b,

Ψ(a,a+b+ c,b)≤ K
(
1+b2H +b2Ha2H)− d

p if c≤ a≤ b,

Ψ(a,a+b+ c,b)≤ K
(
1+a2H +b2Ha2H)− d

p if c≤ b≤ a. (2.4.12)
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Using the condition p < 4Hd
3 , as well as the previous inequalities, we can easily check

that Ψ(a,a+b+ c,b) is integrable in the region {(a,b,c) ∈ R3
+ | b≥ a∧ c}.

Next we check the integrability of Ψ(a,a+b+ c,b) in {(a,b,c) ∈ R3
+ | b≤ a∧ c}.

Applying the mean value theorem in (2.4.11), we can easily check that

µ(a,a+b+ c,b) =
1
2
(2H(a+ξ1)

2H−1b+2H(c+ξ2)
2H−1b), (2.4.13)

for some ξ1,ξ2 between 0 and b. Therefore, if H < 1
2 , we obtain

µ(a,a+b+ c,b)≤ H(a2H−1 + c2H−1)b, (2.4.14)

which in turn implies that

Ψ(a,a+b+ c,b)≤ H2(a2H−1 + c2H−1)2b2−2H(a+b+ c)−2H(
1+b2H +(a+b+ c)2H +δb2H(a2H + c2H)

)− d
p . (2.4.15)

For the case H ≥ 1
2 , we use (2.4.13), in order to obtain

µ(a,a+b+ c,b)≤ H((a+b)2H−1 +(c+b)2H−1)b,

which in turn implies that

Ψ(a,a+b+ c,b)≤ H2((a+b)2H−1 +(c+b)2H−1)2b2−2H(a+b+ c)−2H(
1+b2H +(a+b+ c)2H +δb2H(a2H + c2H)

)− d
p . (2.4.16)
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From (2.4.15), we deduce that, if H < 1
2 , there exists a constant K > 0 such that

Ψ(a,a+b+ c,b)≤ Ka4H−2b2−2Hc−2H (1+ c2H +b2Hc2H)− d
p if b≤ a≤ c,

Ψ(a,a+b+ c,b)≤ Kc4H−2b2−2Ha−2H (1+a2H +b2Ha2H)− d
p if b≤ c≤ a.

(2.4.17)

In turn, from (2.4.16), it follows that if H ≥ 1
2 , there exists a constant K > 0, such that

Ψ(a,a+b+ c,b)≤ Kc4H−2b2−2H (1+ c2H +b2Hc2H)− d
p if b≤ a≤ c,

Ψ(a,a+b+ c,b)≤ Ka4H−2b2−2H (1+a2H +b2Ha2H)− d
p if b≤ c≤ a.

(2.4.18)

Using the conditions H < 3
4 and p < 4Hd

3 , we can easily check that 2H < Hd
2p , which, by

(2.4.17) and (2.4.18), implies that Ψ(a,a+b+c,b) is integrable in {(a,b,c)∈R3
+ | b≤

a∧ c}. From here it follows that Ψ(a,a + b + c,b) is integrable in R3
+, and hence

Ψ(x,u1,u2) is integrable in S2, as required.

Finally we consider the case i = 3 for H < 3
4 . Changing the coordinates (x,u1,u2)

by (a := u1,b := x−u1,c := u2) in (2.4.9) for i = 3, we get

∫
S3

Ψ(x,u1,u2)dxdu1du2 =
∫
R3

Ψ(a+b,a,c)dadbdc.

To bound the integral in the right-hand side we proceed as follows. First we notice that

the term µ(a+b,a,c) is given by

µ(a+b,a,c) =
1
2
((a+b+ c)2H +b2H− (b+ c)2H− (a+b)2H). (2.4.19)
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By the Cauchy-Schwarz inequality, µ(a+b,a,c)≤ aHcH . In addition, by (2.4.3), there

exist constants k,δ > 0 such that

a2Hc2H−µ(a+b,a,c)2 ≥ δa2Hc2H , (2.4.20)

and

µ(a+b,a,c)≤ kb2H−2ac. (2.4.21)

From (2.4.20)-(2.4.21), we deduce the following bounds for Ψ

Ψ(a+b,a,c)≤
(
1+a2H + c2H +δa2Hc2H)− d

p , (2.4.22)

Ψ(a+b,a,c)≤ 2Hb4H−4(ac)−2H+2 (1+a2H + c2H +δa2Hc2H)− d
p . (2.4.23)

Using (2.4.22), as well as the condition p < 4Hd
3 , we can easily check that Ψ(a+b,a,c)

is integrable in the region {(a,b,c) ∈ R3
+ | b≤ a∧ c}.

Next we check the integrability of Ψ(a+ b,a,c) in the region {(a,b,c) ∈ R3
+ | b ≥

a∨c}. Since H < 3
4 , from (2.4.23) it follows that there exists a constant C > 0 such that

∫
∞

(a∨c)
Ψ(a+b,a,c)db≤C(ac)−2H+2(a∨ c)4H−3 (1+a2H + c2H +a2Hc2H)− d

p

≤C(ac)
1
2
(
1+a2H + c2H +a2Hc2H)− d

p .

The integrability of Ψ(a+b,a,c) in the region {(a,b,c) ∈R3
+ | b≥ a∨c} then follows

from condition the p < 4Hd
3 .
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Finally, we prove the integrability of Ψ(a+b,a,c) in the regions {(a,b,c)∈R3
+ | a≤

b≤ c} and {(a,b,c)∈R3
+ | c≤ b≤ a}. Let a,b,c≥ 0 be such that a≤ b≤ c. Applying

the mean value theorem to (2.4.19), we can easily show that

µ(a+b,a,c) =
1
2
(ξ 2H−1

1 a−ξ
2H−1
2 a),

for some ξ1 between c+b and a+b+c, and ξ2 between b and a+b. Hence, if H ≤ 1
2 ,

it follows that

|µ(a+b,a,c)| ≤ 1
2
(|ξ1|2H−1 a+ |ξ2|2H−1 a)

≤ 1
2
((c+b)2H−1a+b2H−1a).

From here it follows that there exists a constant C > 0, only depending on H such that

|µ(a+b,a,c)| ≤Cb2H−1a. (2.4.24)

Using inequalities (2.4.20) and (2.4.24), we deduce that there exists a constant K > 0

such that

Ψ(a+b,a,c)≤ Kb4H−2a2−2Hc−2H(1+a2H + c2H +a2Hc2H)−
d
p .

From here, it follows that

Ψ(a+b,a,c)≤ Kb4H−2a2−2Hc−2H(1+a2H + c2H +a2Hc2H)−
d
p . (2.4.25)

Using the condition H ≤ 3
4 , we can easily show that 2H− 2Hd

p ≤
3
2 −

2Hd
p < 0. Hence,

from (2.4.25), we deduce that Ψ(a+b,a,c) is integrable in {(a,b,c)∈R3
+ | a≤ b≤ c}.
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The integrability of Ψ(a+ b,a,c) over the region {(a,b,c) ∈ R3
+ | c ≤ b ≤ a} in the

case H ≤ 1
2 , follows from a similar argument. To handle the case H > 1

2 , we proceed as

follows. From (2.4.19), we can easily show that for every a,b,c≥ 0 such that a≤ b≤ c,

µ(a+b,a,c) = H(2H−1)ac
∫
[0,1]2

(b+aξ + cη)2H−2dξ dη

≤ H(2H−1)ac
∫ 1

0
(cη)2H−2dη ,

and hence

µ(a+b,a,c)≤ Hac2H−1.

From here it follows that

Ψ(a+b,a,c)≤ a2−2Hc2H−2(1+a2H + c2H +a2Hc2H)−
d
p .

Using the condition p < 4Hd
3 , we deduce that Ψ(a+b,a,c) is integrable in {(a,b,c) ∈

R3
+ | a≤ b≤ c}. The integrability of Ψ(a+b,a,c) over the region {(a,b,c)∈R3

+ | c≤

b≤ a} in the case H > 1
2 , follows from a similar argument. From the previous analysis

it follows that Ψ(a+b,a,c) is integrable in R3
+, and hence Ψ(x,u1,u2) is integrable in

S3, as required. The proof is now complete.

Following similar arguments to those presented in the proof of Lemma 2.4.3, we

can prove the following result
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Lemma 2.4.4. Let the functions µ and Θ1 be defined by (2.1.10) and (2.1.26) respec-

tively. Then, for every 3
4 < H < 1 and 0 < p < 4Hd

3 ,

sup
ε∈(0,1)

∫
R2
+

∫ T

0
ε
− 2

H
µ(x,ε

1
2H u1,ε

1
2H u2)

2

u2H
1 u2H

2
Θ1(ε

− 1
2H x,u1,u2)

− d
p dxdu1du2 < ∞. (2.4.26)

Proof. Denote by κε(x,u1,u2) the function

κε(x,u1,u2) := ε
− 2

H µ(x,ε
1

2H u1,ε
1

2H u2)
2(u1u2)

−2H
Θ1(ε

− 1
2H x,u1,u2)

− d
p .

To prove (2.4.26), it suffices to show that

sup
ε∈(0,1)

∫
R2
+

∫ T

0
1Si(x,ε

1
2H u1,ε

1
2H u2)κε(x,u1,u2)dxdu1du2 < ∞, (2.4.27)

for i = 1,2,3. To prove (2.4.27) in the case i = 1,2, we make the change of variable

x̂ := ε−
1

2H x, in order to get

∫
R2
+

∫ T

0
1Si(x,ε

1
2H u1,ε

1
2H u2)κε(x,u1,u2)dxdu1du2

= ε
− 3

2H +2
∫
R2
+

∫
ε
− 1

2H T

0
1Si(x̂,u1,u2)Ψ(x̂,u1,u2)dx̂du1du2,

where Ψ is defined by (2.4.8). Hence,

∫
R2
+

∫ T

0
1Si(x,ε

1
2H u1,ε

1
2H u2)κε(x,u1,u2)dxdu1du2 ≤

∫
Si

Ψ(x,u1,u2)dxdu1du2.

(2.4.28)

In Lemma 2.4.3, we proved that
∫
S1

Ψ(x,u1,u2)dxdu1du2 < ∞, provided that p < 4Hd
3 .

To handle the case i = 2, we change the coordinates (x,u1,u2) by (a := x,b := u2,c :=
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u1− x−u2), in order to get

∫
S2

Ψ(x,u1,u2)dxdu1du2 =
∫
R3
+

Ψ(a,a+b+ c,b)dadbdc.

By (2.4.12), Ψ(a,a+b+ c,b) is integrable in {(a,b,c) ∈ R3
+ | b≥ a∧ c}. In addition,

since 2H − 1
2 ≤

3
2 < Hd, by (2.4.18), Ψ(a,a + b + c,b) is integrable in {(a,b,c) ∈

R3
+ | b≤ a∧c}, and hence, Ψ(x,u1,u2) is integrable in S2, as required. It then remains

to prove (2.4.27) in the case i = 3. Using (1.2.6), we can easily check that for every

(x,v1,v2) ∈S3,

|µ(x,v1,v2)|=
∣∣∣〈1[0,v1],1[x,x+v2]

〉
Hd

∣∣∣
= H(2H−1)v1v2

∫
[0,1]2
|x+ v2w2− v1w1|2H−2 dw1dw2

≤ H(2H−1)v1v2

∫
[0,1]2
|x− xw1|2H−2 dw1dw2,

and hence, there exists a constant C > 0 only depending on H, such that for every

(x,v1,v2) ∈S3,

|µ(x,v1,v2)| ≤Cv1v2x2H−2. (2.4.29)

On the other hand, for every (x,ε
1

2H u1,ε
1

2H u2) ∈S3, it holds (ε−
1

2H x,u1,u2) ∈S3, and

hence, by (2.4.20),

Θ1(ε
− 1

2H x,u1,u2)≥ δu2H
1 u2H

2 (2.4.30)
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By (2.4.29) and (2.4.30), we obtain

κε(x,u1,u2)≤C(u1u2)
2−2Hx4H−4(1+u2H

1 +u2H
2 +u2H

1 u2H
2 )−

d
p , (2.4.31)

for some constant C > 0, and hence,

∫
R2
+

∫ T

0
1S3(x,ε

1
2H u1,ε

1
2H u2)κε(x,u1,u2)dxdu1du2

≤
∫
R2
+

∫ T

0
(u1u2)

2−2Hx4H−4(1+u2H
1 +u2H

2 +u2H
1 u2H

2 )−
d
p dxdu1du2.

Since H > 3
4 , then 3−2H < 3

2 < Hd, and hence, the integral in the right-hand side of

the previous identity is finite, which implies that (2.4.27) holds for i = 3, as required.

The proof is now complete.

Lemma 2.4.5. Let d ≥ 3, and T > 0 be fixed. Let the functions µ and Θε be defined

by (2.1.10) and (2.1.26) respectively and and assume that H = 3
4 . Then, for every

0 < p < d,

sup
ε∈(0,1/e)

ε−8/3

log(1/ε)

∫
R2
+

∫ T

0

µ(x,ε
2
3 u1,ε

2
3 u2)

2

(u1u2)
3
2

Θ1(ε
− 2

3 x,u1,u2)
− d

p dxdu1du2 < ∞.

Proof. Denote by κε(x,u1,u2) the function

κε(x,u1,u2) :=
ε−8/3

log(1/ε)
µ(x,ε

2
3 u1,ε

2
3 u2)

2(u1u2)
− 3

2 Θ1(ε
− 2

3 x,u1,u2)
− d

p .

As in Lemma 2.4.4, it suffices to show that

sup
ε∈(0,1)

∫
R2
+

∫ T

0
1Si(x,ε

2
3 u1,ε

2
3 u2)κε(x,u1,u2)dxdu1du2 < ∞, (2.4.32)
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for i = 1,2,3, where the regions Si are defined by (2.1.31). The cases i = 1,2 are

handled similarly to Lemma 2.4.4, so it suffices to prove (2.4.27) in the case i = 3.

Suppose (x,ε
2
3 u1,ε

2
3 u2)∈S3. Then, by Lemma 2.4.2, there exists a constant C > 0,

such that

∣∣∣µ(x,ε 2
3 u1,ε

2
3 u2)

∣∣∣≤Cε
4/3(x+ ε

2
3 u1 + ε

2
3 u2)

− 1
2 u1u2

=Cε(ε−
2
3 x+u1 +u2)

− 1
2 u1u2

In addition, by Lemma 2.4.1 we have that u
3
2
1 u

3
2
2 − µ(ε−

2
3 x,u1,u2)

2 ≥ δ (u1u2)
3
2 , for

some δ > 0. Therefore, we conclude that there exists a constant C > 0, such that

κε(x,u1,u2)≤
ε
− 2

3C2

log(1/ε)
(ε−

2
3 x+u1 +u2)

−1√u1u2

(
1+u

3
2
1 +u

3
2
2 +u

3
2
1 u

3
2
2 −µ(x,u1,u2)

2
)− d

p

≤ ε
− 2

3C2δ
− d

p

log(1/ε)
(ε−

2
3 x+u1 +u2)

−1√u1u2

(
1+u

3
2
1 +u

3
2
2 +u

3
2
1 u

3
2
2

)− d
p

.

Consequently, there exists a constant C > 0, such that

∫
R2
+

∫ T

0
1Si(x,u1,u2)κε(x,u1,u2)dxdu1du2

≤ Cε
− 2

3

log(1/ε)

∫ T

0

∫
R2
+

(ε−
2
3 x+u1 +u2)

−1√u1u2

(
1+u

3
2
1 +u

3
2
2 +u

3
2
1 u

3
2
2

)− d
p

.
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Hence, making the change of variable x̃ := ε
− 2

3 x, we obtain

∫
R2
+

∫ T

0
1Si(x,u1,u2)κε(x,u1,u2)dxdu1du2

≤ C
log(1/ε)

∫
R2
+

∫
ε
− 2

3 T

0
(x+u1 +u2)

−1√u1u2

(
1+u

3
2
1 +u

3
2
2 +u

3
2
1 u

3
2
2

)− d
p

dxdu1du2

=
C

log(1/ε)

∫
R2
+

∫ 1

0
(x+u1 +u2)

−1√u1u2

(
1+u

3
2
1 +u

3
2
2 +u

3
2
1 u

3
2
2

)− d
p

dxdu1du2

+
C

log(1/ε)

∫
R2
+

∫
ε
− 2

3 T

1
(x+u1 +u2)

−1√u1u2

(
1+u

3
2
1 +u

3
2
2 +u

3
2
1 u

3
2
2

)− d
p

dxdu1du2.

(2.4.33)

Applying the inequalities (x+u1+u2)
−1 ≤ (u1+u2)

−1 ≤ 1
2(u1u2)

− 1
2 for x ∈ [0,1], and

(x+u1 +u2)
−1 ≤ x−1 for x ≥ 1, in the first and second terms in the right-hand side of

(2.4.33), and then integrating the variable x, we can show that

∫
R2
+

∫ T

0
1Si(x,u1,u2)κε(x,u1,u2)dxdu1du2 ≤C

∫
R2
+

(
(u1u2)

− 1
2 + 2

3 log(1/ε)+ log(T )
log(1/ε)

)

×
√

u1u2

(
1+u

3
2
1 +u

3
2
2 +u

3
2
1 u

3
2
2

)− d
p

dxdu1du2,

and consequently, for every ε < 1/e,

∫
R2
+

∫ T

0
1Si(x,u1,u2)κε(x,u1,u2)dxdu1du2

≤C
∫
R2
+

(
(u1u2)

− 1
2 + log(T )

)√
u1u2

(
1+u

3
2
1 +u

3
2
2 +u

3
2
1 u

3
2
2

)− d
p

dxdu1du2.

The right-hand side of the previous inequality is finite due to the condition 0 < p < d.

This finishes the proof of (2.4.32).
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Chapter 3

Derivative self-intersection local time for the fractional

Brownian motion

Let B = {Bt}t≥0 be a one-dimensional fractional Brownian motion of Hurst parameter

H ∈ (0,1). Fix T > 0. The self-intersection local time of B, formally defined by

I(y) :=
∫ T

0

∫ t

0
δ (Bt−Bs− y)dsdt,

was first studied by Rosen in [49] in the planar case and it was further investigated

using techniques from Malliavin calculus by Hu and Nualart in [23]. In particular, in

[23] it is proved that for a d-dimensional fractional Brownian motion, I(0) exists in L2

whenever the Hurst parameter H satisfies H < 1
d .

Motivated by spatial integrals with respect to local time, developed by Rogers

and Walsh in [48], Rosen introduced in [50] a formal derivative of I(y), in the one-

dimensional Brownian case, denoted by

α(y) :=
dI
dy

(y) =−
∫ T

0

∫ t

0
δ
′(Bt−Bs− y)dsdt.
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The random variable α := α(0) is called the derivative of the self-intersection local

time at zero, and is equal to the limit in L2 of

αε :=
∫ T

0

∫ t

0
p′ε(Bt−Bs)dsdt, (3.0.1)

where pε(x) := (2πε)−
1
2 e−

x2
2ε . This random variable was subsequently used by Hu

and Nualart [24], to study the asymptotic properties of the third spacial moment of the

Brownian local time. In [34], Markowsky gave an alternative proof of the existence of

such limit by using Wiener chaos expansion.

Jung and Markowsky extended this result in [29] to the case 0 < H < 2
3 and con-

jectured that for the case H > 2
3 , ε−γ(H)αε converges in law to a Gaussian distribu-

tion for some suitable constant γ(H) > 0, and at the critical point H = 2
3 , the variable

log(1/ε)−γαε converges in law to a Gaussian distribution for some γ > 0.

Let N (0,σ2) denote a centered Gaussian random variable with variance σ2. The

primary goal of this paper is to analyze the behavior of the law of αε as ε → 0, when

2
3 < H < 1. We will prove that when 2

3 < H < 1,

ε
3
2−

1
H αε

Law→ N (0,σ2), when ε → 0,

for some constant σ2 that will be specified later (see Theorem 3.3.1). Moreover, we

will prove that for every q ≥ 2 and 2
3 < H < 3

4 , limε→0 Jq [αε ] exists in L2, where Jq

denotes the projection on the q-th Wiener chaos (see Theorem 3.3.2), while in the case

3
4 < H < 4q−3

4q−2 , the chaotic components Jq [αε ] of αε satisfy

ε
1− 3

4H Jq [αε ]
Law→ N (0,σ2

q ), when ε → 0,
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for some constant σ2
q that will be specified later (see Theorem 3.3.3). The proof of the

central limit theorem for ε
3
2−

1
H αε follows easily from estimations of the L2-norm of the

chaotic components of αε , while the proof of the central limit theorem for ε1− 3
4H Jq [αε ]

relies on the multivariate version of the fourth moment theorem (see [44, 47]), as well as

on a continuous version of the Breuer-Major theorem ([7]) proved in [11]. The behavior

of αε in the critical case H = 2
3 , and the behavior of Jq[αε ] in the critical cases H = 2

3 ,

H = 3
4 and H = 4q−3

4q−2 seems more involved and will not be discussed in this paper.

It is surprising to remark that the limit behavior of the chaotic components of αε

is different from that of the whole sequence. This phenomenon was observed, for

instance, in the central limit theorem for the second spatial moment of Brownian local

time increments (see [12]). However, in this case the limit of the whole sequence is a

mixture of Gaussian distributions, whereas in the present paper the normalization of αε

converges to a Gaussian law. In our case, the projection on the first chaos of αε is the

leading term and is responsible for the Gaussian limit of the whole sequence.

The chapter is organized as follows. In Section 3.1 we present some preliminary

results on the fractional Brownian motion and the chaotic decomposition of αε . In

Section 2.2 we compute the asymptotic behavior of the variances of the normalizations

of the chaotic components of αε as ε → 0. The asymptotic behavior of the law of αε

and its chaotic components is presented in section 2.3. Finally, some technical lemmas

are proved in Section 5.
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3.1 Chaos decomposition for the approcimate deriva-

tive self-intersection local time

Proceeding as in [29] (also see [23]), we can determine the chaos decomposition of the

random variable αε defined in (3.0.1) as follows. First we write

αε =
∫ T

0

∫ t

0
αε,s,tdsdt, (3.1.1)

where αε,s,t := p′ε(Bt−Bs). We know that

αε,s,t =
∞

∑
q=1

I2q−1
(

f2q−1,ε,s,t
)
, (3.1.2)

where

f2q−1,ε,s,t(x1, . . . ,x2q−1) := (−1)q
βq(ε +(t− s)2H)−q− 1

2

2q−1

∏
j=1

1[s,t](x j), (3.1.3)

and

βq :=
1

2q− 1
2 (q−1)!

√
π

. (3.1.4)

As a consequence, the random variable αε has the chaos decomposition

αε =
∞

∑
q=1

I2q−1( f2q−1,ε), (3.1.5)

where

f2q−1,ε(x1, . . . ,x2q−1) :=
∫
R

f2q−1,ε,s,t(x1, . . . ,x2q−1)dsdt, (3.1.6)
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and

R := {(s, t) ∈ R2
+ | s≤ t ≤ T}. (3.1.7)

Let T,ε > 0, 2
3 < H < 1, and q ∈ N be fixed. Our first goal is to find the behavior as

ε → 0 of the variances of αε and I2q−1
(

f2q−1,ε
)
. Before addressing this problem, we

will introduce some notation. First notice that

E
[
I2q−1

(
f2q−1,ε

)2
]
= (2q−1)!

∥∥ f2q−1,ε
∥∥2
H⊗(2q−1)

= (2q−1)!
〈∫

R
f2q−1,ε,s1,t1ds1dt1,

∫
R

f2q−1,ε,s2,t2ds2dt2

〉
H⊗(2q−1)

= 2(2q−1)!
∫
S

〈
f2q−1,ε,s1,t1, f2q−1,ε,s2,t2

〉
H⊗(2q−1) ds1ds2dt1dt2,

(3.1.8)

where the set S is defined by

S := {(s1,s2, t1, t2) ∈ [0,T ]4 | s1 ≤ t1, s2 ≤ t2, and s1 ≤ s2}. (3.1.9)

We can write the set S as the union of the sets S1,S2,S3 defined by

S1 := {(s1,s2, t1, t2) ∈ [0,T ]4 | s1 ≤ s2 ≤ t1 ≤ t2}, (3.1.10)

S2 := {(s1,s2, t1, t2) ∈ [0,T ]4 | s1 ≤ s2 ≤ t2 ≤ t1}, (3.1.11)

S3 := {(s1,s2, t1, t2) ∈ [0,T ]4 | s1 ≤ t1 ≤ s2 ≤ t2}. (3.1.12)
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Then, by (3.1.1),

E
[
α

2
ε

]
= E

[(∫
R

αε,s,tdsdt
)2
]

= 2
∫
S
E [αε,s1,t1αε,s2,t2]ds1ds2dt1dt2

=V1(ε)+V2(ε)+V3(ε), (3.1.13)

where

Vi(ε) := 2
∫
Si

E [αε,s1,t1αε,s2,t2 ]ds1ds2dt1dt2, i = 1,2,3. (3.1.14)

Similarly, from (3.1.6) and (3.1.8), taking q = 1, we get

E
[
I1 ( f1,ε)

2
]
=V (1)

1 (ε)+V (1)
2 (ε)+V (1)

3 (ε), (3.1.15)

where

V (1)
i (ε) := 2

∫
Si

〈
f1,ε,s1,t1, f1,ε,s2,t2

〉
H

ds1ds2dt1dt2, i = 1,2,3. (3.1.16)

As a consequence of (3.1.13) and (3.1.15), to determine the behavior of the variances

of αε and I1 ( f1,ε) as ε → 0, it suffices to determine the behavior of Vi(ε) and V (1)
i (ε)

respectively, for i = 1,2,3.

In order to describe the terms
〈

f2q−1,ε,s1,t1 , f2q−1,ε,s2,t2
〉
H⊗(2q−1) , we will introduce

the following notation. For every x,u1,u2 > 0 define

µ(x,u1,u2) := E [Bu1(Bx+u2−Bx)] . (3.1.17)
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We can easily prove that for every s1,s2, t1, t2 ≥ 0, such that s1 ≤ t1, s2 ≤ t2 and s1 ≤ s2,

E [(Bt1−Bs1)(Bt2−Bs2)] = µ(s2− s1, t1− s1, t2− s2). (3.1.18)

Using (3.1.3) and (3.1.18), for every 0≤ s1 ≤ t1, 0≤ s2 ≤ t2 such that s1 ≤ s2, we can

write

〈
f2q−1,ε,s1,t1, f2q−1,ε,s2,t2

〉
H⊗(2q−1) = β

2
q (ε +(t1− s1)

2H)−
1
2−q(ε +(t2− s2)

2H)−
1
2−q

×
〈
1
⊗(2q−1)
[s1,t1]

,1
⊗(2q−1)
[s2,t2]

〉
H⊗(2q−1)

= β
2
q (ε +(t1− s1)

2H)−
1
2−q(ε +(t2− s2)

2H)−
1
2−q

×µ(s2− s1, t1− s1, t2− s2)
2q−1.

Therefore,

〈
f2q−1,ε,s1,t1 , f2q−1,ε,s2,t2

〉
H⊗(2q−1) = β

2
q G(q)

ε,s2−s1
(t1− s1, t2− s2), (3.1.19)

where G(q)
ε,x(u1,u2) is defined by

G(q)
ε,x(u1,u2) :=

(
ε +u2H

1
)− 1

2−q (
ε +u2H

2
)− 1

2−q
µ(x,u1,u2)

2q−1. (3.1.20)

Next we present some useful properties of the functions µ(x,u1,u2) and G(q)
ε,x(u1,u2).

Taking into account that H > 2
3 , we can write the covariance of B as

E [BtBs] = H(2H−1)
∫ t

0

∫ s

0
|v1− v2|2H−2 dv1dv2. (3.1.21)
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In particular, this leads to

µ(x,u1,u2) = H(2H−1)
∫ u1

0

∫ x+u2

x
|v2− v1|2H−2 dv1dv2, (3.1.22)

which implies

G(q)
ε,x(u1,u2)≥ 0 for every ε ≥ 0. (3.1.23)

Using the chaos decomposition (3.1.2), as well as (3.1.19) and (3.1.23), we can check

that for i = 1,2,3, the terms Vi(ε),V
(1)
i (ε), defined by (3.1.14), (3.1.16), satisfy

0≤V (1)
i (ε)≤Vi(ε). (3.1.24)

Further properties for the function G(q)
ε,x(u1,u2) are described in the following lemma.

Lemma 3.1.1. Let G(q)
1,x(u1,u2) be defined by (3.1.20). There exists a constant K > 0,

depending on H and q, such that for all x > 0, and 0 < v1 ≤ w1, 0 < v2 ≤ w2 satisfying

|vi−wi| ≤ 1,

G(q)
1,x(v1,v2)≤ KG(q)

1,x(w1,w2).

Proof. From (3.1.22) it follows that

µ(x,v1,v2)≤ µ(x,w1,w2).

113



As a consequence,

G(q)
1,x(v1,v2) = (1+ v2H

1 )−
1
2−q(1+ v2H

2 )−
1
2−q

µ(x,v1,v2)
2q−1

≤ (1+ v2H
1 )−

1
2−q(1+ v2H

2 )−
1
2−q

µ(x,w1,w2)
2q−1

= G(q)
1,x(w1,w2)

(
(1+w2H

1 )(1+w2H
2 )

(1+ v2H
1 )(1+ v2H

2 )

)q+ 1
2

.

Using condition |vi−wi| ≤ 1, i = 1,2, we get

G(q)
1,x(v1,v2)≤ G(q)

1,x(w1,w2)

(
(1+(v1 +1)2H)(1+(v2 +1)2H)

(1+ v2H
1 )(1+ v2H

2 )

)q+ 1
2

. (3.1.25)

The second factor in the right-hand side of (3.1.25) is uniformly bounded for v1,v2 ≥ 0,

which implies the desired result.

3.2 Behavior of the variances of the approximate deriva-

tive self-intersection local time and its chaotic com-

ponents

The behavior of the variance of αε is described in the following lemma.

Lemma 3.2.1. Let T > 0 and 2
3 < H < 1 be fixed. Then,

lim
ε→0

ε
3− 2

H E
[
α

2
ε

]
= σ

2, (3.2.1)
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where σ2 is defined by

σ
2 :=

T 2H(2H−1)
4Hπ

B
(

1
H
,
3H−2

2H

)2

B(2,2H−1), (3.2.2)

and B(·, ·) denotes the Beta function.

Proof. From (3.1.13) we have

ε
3− 2

H E
[
α

2
ε

]
= ε

3− 2
H V1(ε)+ ε

3− 2
H V2(ε)+ ε

3− 2
H V3(ε),

where V1(ε), V2(ε) and V3(ε) are defined by (3.1.14). By Lemmas 3.4.3 and 3.4.4,

we have limε→0 ε3− 2
H V1(ε) = 0 and ε3− 2

H V2(ε) = 0, respectively. In addition, from

Lemma 3.4.6 we have limε→0 ε3− 2
H V3(ε) = σ2, where σ2 is defined by (3.2.2). This

completes the proof of equation (3.2.1).

The behavior of the variance of the first chaotic component of αε is described by

the following lemma.

Lemma 3.2.2. Let T > 0 be fixed. Define f1,ε as in equation (3.1.6). Then, for every

2
3 < H < 1, we have

lim
ε→0

ε
3− 2

H E
[
I1 ( f1,ε)

2
]
= σ

2, (3.2.3)

where σ2 is given by (3.2.2).

Proof. From (3.1.15) we have

ε
3− 2

H E
[
I1( f1,ε)

2]= ε
3− 2

H V (1)
1 (ε)+ ε

3− 2
H V (1)

2 (ε)+ ε
3− 2

H V (1)
3 (ε),
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where V (1)
1 (ε), V (1)

2 (ε) and V (1)
3 (ε) are defined by (3.1.16). By Lemmas 3.4.3 and

3.4.4, we have limε→0 ε3− 2
H V1(ε) = 0 and ε3− 2

H V2(ε) = 0, respectively. Consequently,

by (3.1.24) we get limε→0 ε3− 2
H V (1)

1 (ε) = 0 and limε→0 ε3− 2
H V (1)

2 (ε) = 0. In addition,

from Lemma 3.4.7, the term V (1)
3 (ε) satisfies limε→0 ε3− 2

H V (1)
3 (ε) = σ2, where σ2 is

given by (3.2.2). This completes the proof of equation (3.2.3).

The behavior of the variance of the chaotic components of αε of order greater than

or equal to two and is described by the following lemma.

Lemma 3.2.3. Let T,ε > 0, 2
3 < H < 1 and q ∈ N, q ≥ 2 be fixed. Define βq, f2q−1,ε ,

and G(q)
ε,x(u1,u2) by (3.1.4), (3.1.6) and (3.1.20) respectively. Then,

1. If 3
4 < H < 4q−3

4q−2 ,

lim
ε→0

ε
2− 3

2H E
[
I2q−1( f2q−1,ε)

2]= σ
2
q , (3.2.4)

where σ2
q is a finite constant given by

σ
2
q := 2(2q−1)!β 2

q T
∫
R3
+

G(q)
1,x(u1,u2)dxdu1du2. (3.2.5)

2. In the case 2
3 < H < 3

4 ,

lim
ε→0

E
[
I2q−1( f2q−1,ε)

2]= σ
2
q, (3.2.6)

where σ
2
q,d is a finite constant given by

σ
2
q,d := 2(2q−1)!β 2

q

∫
S

G(q)
0,s2−s1

(t1− s1, t2− s2)ds1ds2dt1dt2, (3.2.7)

and S is defined by (3.1.9).
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Proof. First we prove (3.2.4) in the case 3
4 < H < 4q−3

4q−2 . By (3.1.8) and (3.1.19),

ε
2− 3

2H E
[
I2q−1( f2q−1,ε)

2]= 2(2q−1)!β 2
q ε

2− 3
2H

∫
S

G(q)
ε,s2−s1

(t1− s1, t2− s2)ds1ds2dt1dt2,

where S is defined by (3.1.9). Therefore, changing the coordinates (s1,s2, t1, t2) by

(ε−
1

2H s1,x := ε−
1

2H (s2− s1),u1 := ε−
1

2H (t1− s1),u2 := ε−
1

2H (t2− s2)), and using the

fact that G
ε,ε

1
2H x

(ε
1

2H u1,ε
1

2H u2) = ε−2G1,x(u1,u2), we get

ε
2− 3

2H E
[
I2q−1( f2q−1,ε)

2]= 2(2q−1)!β 2
q ε

1
2H

∫
R4
+

1
(0,ε−

1
2H T )

(s1 +u1)

×1
(0,ε−

1
2H T )

(s1 + x+u2)G
(q)
1,x(u1,u2)ds1dxdu1du2.

Integrating with respect to the variable s1 we get

ε
2− 3

2H E
[
I2q−1( f2q−1,ε)

2]= 2(2q−1)!β 2
q

∫
R3
+

(T − ε
1

2H (u1∨ (x+u2)))1
(0,ε−

1
2H T )

(u1)

×1
(0,ε−

1
2H T )

(s1 + x+u2)G
(q)
1,x(u1,u2)dxdu1du2. (3.2.8)

From (3.1.23) we deduce that the integrand in the right-hand side of (3.2.8) is positive

and increasing as ε decreases to zero. Therefore, applying the monotone convergence

theorem in relation (3.2.8) we obtain (3.2.4). The constant σ2
q is finite by Lemma 3.4.8.

To prove relation (3.2.6), notice that equations (3.1.8) and (3.1.19) imply that

E
[
I2q−1( f2q−1,ε)

2]= 2(2q−1)!β 2
q

∫
S

G(q)
ε,s2−s1

(t1− s1, t2− s2)ds1ds2dt1dt2. (3.2.9)

Relation (3.2.6) follows by applying the monotone convergence theorem to (3.2.9). To

prove that σq is finite we change the coordinates (s1,s2, t1, t2) by (s1,x := s2− s1,u1 :=
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t1− s1,u2 := t2− s2) in the integral of the right-hand side of (3.2.7), to get

∫
S

G(q)
0,s2−s1

(t1− s1, t2− s2)ds1ds2dt1dt2 ≤
∫
[0,T ]4

G(q)
0,x(u1,u2)ds1dxdu1du2

= T
∫
[0,T ]3

G(q)
0,x(u1,u2)dxdu1du2.

The latter integral is finite by Lemma 3.4.9. Therefore, the constant σ
2
q is finite.

3.3 Limit behavior of the approximate derivative self-

intersection local time and its chaotic components

The next result is a central limit theorem for αε in case 2
3 < H < 1.

Theorem 3.3.1. Let T,ε > 0 and 2
3 < H < 1 be fixed. Then

ε
3
2−

1
H αε

Law→ N (0,σ2), when ε → 0, (3.3.1)

where σ2 is defined by (3.2.2).

Proof. Let f2q−1,ε be defined by (3.1.6). By equation (3.1.5),

ε
3
2−

1
H αε = ε

3
2−

1
H I1 ( f1,ε)+ ε

3
2−

1
H

∞

∑
q=2

I2q−1
(

f2q−1,ε
)
.

By Lemma 3.2.2, the variance of ε
3
2−

1
H I1 ( f1,ε) converges to σ2, where σ2 is defined

by (3.2.2). In addition, combining Lemmas 3.2.1 and 3.2.2, it follows that the term

ε
3
2−

1
H

∞

∑
q=2

I2q−1
(

f2q−1,ε
)
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converges to zero in L2. Then (3.3.1) follows from the fact that ε
3
2−

1
H I1 ( f1,ε) is Gaus-

sian and its variance converges to σ2.

In the next result we describe the asymptotic behavior of the chaotic components of

αε in the case 2
3 < H < 1.

Theorem 3.3.2. Let T,ε > 0 and q ∈ N, q ≥ 2 be fixed. Define f2q−1,ε by (3.1.6). If

2
3 < H < 3

4 , then I2q−1( f2q−1,ε) converges in L2 when ε → 0.

Proof. Define f2q−1,ε,s,t by (3.1.3). For every ε,η > 0 we have

E
[(

I2q−1( f2q−1,ε)− I2q−1( f2q−1,η)
)2
]
= E

[
I2q−1( f2q−1,ε)

2]+E
[
I2q−1( f2q−1,η)

2]
−2E

[
I2q−1( f2q−1,ε)I2q−1( f2q−1,η)

]
.

Define R and S by (3.1.7) and (3.1.9), respectively. Then we have

E
[
I2q−1

(
f2q−1,ε

)
I2q−1

(
f2q−1,η

)]
= (2q−1)!

〈
f2q−1,ε , f2q−1,η

〉
H⊗(2q−1)

= (2q−1)!
〈∫

R
f2q−1,ε,s,tdsdt,

∫
R

f2q−1,η ,s,tdsdt
〉

H⊗(2q−1)

= 2(2q−1)!
∫
S

〈
f2q−1,ε,s1,t1, f2q−1,η ,s2,t2

〉
H⊗(2q−1) ds1ds2dt1dt2.

(3.3.2)

Substituting (3.1.19) into (3.3.2), yields

E
[
I2q−1( f2q−1,ε)I2q−1( f2q−1,η)

]
= 2(2q−1)!β 2

q

∫
S
(ε +(t1− s1)

2H)−
1
2−q(η +(t2− s2)

2H)−
1
2−q

×µ(s2− s1, t1− s1, t2− s2)
2q−1ds1ds2dt1dt2,

(3.3.3)
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The integrand in the right-hand side is nonnegative, decreasing on the variables ε and

η , and converges pointwise to G(q)
0,x(u1,u2) as ε,η → 0, where G(q)

0,x(u1,u2) is defined

by (3.1.23). Hence, by the monotone convergence theorem, as ε,η → 0, the terms

E
[
I2q−1( f2q−1,ε)I2q−1( f2q−1,η)

]
, E
[
I2q−1( f2q−1,ε)

2] and E
[
I2q−1( f2q−1,η)

2] converge

to

2(2q−1)!β 2
q

∫
S

G(q)
0,s2−s1

(t1− s1, t2− s2)ds1ds2dt1dt2. (3.3.4)

The previous quantity is finite thanks to Lemma 3.2.3. From the previous analysis

we conclude that the sequence {I2q−1( f2q−1,εn)}n∈N is Cauchy in L2, for any sequence

{εn}n∈N ⊂ [0,1] such that εn→ 0 as n→ ∞, which implies the desired result.

The next result is a central limit theorem for I2q−1( f2q−1,ε) in the case 3
4 < H <

4q−3
4q−2 .

Theorem 3.3.3. Let T,ε > 0 and q∈N, q≥ 2 be fixed. Define f2q−1,ε by (3.1.6). Then,

for every 3
4 < H < 4q−3

4q−2 we have

ε
1− 3

4H I2q−1( f2q−1,ε)
Law→ N (0,σ2

q ), when ε → 0, (3.3.5)

where σ2
q is the finite constant defined by (3.2.5).

Proof. Define f2q−1,ε,s,t , for 0≤ s≤ t, by (3.1.3) and R by (3.1.7). By (3.1.6),

ε
1− 3

4H I2q−1( f2q−1,ε) = (−1)q
ε

1− 3
4H

∫
R

βq(ε +(t− s)2H)−
1
2−qI2q−1

(
1
⊗(2q−1)
[s,t]

)
dsdt.
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Then, using the self-similarity of the fractional Brownian motion we get

ε
1− 3

4H I2q−1( f2q−1,ε)

Law
= (−1)q

ε
1− 3

4H

∫
R

βq(ε +(t− s)2H)−
1
2−qI2q−1

((√
ε1

ε
− 1

2H [s,t]

)⊗(2q−1)
)

dsdt.

Therefore, changing the coordinates (s, t) by (ε−
1

2H s,ε−
1

2H t) we get

ε
1− 3

4H I2q−1( f2q−1,ε)

Law
= (−1)q

ε
1

4H

∫
ε
− 1

2H R
βq
(
1+(t− s)2H)− 1

2−q
I2q−1

(
1
⊗(2q−1)
[s,t]

)
dsdt

= ε
1

4H

∫
ε
− 1

2H R
I2q−1

(
f2q−1,1,s,t

)
dsdt.

(3.3.6)

Changing the coordinates (s, t) by (s,u := t− s) in (3.3.6), and defining N := ε−
1

2H , we

obtain

ε
1− 3

4H I2q−1( f2q−1,ε)
Law
=

1√
N

∫ NT

0

∫ NT−s

0
I2q−1

(
f2q−1,1,s,s+u

)
duds. (3.3.7)

From (3.3.7) it follows that the convergence (3.3.5) is equivalent to

1√
N

∫ NT

0

∫ NT−s

0
I2q−1

(
f2q−1,1,s,s+u

)
duds Law→ N (0,σ2

q ), as N→ ∞. (3.3.8)

The proof of (3.3.8) will be done in several steps.

Step I

Define the random variable

YN :=
1√
N

∫ NT

0

∫
∞

NT−s
I2q−1

(
f2q−1,1,s,s+u

)
duds.
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First we show that YN converges to zero in L2 as N→ ∞. Notice that

E
[
Y 2

N
]
=

2
N

∫ NT

0

∫ NT

0

∫
∞

NT−s2

∫
∞

NT−s1

1s1≤s2 (3.3.9)

×E
[
I2q−1

(
f2q−1,1,s1,s1+u1

)
I2q−1

(
f2q−1,1,s2,s2+u2

)]
du1du2ds1ds2

=
2(2q−1)!

N

∫ NT

0

∫ NT

0

∫
∞

NT−s2

∫
∞

NT−s1

1s1≤s2

×
〈

f2q−1,1,s1,s1+u1, f2q−1,1,s2,s2+u2

〉
H⊗(2q−1) du1du2ds1ds2. (3.3.10)

Define the function G(q)
1,x(v1,v2), x,v1,v2 ≥ 0, as in (3.1.20). Substituting equation

(3.1.19) in (3.3.10), and changing the order of integration, we get

E
[
Y 2

N
]
=

2(2q−1)!β 2
q

N

∫
∞

0

∫
∞

0

∫ NT

0∨(NT−u2)

∫ NT

0∨(NT−u1)
1s1≤s2

×G(q)
1,s2−s1

(u1,u2)ds1ds2du1du2. (3.3.11)

Changing the coordinates (s1,s2,u1,u2) by (s1,x := s2−s1,u1,u2) in the right hand side

of (3.3.11), we get

E
[
Y 2

N
]
≤

2(2q−1)!β 2
q

N

∫
R3
+

∫ NT

0∨(NT−u1)
G(q)

1,x(u1,u2)ds1dxdu1du2,

and then integrating the s1 variable,

E
[
Y 2

N
]
≤ 2(2q−1)!β 2

q

∫
R3
+

(
T − 0∨ (NT −u1)

N

)
G(q)

1,x(u1,u2)dxdu1du2. (3.3.12)

The integrand in (3.3.12) converges to zero pointwise, and is dominated by the function

2(2q−1)!β 2
q T G(q)

1,x(u1,u2).
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By condition H < 4q−3
4q−2 and Lemma 3.4.8, the function G(q)

1,x(u1,u2) is integrable in R3
+.

Hence, applying the dominated convergence theorem to (3.3.12), we obtain E
[
Y 2

N
]
→ 0,

as N→ ∞ as required.

Step II

Since YN → 0 in L2 as N→ ∞, to prove the convergence (3.3.8) it suffices to show that

the random variable

J2q−1,N :=
1√
N

∫ NT

0

∫
∞

0
I2q−1

(
f2q−1,1,s,s+u

)
duds,

converges in law to a Gaussian distribution with variance σ2
q as N → ∞. For M ∈ N,

M ≥ 1 fixed, consider the following Riemann sum approximation for J2q−1,N

J̃2q−1,M,N :=
1

2M

M2M

∑
k=2

1√
N

∫ NT

0
I2q−1

(
f2q−1,1,s,s+u(k)

)
ds,

where u(k) := k
2M , for k = 2, . . . ,M2M. We will prove that J̃2q−1,M,N → J2q−1,N in L2

as M→ ∞ uniformly in N > 1, and J̃2q−1,M,N →N (0, σ̃2
q,M) as N→ ∞ for some con-

stant σ̃2
q,M satisfying σ̃2

q,M → σ2
q as M→ ∞. The result will then follow by a standard

approximation argument. We will separate the argument in the following steps.

Step III

Next we prove that J̃2q−1,M,N → J2q−1,N in L2 as M→ ∞ uniformly in N > 1, namely,

lim
M→∞

sup
N>1

∥∥∥J2q−1,N− J̃2q−1,M,N

∥∥∥
L2

= 0. (3.3.13)
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For M ∈ N fixed, we decompose the term J2q−1,N as

J2q−1,N = J(1)2q−1,M,N + J(2)2q−1,M,N , (3.3.14)

where

J(1)2q−1,M,N :=
1√
N

∫ NT

0

∫ M

2−M
I2q−1

(
f2q−1,1,s,s+u

)
duds

and

J(2)2q−1,M,N :=
1√
N

∫ NT

0

∫
∞

0
1(0,2−M)∪(M,∞)(u)I2q−1

(
f2q−1,1,s,s+u

)
duds.

From (3.3.14) we deduce that relation (3.3.13) is equivalent to

lim
M→∞

sup
N>1

∥∥∥J(1)2q−1,M,N− J̃2q−1,M,N

∥∥∥
L2

= 0, (3.3.15)

provided that

lim
M→∞

sup
N>1

∥∥∥J(2)2q−1,M,N

∥∥∥
L2

= 0. (3.3.16)

To prove (3.3.16) we proceed as follows. First we write

∥∥∥J(2)2q−1,M,N

∥∥∥2

L2
=

2(2q−1)!
N

∫
R2
+

∫
[0,NT ]2

1(0,2−M)∪(M,∞)(u1)1(0,2−M)∪(M,∞)(u2)

×1{s1≤s2}
〈

f2q−1,1,s1,s1+u1 , f2q−1,1,s2,s2+u2

〉
H⊗(2q−1) ds1ds2du1du2.

(3.3.17)
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Let G(q)
1,x(v1,v2), x,v1,v2 ∈ R+ be defined by (3.1.20). Applying identity (3.1.19) in

(3.3.17), and then changing the coordinates (s1,s2,u1,u2) by (s1,x := s2− s1,u1,u2) in

(3.3.17), we get

∥∥∥J(2)2q−1,M,N

∥∥∥2

L2
≤

2(2q−1)!β 2
q

N

∫
R3
+

∫ NT

0
1(0,2−M)∪(M,∞)(u1)

×1(0,2−M)∪(M,∞)(u2)G
(q)
1,x(u1,u2)ds1dxdu1du2. (3.3.18)

Integrating the variable s1 in (3.3.18) we obtain

∥∥∥J(2)2q−1,M,N

∥∥∥2

L2
≤ 2T (2q−1)!β 2

q

∫
R3
+

1(0,2−M)∪(M,∞)(u2)

×1(0,2−M)∪(M,∞)(u2)G
(q)
1,x(u1,u2)dxdu1du2. (3.3.19)

The integrand is dominated by the function 2(2q− 1)!β 2
q T G(q)

1,x(u1,u2), which is inte-

grable by the condition H < 2q−3
4q−2 , and Lemma 3.4.8. Hence, applying the dominated

convergence theorem to (3.3.19), we get (3.3.16).

To prove (3.3.15) we proceed as follows. For k = 2, . . . ,M2M define the interval

Ik :=
(k−1

2M , k
2M

]
. Notice that J(1)2q−1,M,N and J̃2q−1,M,N can be written, respectively, as

J(1)2q−1,M,N =
1√
N

∫ NT

0

∫
R+

M2M

∑
k=2

I2q−1
(

f2q−1,1,s,s+u
)
1Ik(u)duds, (3.3.20)

and

J̃2q−1,M,N =
1√
N

∫ NT

0

∫
R+

M2M

∑
k=2

I2q−1
(

f2q−1,1,s,s+u(k)
)
1Ik(u)duds. (3.3.21)
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Applying (3.1.19), we can prove that

∥∥∥J(1)2q−1,M,N− J̃2q−1,M,N

∥∥∥2

L2
=

2(2q−1)!β 2
q

N

∫
R2
+

∫
[0,NT ]2

M2M

∑
k1,k2=2

1Ik1
(u1)1Ik2

(u2)

×1{s1≤s2}Θ
(q)
k1,k2

(s2− s1,u1,u2)ds1ds2du1du2, (3.3.22)

where the function Θ
(q)
k1,k2

is defined by

Θ
(q)
k1,k2

(x,u1,u2) :=
(

G(q)
1,x(u1,u2)−G(q)

1,x(u(k1),u2)

−G(q)
1,x(u1,u(k2))+G(q)

1,x(u(k1),u(k2))

)
.

Changing the coordinates (s1,s2,u1,u2) by (s1,x := s2−s1,u1,u2), and then integrating

the s1 variable in (3.3.22), we obtain

∥∥∥J(1)2q−1,M,N− J̃2q−1,M,N

∥∥∥2

L2
= 2(2q−1)!β 2

q

∫
R2
+

∫ NT

0

M2M

∑
k1,k2=2

1Ik1
(u1)1Ik2

(u2)

×
(

T − x
N

)
Θ
(q)
k1,k2

(x,u1,u2)dxdu1du2.

As a consequence,

∥∥∥J(1)2q−1,M,N− J̃2q−1,M,N

∥∥∥2

L2
≤ 2(2q−1)!β 2

q T
∫
R3
+

M2M

∑
k1,k2=2

1Ik1
(u1)1Ik2

(u2)

×Θ
(q)
k1,k2

(x,u1,u2)dxdu1du2.

By the continuity of G1,x(u1,u2), the term

M2M

∑
k1,k2=2

1Ik1
(u1)1Ik2

(u2)Θ
(q)
k1,k2

(x,u1,u2)
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converges to zero as M → ∞. Next we prove that this term is dominated by an inte-

grable function. Let u1 ∈ Ik1 ,u2 ∈ Ik2 be fixed. Notice that ui,u(ki)≤ ui +2−M ≤ ui +1

for i = 1,2. Hence, applying Lemma 3.1.1, we deduce that the terms G(q)
1,x(u1,u2),

G(q)
1,x(u(k1),u2), G(q)

1,x(u1,u(k2)) and G(q)
1,x(u(k1),u(k2)) are bounded by KG(q)

1,x(u1+1,u2+

1), for some constant K > 0 only depending on H and q. As a consequence,

M2M

∑
k1,k2=2

1Ik1
(u1)1Ik2

(u2)Θ
(q)
k1,k2

(x,u1,u2)≤ 4KG(q)
1,x(u1 +1,u2 +1),

for some constant K only depending on H and q. Therefore, the right-hand side of the

previous identity is integrable over x,u1,u2 > 0 due to Lemma 3.4.8, since

∫
R3
+

G(q)
1,x(u1 +1,u2 +1)dxdu1du2 =

∫
[1,∞)2

∫
R+

G(q)
1,x(u1,u2)dxdu1du2

≤
∫
R3
+

G(q)
1,x(u1,u2)dxdu1du2 < ∞. (3.3.23)

This finishes the proof of (3.3.15).

Step IV

Next we prove that

lim
N→∞

E
[
J̃2

2q−1,M,N

]
= σ̃

2
q,M, (3.3.24)

where σ̃2
q,M is the finite constant defined by

σ̃
2
q,M := (2q−1)!β 2

q 21−2MT
M2M

∑
k1,k2=2

∫
∞

0
G(q)

1,x(u(k1),u(k2))dx. (3.3.25)
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In addition, we will prove that σ̃2
q,M satisfies

lim
M→∞

σ̃
2
q,M = σ

2
q , (3.3.26)

where σ2
q is defined by (3.2.5). In order to prove (3.3.24) and (3.3.26) we proceed as

follows. From (3.3.21), we can prove that

E
[
J̃2

2q−1,M,N

]
=
∫
R3
+

QM,N(x,u1,u2)dxdu1du2,

where

QM,N(x,u1,u2) := 2(2q−1)!1[0,NT ](x)β
2
q

M2M

∑
k1,k2=2

(
T − x

N

)
×G(q)

1,x(u(k1),u(k2))1Ik1
(u1)1Ik2

(u2).

Notice that QM,N satisfies

lim
N→∞

QM,N(x,u1,u2) = QM(x,u1,u2), (3.3.27)

where QM is defined by

QM(x,u1,u2) := 2(2q−1)!β 2
q T

M2M

∑
k1,k2=2

G(q)
1,x(u(k1),u(k2))1Ik1

(u1)1Ik2
(u2).

In turn, QM satisfies

lim
M→∞

QM(x,u1,u2) = Q(x,u1,u2), (3.3.28)
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where Q is defined by

Q(x,u1,u2) := 2(2q−1)!β 2
q T G(q)

1,x(u1,u2).

Let x > 0 and 2 ≤ k1,k2 ≤ M2M be fixed, and take ui ∈ Iki , i = 1,2. Since u(ki) ≤

ui+2−M ≤ ui+1, by Lemma 3.1.1, there exists a constant K > 0, only depending on q

and H, such that

G(q)
1,x(u(k1),u(k2))≤ KG(q)

1,x(u1 +1,u2 +1),

As a consequence, there exists a constant K only depending on q,H and T such that

QM,N(x,u1,u2)≤ KG(q)
1,x(u1 +1,u2 +1), (3.3.29)

and, hence,

QM(x,u1,u2)≤ KG(q)
1,x(u1 +1,u2 +1). (3.3.30)

The function G(q)
1,x(u1+1,u2+1) is integrable with respect to the variables x,u1,u2 > 0

thanks to (3.3.23). Hence, taking into account (3.3.27) and (3.3.28), as well as the es-

timates (3.3.29) and (3.3.30), we can apply the dominated convergence theorem twice,

to obtain

lim
M→∞

lim
N→∞

E
[
J̃2

2q−1,M,N

]
= lim

M→∞

∫
R3
+

QM(x,u1,u2)dxdu1du2

=
∫
R3
+

Q(x,u1,u2)dxdu1du2. (3.3.31)
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Equations (3.3.24) and (3.3.26) then follow from (3.3.31).

Step V

Next we prove the convergence in law of J2q−1,N to a Gaussian random variable with

variance σ2
q , which we will denote by N (0,σ2

q ). Let y ∈ R be fixed. Notice that

∣∣P[J2q−1,N ≤ y]−P[N
(
0,σ2

q
)
≤ y]

∣∣≤ sup
N>1

∣∣∣P[J2q−1,N ≤ y
]
−P

[
J̃2q−1,M,N ≤ y

]∣∣∣
+
∣∣∣P[J̃2q−1,M,N ≤ y

]
−P

[
N (0, σ̃2

q,M)≤ y
]∣∣∣

+
∣∣P[N (0, σ̃2

q,M)≤ y
]
−P

[
N (0,σ2

q )≤ y
]∣∣ .

(3.3.32)

Therefore, if we prove that for M > 0 fixed

J̃2q−1,M,N
Law→ N

(
0, σ̃2

q,M
)

as N→ ∞, (3.3.33)

then from (3.3.32) we get

limsup
N→∞

∣∣P[J2q−1,N ≤ y]−P[N (0,σ2
q )≤ y]

∣∣≤ sup
N>1

∣∣∣P[J2q−1,N ≤ y
]
−P

[
J̃2q−1,M,N ≤ y

]∣∣∣
+
∣∣P[N (

0, σ̃2
q,M
)
≤ y
]
−P

[
N
(
0,σ2

q
)
≤ y
]∣∣ ,

(3.3.34)

and hence, from relations (3.3.13), (3.3.26) and (3.3.34), we conclude that

limsup
N→∞

∣∣P[J2
2q−1,N ≤ y]−P[N (0,σ2

q )≤ y]
∣∣= 0, (3.3.35)

130



and the proof will then be complete. Therefore, it suffices to show (3.3.33) for M fixed.

To prove this first we show that the random vector

Z(N) =
(

Z(N)
k

)M2M

k=2
:=
(

1√
N

∫ NT

0
I2q−1

(
f2q−1,1,s,s+u(k)

)
ds
)M2M

k=2

converges to a multivariate Gaussian distribution. By the Peccati-Tudor criterion (see

[47]), it suffices to prove that the components of the vector Z(N) converge to a Gaussian

distribution, and the covariance matrix of Z(N) is convergent.

In order to prove that the covariance matrix of Z(N) is convergent we proceed as

follows. First, for 2≤ j,k ≤M2M, we write

E
[
Z(N)

k Z(N)
j

]
=

1
N

∫
[0,NT ]2

E
[
I2q−1

(
f2q−1,1,s1,s1+u(k)

)
I2q−1

(
f2q−1,1,s2,s2+u( j)

)]
ds1ds2.

Then, using (3.1.19) we get

E
[
Z(N)

k Z(N)
j

]
=

(2q−1)!β 2
q

N

∫
[0,NT ]2

G(q)
1,s2−s1

(u(k),u( j))ds1ds2, (3.3.36)

where in the last equality we used the notation G1,−y(v1,v2) :=G1,y(v2,v1), for y,v1,v2 >

0. Changing the coordinates (s1,s2) by (s1,x := s2− s1) in relation (3.3.36) and inte-

grating the s1, yields

E
[
Z(N)

k Z(N)
j

]
= (2q−1)!β 2

q

∫ NT

−NT

(
T − |x|

N

)
G(q)

1,x(u(k),u( j))dx. (3.3.37)

Finally, applying the monotone convergence theorem in (3.3.37), we get

lim
N→∞

E
[
Z(N)

k Z(N)
j

]
= (2q−1)!β 2

q T
∫
R

G(q)
1,x(u(k),u( j))dx,
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which is clearly finite. Thus, we have proved that the covariance matrix of Z(N) con-

verges to the matrix Σ = (Σk, j)2≤k, j≤M2M , where

Σk, j := T (2q−1)!β 2
q

∫
R

G(q)
1,x(u(k),u( j))dx.

Next, for 2≤ k ≤M2M fixed, we prove the convergence of Z(N)
k to a Gaussian law. By

(3.1.3),

Z(N)
k =

Cq,k√
N

∫ NT

0
I2q−1

(
1
⊗(2q−1)
[s,s+uk]

)
ds,

where Cq,k = (−1)qβq(1+ u2H
k )−

1
2−q. Hence, by the self-similarity of the fractional

Brownian motion we can write

Z(N)
k

Law
=

Cq,k√
N

∫ NT

0
I2q−1

((
uH

k NH
1[ s

Nuk
, s

Nuk
+ 1

N ]

)⊗(2q−1)
)

ds. (3.3.38)

Making the change of variables r := s
Nuk

in the right hand side of (3.3.38), we get

Z(N)
k

Law
= Cq,kuH(2q−1)+1

k

√
N
∫ T

uk

0
I2q−1

((
NH

1[r,r+ 1
N ]

)⊗(2q−1)
)

dr

=Cq,kuH(2q−1)+1
k

√
N
∫ T

uk

0
H2q−1

(
NH(Br+ 1

N
−Br)

)
dr. (3.3.39)

where H2q−1 denotes the Hermite polynomial of degree 2q− 1. The convergence in

law of the right-hand side of (3.3.39) to a centered Gaussian distribution as N → ∞ is

proven in [11], equation (1.3). As a consequence, the components of Z(N) converge to

a Gaussian random variable as N→ ∞. Therefore, by the Peccati-Tudor criterion, Z(N)

132



converges in law to a centered Gaussian distribution with covariance Σ. Hence,

J̃2q−1,M,N =
1

22M

M2M

∑
k=2

Z(N)
k

Law→ N

(
0,

1
22M

M2M

∑
j,k=2

Σk, j

)
as N→ ∞. (3.3.40)

The convergence (3.3.33) follows from (3.3.40) by using the fact that

1
22M

M2M

∑
k, j=2

Σk, j = T (2q−1)!β 2
q 2−2M

M2M

∑
j,k=2

∫
R

G(q)
1,x(u(k),u( j))dx = σ̃q,M.

The proof is now complete.

3.4 Technical lemmas

In this section we prove several technical results that were used to determine the asymp-

totic behavior of the variance of I2q−1
(

f2q−1,ε
)

and αε . In Lemma 3.4.1 we provide

an alternative expression for the terms Vi(ε), i = 1,2,3 defined in (3.1.14). In Lemma

3.4.2 we prove some useful bounds that we will use later to estimate the covariance of

pε(Bt1−Bs1) and pε(Bt2−Bs2), s1 ≤ t1, s2 ≤ t2 and s1 ≤ s2. In Lemmas 3.4.3 and 3.4.4

we estimate the order of V1(ε) and V2(ε) when ε is small, while in Lemmas 3.4.6 and

3.4.7 we determine the exact behavior of V3(ε) and V (1)
3 (ε) as ε→ 0. Finally, we prove

Lemmas 3.4.9 and 3.4.8, which were used in Lemma 3.2.3 to determine the behavior

of the variance of I2q−1
(

f2q−1,ε
)

for q≥ 2.

In what follows, I will denote the identity matrix of dimension 2. In addition, for

every square matrix A of dimension 2, we will denote by |A| its determinant.
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Lemma 3.4.1. Let ε > 0 be fixed. Define S1, S2, S3 by (3.1.10), (3.1.11), (3.1.12)

respectively, and V1(ε), V2(ε), V3(ε) by (3.1.14). Then, for i = 1,2,3, we have

Vi(ε) =
1
π

∫
Si

|εI +Σ|−
3
2 Σ1,2ds1ds2dt1dt2, (3.4.1)

where Σ = (Σi, j)i, j=1,2 is the covariance matrix of (Bt1−Bs1,Bt2−Bs2).

Proof. Let (X ,Y ) be a jointly Gaussian vector with mean zero, covariance Σ=(Σi, j)i, j=1,2,

and density fΣ(x,y). First we prove that for every θ > 0,

E [XY pθ (X)pθ (Y )] = (2π)−1
θ

2 |θ I +Σ|−
3
2 Σ1,2. (3.4.2)

To prove this, notice that

E [XY pθ (X)pθ (Y )] =
∫
R2

xypθ (x)pθ (y) fΣ(x,y)dxdy

= (2π)−2
θ
−1|Σ|−

1
2

∫
R2

xyexp
{
−1

2
(x,y)

(
θ
−1I +Σ

−1)(x,y)T
}

dxdy

= (2π)−1
θ
−1|Σ|−

1
2
∣∣θ−1I +Σ

−1∣∣− 1
2

∫
R2

xy f
Σ̃
(x,y)dxdy, (3.4.3)

where Σ̃ :=
(
θ−1I +Σ−1)−1 and f

Σ̃
(x,y) denotes the density of a Gaussian vector with

mean zero and covariance Σ̃. Clearly, θ−1|Σ|− 1
2 |θ−1I + Σ̃−1|− 1

2 = |θ I +Σ|− 1
2 . Then,

substituting this identity in (3.4.3), we get

E [XY pθ (X)pθ (Y )] = (2π)−1 |θ I +Σ|−
1
2

∫
R2

xy f
Σ̃
(x,y)dxdy

= (2π)−1 |θ I +Σ|−
1
2 Σ̃1,2.
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Taking into account that Σ̃1,2 is given by

Σ̃1,2 = θ
2|θ I +Σ|−1

Σ1,2,

we conclude that

E [XY pθ (X)pθ (Y )] = (2π)−1
θ

2 |θ I +Σ|−
3
2 Σ1,2,

as required. From (3.4.2), we can write

Vi(ε) = 2
∫
Si

E
[
p′ε(Bt1−Bs1)p′ε(Bt2−Bs2)

]
ds1ds2dt1dt2

=
2
ε2

∫
Si

E [(Bt1−Bs1)(Bt2−Bs2)pε(Bt1−Bs1)pε(Bt2−Bs2)]ds1ds2dt1dt2

=
1
π

∫
Si

|εI +Σ|−
3
2 Σ1,2ds1ds2dt1dt2.

This finishes the proof of (3.4.1).

Lemma 3.4.2. Let s1,s2, t1, t2 ∈R+ be such that s1 ≤ s2, and si ≤ ti for i = 1,2. Denote

by Σ the covariance matrix of (Bt1 −Bs1,Bt2 −Bs2). Then, there exists a constant 0 <

δ < 1, such that the following inequalities hold

1. If s1 < s2 < t1 < t2,

|Σ| ≥ δ ((a+b)2Hc2H +(b+ c)2Ha2H), (3.4.4)

where a := s2− s1, b := t1− s2, and c := t2− t1.
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2. If s1 < s2 < t2 < t1,

|Σ| ≥ δb2H(a2H + c2H), (3.4.5)

where a := s2− s1, b := t2− s2, and c := t1− t2.

3. If s1 < t1 < s2 < t2,

|Σ| ≥ δ (t1− s1)
2H(t2− s2)

2H . (3.4.6)

Proof. The result follows from Lemma B.1. in [29]. The inequalities (3.4.4) and (3.4.6)

where also proved in Lemma 9 in [23], but the lower bound given in this lemma for the

case s1 < s2 < t2 < t1 is not correct.

Lemma 3.4.3. Let ε > 0 and define V1(ε) by (3.1.14). Then, for every 2
3 < H < 1 we

have

lim
ε→0

ε
3− 2

H V1(ε) = 0. (3.4.7)

Proof. Changing the coordinates (s1,s2, t1, t2) by (s1,a := s2− s1,b := t1− s2,c := t2−

t1) in (3.4.1), we get

V1(ε)≤
1
π

∫
[0,T ]4
|εI +Σ|−

3
2 Σ1,2ds1dadbdc, (3.4.8)
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where Σ denotes the covariance matrix of (Ba+b,Ba+b+c−Ba), namely,

Σ1,1 = (a+b)2H , (3.4.9)

Σ2,2 = (c+b)2H , (3.4.10)

Σ1,2 =
1
2
((a+b+ c)2H +b2H− c2H−a2H). (3.4.11)

Integrating the s1 variable in (3.4.8) we obtain

V1(ε)≤
T
π

∫
[0,T ]3
|εI +Σ|−

3
2 Σ1,2dadbdc. (3.4.12)

Next we bound the right-hand side of (3.4.12). Applying (3.4.4), (3.4.9), (3.4.10) and

(3.4.11), we get

|εI +Σ|= (ε +Σ1,1)(ε +Σ2,2)−Σ
2
1,2 = ε

2 + εΣ1,1 + εΣ2,2 + |Σ|

≥ δ (ε2 + ε(a+b)2H + ε(b+ c)2H +(a+b)2Hc2H +(b+ c)2Ha2H), (3.4.13)

for some δ > 0 only depending on H. Using the inequality Σ1,2 ≤ (a+b)H(b+c)H , as

well as (3.4.12) and (3.4.13), we deduce that there exists a constant K only depending

on T,H such that

V1(ε)≤ K
∫
[0,T ]3

(a+b)H(b+ c)H

Θε(a,b,c)
3
2

dadbdc, (3.4.14)

where the function Θε is defined by

Θε(a,b,c) := ε
2 + ε(a+b)2H + ε(b+ c)2H + c2H(a+b)2H +a2H(b+ c)2H . (3.4.15)
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By the arithmetic mean-geometric mean inequality, we have

1
2
((a+b)2H +(b+ c)2H)≥ (a+b)H(b+ c)H ,

and
1
2
(c2H(a+b)2H +a2H(b+ c)2H)≥ (a+b)H(b+ c)H(ac)H .

Consequently,

Θε ≥ 2(a+b)H(b+ c)H(ε +(ac)H).

Therefore, by (3.4.14) there exists a constant K > 0 only depending on T and H such

that

V1(ε)≤ K
∫
[0,T ]3

(a+b)−
H
2 (b+ c)−

H
2 (ε +(ac)H)−

3
2 dadbdc

≤ K
∫
[0,T ]3

b−H(ε +(ac)H)−
3
2 dadbdc. (3.4.16)

Let 0 < y < 3H
2 −1 be fixed, and define γ := 2y

3H +1− 2
3H . By the weighted arithmetic

mean-geometric mean inequality, we have

γε +(1− γ)(ac)H ≥ ε
γ(ac)(1−γ)H .

Hence, by (3.4.16), we get

ε
3− 2

H V1(ε)≤ Kε
3− 2

H−
3γ

2

∫
[0,T ]3

b−H(ac)−
3
2 (1−γ)Hdadbdc

= Kε
3
2−

1
H−

y
H

(∫ T

0
b−Hdb

)(∫
[0,T ]2

(ac)−1+ydadc
)
.
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This implies that (3.4.7) holds and the proof of the lemma is complete.

Lemma 3.4.4. Let ε > 0 be fixed. Define V2(ε) by (3.1.14). Then, for every 2
3 < H < 1,

lim
ε→0

ε
3− 2

H V2(ε) = 0. (3.4.17)

Proof. Changing the coordinates (s1,s2, t1, t2) by (s1,a := s2− s1,b := t2− s2,c := t1−

t2) in (3.4.1) for i = 2, and integrating s1, we obtain, as before

V2(ε)≤
T
π

∫
[0,T ]3
|εI +Σ|−

3
2 Σ1,2dadbdc, (3.4.18)

where the matrix Σ is given by

Σ1,1 = (a+b+ c)2H , (3.4.19)

Σ2,2 = b2H , (3.4.20)

Σ1,2 =
1
2
((a+b)2H +(b+ c)2H− c2H−a2H). (3.4.21)

Using relation (3.4.5) in Lemma 3.4.2, as well as (3.4.19) and (3.4.20), we get

|εI +Σ|= (ε +Σ1,1)(ε +Σ2,2)−Σ
2
1,2 = ε

2 + ε(Σ1,1 +Σ2,2)+ |Σ|

≥ ε
2 + ε((a+b+ c)2H +b2H)+δb2H(a2H + c2H). (3.4.22)

From (3.4.18) and (3.4.22) we deduce that there exists a constant K > 0, only depending

on T and H, such that

V2(ε)≤ K
∫
[0,T ]3

Σ1,2

(ε2 + ε(b2H +(a+b+ c)2H)+b2H(a2H + c2H))
3
2

dadbdc. (3.4.23)
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The term Σ1,2 can be written as

Σ1,2 =
1
2
(
(a+b)2H +(b+ c)2H−a2H− c2H)

= Hb
∫ 1

0

(
(a+bv)2H−1 +(c+bv)2H−1)dv,

which implies

Σ1,2 ≤ 2Hb(a+b+ c)2H−1. (3.4.24)

From (3.4.23) and (3.4.24), we deduce that there exists a constant K > 0 only depending

on T and H, such that

V2(ε)≤ K
∫
[0,T ]3

Φε(a,b,c)dadbdc, (3.4.25)

where the function Φε : R3
+→ R+ is defined by

Φε(a,b,c) :=
b(a+b+ c)2H−1

(ε2 + ε(b2H +(a+b+ c)2H)+b2H(a2H + c2H))
3
2
.

We split the domain of integration in the right hand side of (3.4.25) as [0,T ]3 =C1∪C2,

where the sets C1 and C2 are defined by

C1 := {(a,b,c) ∈ [0,T ]3 | b≤ a∨ c},

C2 := {(a,b,c) ∈ [0,T ]3 | b≥ a∨ c}.

Then, to prove that limε→0V2(ε) = 0, it suffices to show that

lim
ε→0

∫
Ci

Φε(a,b,c)dadbdc = 0, (3.4.26)
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for i = 1,2. First we prove (3.4.26) in the case i = 1. Notice that for every (a,b,c)∈C1,

it holds that a+b+ c≤ 3(a∨ c), which, in addition to

ε
2 + ε(b2H +(a+b+ c)2H)+b2H(a2H + c2H)≥ ε(a∨ c)2H +b2H(a∨ c)2H ,

leads to

Φε(a,b,c)≤
32H−1b(a∨ c)−H−1

(ε +b2H)
3
2

.

Therefore, by (3.4.25), we deduce that there exists a constant K > 0 such that

V2(ε)≤ K
(∫

[0,T ]2
(a∨ c)−(H+1)dadc

)(∫ T

0
b(ε +b2H)−

3
2 db
)
. (3.4.27)

The term (a∨ c)−(H+1) is clearly integrable over the region 0≤ a,c≤ T . To bound the

integral over [0,T ] of b(ε +b2H)−
3
2 we proceed as follows. Define y := 3

2 −
1
H . Notice

that 0 < y < 1 due to the condition 2
3 < H < 1. Therefore, by the weighted arithmetic

mean-geometric mean inequality, we have

yε +(1− y)b2H ≥ ε
yb2H(1−y). (3.4.28)

From (3.4.27) and (3.4.28), it follows that there exists a constant K > 0, only depending

on H and T , such that

ε
3− 2

H V2(ε)≤ Kε
3− 2

H−
3y
2

∫ T

0
b1−3H(1−y)db

= Kε
3
4−

1
2H

∫ T

0
b

3H
2 −2db. (3.4.29)
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The integral in the right-hand side of (3.4.29) is finite thanks to the condition H > 2
3 .

Relation (3.4.26), for i = 1, follows by taking limit as ε → 0 in (3.4.29). To prove

(3.4.26) for i = 2 we proceed as follows. Notice that for every (a,b,c) ∈ C2, it holds

a+b+ c≤ 3b, which, in addition to

ε
2 + ε(b2H +(a+b+ c)2H)+b2H(a2H + c2H)≥ εb2H +b2H(a∨ c)2H ,

leads to

Φε(a,b,c)≤ 32H−1b−H(ε +(a∨ c)2H)−
3
2 .

Therefore, by (3.4.25), we deduce that there exists a constant K > 0 such that

V2(ε)≤ K
∫
[0,T ]3

b−H(ε +(a∨ c)2H)−
3
2 dadbdc

=
KT 1−H

1−H

∫
[0,T ]2

(ε +(a∨ c)2H)−
3
2 dadc. (3.4.30)

To bound the integral over [0,T ]2 of (ε +(a∨ c)2H)−
3
2 we proceed as follows. Define

y := 3
2 −

1
H . Notice that 0 < y < 1 due to the condition 2

3 < H < 1. Therefore, by the

weighted arithmetic mean-geometric mean inequality, we have

yε +(1− y)(a∨ c)2H ≥ ε
y(a∨ c)2H(1−y). (3.4.31)

From (3.4.30) and (3.4.31), it follows that there exists a constant K > 0, only depending

on H and T , such that

ε
3− 2

H V2(ε)≤ Kε
3− 2

H−
3y
2

∫
[0,T ]2

(a∨ c)−3H(1−y)db.
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Hence, changing the coordinates (a,c) by (w := a∧ c,z := a∨ c), we get

ε
3− 2

H V2(ε)≤ 2Kε
3− 2

H−
3y
2

∫ T

0
z1−3H(1−y)dz

= 2Kε
3
4−

1
2H

∫ T

0
z

3H
2 −2dz. (3.4.32)

The integral in the right-hand side of (3.4.32) is finite thanks to the condition H > 2
3 .

Relation (3.4.26), for i = 2, follows by taking limit as ε → 0 in (3.4.32). The proof is

now complete.

Lemma 3.4.5. Let c, β , α and γ be real numbers such that c, β > 0, α > −1 and

1+α + γβ < 0. Then we have

∫
∞

0
aα(c+aβ )γda = β

−1c
α+1+βγ

β B
(

α +1
β

,−1+α + γβ

β

)
, (3.4.33)

where B(·, ·) denotes the Beta function.

Proof. Making the change of variables x= aβ in the left-hand side of (3.4.33) we obtain

∫
∞

0
aα(c+aβ )γda = β

−1
∫

∞

0
x

α+1−β

β (c+ x)γdx. (3.4.34)

Hence, making the change of variables a = x
c in the right hand side of (3.4.34) we get

∫
∞

0
aα(c+aβ )γda = β

−1c
α+1+βγ

β

∫
∞

0
a

α+1−β

β (1+a)γda. (3.4.35)

Finally, the change of variables x = a
1+a in the right hand side of (3.4.35) leads to

∫
∞

0
aα(c+aβ )γda = β

−1c
α+1+βγ

β

∫ 1

0
x

α+1−β

β (1− x)−
β+1+α+γβ

β dx, (3.4.36)
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which implies the desired result.

Lemma 3.4.6. Let ε,T > 0, and define V3(ε) by (3.1.14). Then, for every 2
3 < H < 1

we have

lim
ε→0

ε
3− 2

H V3(ε) = σ
2, (3.4.37)

where σ2 is given by (3.2.2).

Proof. Changing the coordinates (x,u1,u2) by (a := u1,b := x−u1,c := u2) in (3.4.1)

for i = 3, we obtain

V3(ε) =
1
π

∫
[0,T ]3

1(0,T )(a+b+ c)(T − (a+b+ c)) |εI +Σ|−
3
2 Σ1,2dadbdc, (3.4.38)

where the matrix Σ is given by

Σ1,1 = a2H ,

Σ2,2 = c2H ,

Σ1,2 =
1
2
((a+b+ c)2H +b2H− (b+ c)2H− (a+b)2H).

We can easily check, as before, that

|εI +Σ|= (ε +Σ1,1)(ε +Σ2,2)−Σ
2
1,2 = ε

2 + ε(Σ1,1 +Σ2,2)+ |Σ|

= ε
2 + ε(a2H + c2H)+a2Hc2H−µ(a+b,a,c)2, (3.4.39)
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where µ is defined by (3.1.17). Changing the coordinates (a,b,c) by (ε−
1

2H a,b,ε−
1

2H c)

in (3.4.38) and using (3.4.39), we obtain

ε
3− 2

H V3(ε) =
1
π

∫
R3
+

1(0,T )(ε
1

2H (a+ c)+b)Ψε(a,b,c)dadbdc, (3.4.40)

where

Ψε(a,b,c) :=
(T −b− ε

1
2H (a+ c))ε−

1
H µ(ε

1
2H a+b,ε

1
2H a,ε

1
2H c)(

1+a2H + c2H +a2Hc2H− ε−2µ(ε
1

2H a+b,ε
1

2H a,ε
1

2H c)2
) 3

2
.

The term µ(x+ y,x,z) can be written as

µ(x+ y,x,z) = H(2H−1)xz
∫
[0,1]2

(y+ xv1 + zv2)
2H−2 dv1dv2, (3.4.41)

which implies

lim
ε→0

Ψε(a,b,c) =
H(2H−1)(T −b)acb2H−2

(1+a2H + c2H +a2Hc2H)
3
2

= H(2H−1)(T −b)b2H−2ac(1+a2H)−
3
2 (1+ c2H)−

3
2 . (3.4.42)

Therefore, provided we show that 1(0,T )(ε
1

2H (a+ c)+ b)Ψε(a,b,c) is dominated by a

function integrable in R3
+, we obtain the following identity by applying the dominated

convergence theorem in (3.4.40)

lim
ε→0

ε
3− 2

H V3(ε) =
H(2H−1)

π

∫
R3
+

1(0,T )(b)(T −b)b2H−2ac((1+a2H)(1+ c2H))−
3
2 dadbdc.

Making the change of variables x= b
T , and using Lemma 3.4.5 we obtain (3.4.37). Next

we show that 1(0,T )(ε
1

2H (a+c)+b)Ψε(a,b,c) is dominated by a function integrable in
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R3
+. Using (3.4.41), we deduce that there exists a constant K > 0 only depending on T

and H such that

Ψε(a,b,c)≤ K
acb2H−2

(1+a2H + c2H +a2Hc2H)
3
2

= Kb2H−2ac(1+a2H)−
3
2 (1+ c2H)−

3
2 .

The right-hand side in the previous relation is integrable in R3
+ thanks to condition

H > 2
3 . The proof is now complete.

Lemma 3.4.7. Let T,ε > 0 be fixed. Define V (1)
3 (ε) by (3.1.16). Then, for every 2

3 <

H < 1 it holds

lim
ε→0

ε
3− 2

H V (1)
3 (ε) = σ

2, (3.4.43)

where σ2 is given by (3.2.2).

Proof. By (3.1.16) and (3.1.19),

V (1)
3 (ε) = (2q−1)!β 2

q

∫
S3

G(q)
ε,s2−s1

(t1− s1, t2− s2), (3.4.44)

where S3 is defined by (3.1.12). Changing the coordinates (s1,s2, t1, t2) by (a := t1−

s1,b := s2− t1,c := t2− s2) in (3.4.44), and using (3.1.20), we obtain

V (1)
3 (ε) =

1
π

∫
R3
+

∫ T−(a+b+c)

0
1(0,T )(a+b+ c)

(
ε +a2H)− 3

2
(
ε + c2H)− 3

2

×µ(a+b,a,c)ds1dadbdc. (3.4.45)
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Then, changing the coordinates (a,b,c) by (ε−
1

2H a,b,ε−
1

2H c), and integrating s1 in

equation (3.4.45), we get

V (1)
3 (ε) =

ε
1
H−3

π

∫
R3
+

(T −b− ε
1

2H (a+ c))1
(0,ε−

1
2H (T−b))

(a+ c)

×
(
1+a2H)− 3

2
(
1+ c2H)− 3

2 µ(ε
1

2H a+b,ε
1

2H a,ε
1

2H c)dadbdc.

Next, using the identity

µ(x+ y,x,z) = H(2H−1)xz
∫
[0,1]2

(y+ xv1 + zv2)
2H−2dv1dv2,

we get

ε
3− 2

H V (1)
3 (ε) =

H(2H−1)
π

∫ T

0

∫
R2
+

∫
[0,1]2

1
(0,ε−

1
2H (T−b))

(a+ c)(T −b− ε
1

2H (a+ c))

× (1+a2H)−
3
2 (1+ c2H)−

3
2 ac(b+ ε

1
2H (av1 + cv2))

2H−2dv1dv2dadcdb.

(3.4.46)

Notice that the argument of the integral in the right-hand side of (3.4.46) is dominated

by the function

Θ(a,b,c,v1,v2) :=
T H(2H−1)

π
(1+a2H)−

3
2 (1+ c2H)−

3
2 acb2H−2.

The integral
∫ T

0
∫
R2
+

∫
[0,1]2 Θ(a,b,c,v1,v2)dv1dv2dadcdb is finite thanks to condition H >

2
3 . Therefore, applying the dominated convergence theorem to (3.4.46), we get

lim
ε→0

ε
3− 2

H V (1)
3 (ε) =

H(2H−1)
π

∫ T

0

∫
R2
+

(T −b)(1+a2H)−
3
2 (1+ c2H)−

3
2 acb2H−2dadcdb

=
H(2H−1)

π

(∫ T

0
(T −b)b2H−2db

)(∫
∞

0
a(1+a2H)−

3
2 da
)2

.
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Making the change of variables x = b
T , and using Lemma 3.4.5 we obtain (3.4.43).

Lemma 3.4.8. Let T > 0 and q ∈ N, q ≥ 2 be fixed. Define G(q)
1,x(u1,u2) by (3.1.20).

Then, for every 3
4 < H < 4q−3

4q−2 , it holds that

∫
R3
+

G(q)
1,x(u1,u2)dxdu1du2 < ∞. (3.4.47)

Proof. Let T > 0, and q ∈ N be fixed, and define the sets

T1 := {(x,u1,u2) ∈ R3
+ | u1− x≥ 0, x+u2−u1 ≥ 0},

T2 := {(x,u1,u2) ∈ R3
+ | u1− x−u2 ≥ 0},

T3 := {(x,u1,u2) ∈ R3
+ | x−u1 ≥ 0}.

Since R3
+ = T1∪T2∪T3, it suffices to prove that G(q)

1,x(u1,u2) is integrable in Ti, for

i = 1,2,3.

To prove the integrability of G(q)
1,x(u1,u2) in T1 we change the coordinates (x,u1,u2)

by (a := x,b := u1− x,c := x+u2−u1). Then,

∫
T1

G(q)
1,x(u1,u2)dxdu1du2 =

∫
R3
+

G(q)
1,a(a+b,b+ c)dadbdc. (3.4.48)

Next we prove that the right hand of (3.4.48) is finite. Notice that

G(q)
1,a(a+b,b+ c) = (1+(a+b)2H)−

1
2−q(1+(b+ c)2H)−

1
2−q

µ(a,a+b,b+ c)2q−1.

By the Cauchy-Schwarz inequality, we get

µ(a,a+b,b+ c)≤ (a+b)H(b+ c)H ≤
√

(1+(a+b)2H)(1+(b+ c)2H),
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and consequently,

G(q)
1,a(a+b,b+ c)≤ (1+(a+b)2H)−1(1+(b+ c)2H)−1.

Hence, using the inequalities 2
3a+ 1

3b≥ a
2
3 b

1
3 and 2

3c+ 1
3b≥ c

2
3 b

1
3 , we deduce that there

exists a constant K only depending on T and H such that the following bounds hold

G(q)
1,a(a+b,b+ c)≤ K(abc)−

4H
3 if a,b,c≥ 1,

G(q)
1,a(a+b,b+ c)≤ K(1+b2H)−1(1+ c2H)−1 if a≤ 1,

G(q)
1,a(a+b,b+ c)≤ K(1+b2H)−1(1+a2H)−1 if c≤ 1,

G(q)
1,a(a+b,b+ c)≤ K(1+a2H)−1(1+ c2H)−1 if b≤ 1.

Using the previous bounds, as well as condition H > 3
4 , we deduce that G(q)

1,a(a+b,b+c)

is integrable in the variables a,b,c≥ 0.

To prove the integrability of G(q)
1,x(u1,u2) in T2 we change the coordinates (x,u1,u2)

by (a := x,b := u2,c := u1− x−u2). Then,

∫
T2

G(q)
1,x(u1,u2)dxdu1du2 =

∫
R3
+

G(q)
1,a(a+b+ c,b)dadbdc.

Next we prove that G(q)
1,a(a+ b+ c,b) is integrable in the variables a,b,c ≥ 0. Notice

that

G(q)
1,a(a+b+ c,b) = (1+(a+b+ c)2H)−

1
2−q(1+b2H)−

1
2−q

µ(a,a+b+ c,b)2q−1.

(3.4.49)
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Using inequality

µ(a,a+b+ c,b)≤ (a+b+ c)HbH ≤
√

(1+(a+b+ c)2H)(1+b2H), (3.4.50)

as well as the condition q≥ 2, we obtain

µ(a,a+b+ c,b)2q−1 = µ(a,a+b+ c,b)3
µ(a,a+b+ c,b)2(q−2)

≤ µ(a,a+b+ c,b)3(1+(a+b+ c)2H)q−2(1+b2H)q−2,

which, by (3.4.49), leads to

G(q)
1,a(a+b+ c,b)≤ (1+(a+b+ c)2H)−

5
2 (1+b2H)−

5
2 µ(a,a+b+ c,b)3

≤ (1∨a∨b∨ c)−5H(1∨b)−5H
µ(a,a+b+ c,b)3. (3.4.51)

Similarly, by (3.4.50),

µ(a,a+b+ c,b)2q−1 ≤ (1+(a+b+ c)2H)q− 1
2 (1+b2H)q− 1

2 ,

which, by (3.4.49), leads to

G(q)
1,a(a+b+ c,b)≤ (1+(a+b+ c)2H)−1(1+b2H)−1

≤ (1∨a∨b∨ c)−2H(1∨b)−2H . (3.4.52)
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In addition, using the representation

µ(a,a+b+ c,b) =
1
2
(
(a+b)2H +(b+ c)2H−a2H− c2H)

= Hb
∫ 1

0

(
(a+bu)2H−1 +(c+bu)2H−1)du,

we deduce that there exist constants K,K′ only depending on H such that

µ(a,a+b+ c,b)1(0,a∧c)(b)≤ K1(0,a∧c)(b)b((a+b)2H−1 +(c+b)2H−1)

≤ K′1(0,a∧c)(b)b(a∨ c)2H−1

≤ K′(1∨b)(1∨a∨ c)2H−1. (3.4.53)

Combining the inequalities (3.4.51) and (3.4.53), we deduce that there exists a constant

K > 0 such that

G(q)
1,a(a+b+ c,b)1(0,a∧c)(b)≤ K1(0,a∧c)(b)(1∨a∨b∨ c)−5H(1∨b)−5H+3(1∨a∨ c)6H−3

≤ K(1∨a∨ c)H−3(1∨b)−5H+3.

Using the previous inequality, as well as the condition H > 3
4 , we deduce that G(q)

1,a(a+

b+ c,b) is integrable in {(a,b,c) ∈ R3
+ | b ≤ a∧ c}. In addition, from (3.4.52) we

obtain

G(q)
1,a(a+b+ c,b)1(0,b∧c)(a)≤ (1∨b)−2H(1∨b∨ c)−2H .

Therefore, using condition H > 3
4 , we deduce that G(q)

1,a(a+ b+ c,b) is integrable in

{(a,b,c) ∈R3
+ | a≤ b∧c}. By symmetry G(q)

1,a(a+b+c,b) is integrable in {(a,b,c) ∈
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R3
+ | c≤ a∧b}. From the previous analysis we conclude that G(q)

1,x(u1,u2) is integrable

in T2.

To prove the integrability of G(q)
1,x(u1,u2) in T3, we change the coordinates (x,u1,u2)

by (a := u1,b := x−u1,c := u2). Then,

∫
T3

G(q)
1,x(u1,u2)dxdu1du2 =

∫
R3
+

G(q)
1,a+b(a,c)dadbdc.

To bound G(q)
1,a+b(a,c) we proceed as follows. We first notice that

G(q)
1,a+b(a,c) = (1+a2H)−

1
2−q(1+ c2H)−

1
2−q

µ(a+b,a,c)2q−1.

Hence, using inequality µ(a+b,a,c)≤ aHcH ≤
√

(1+a2H)(1+ c2H), we deduce that

G(q)
1,a+b(a,c)≤

(
1+a2H)−1 (

1+ c2H)−1 ≤ (1∨a)−2H (1∨ c)−2H . (3.4.54)

As a consequence, G(q)
1,a+b(a,c) is integrable in {(a,b,c) ∈R3

+ | b≤ a∧c}. In addition,

from relation

µ(x+ y,x,z) = H(2H−1)xz
∫
[0,1]2

(y+ xv1 + zv2)
2H−2dv1dv2, (3.4.55)

we can prove that

µ(x+ y,x,z)≤ H(2H−1)xzy2H−2. (3.4.56)
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Using (3.4.56), we deduce that there exists a constant K > 0, only depending on H and

q, such that

G(q)
1,a+b(a,c)≤ K

((
1+a2H)(1+ c2H))− 1

2−q
(ac)2q−1b2(2q−1)(H−1)

≤ K ((1∨a)(1∨ c))−H−2qH+2q−1 b2(2q−1)(H−1).

Taking into account that H < 4q−3
4q−2 , we get 2(2q−1)(H−1)<−1, and hence

∫
∞

1∨a∨c
G(q)

1,a+b(a,c)db≤ K ((1∨a)(1∨ c))−H−2qH+2q−1 (1∨a∨ c)2(2q−1)(H−1)+1

≤ K (1∨a)−2H+ 1
2 (1∨ c)−2H+ 1

2 , (3.4.57)

where in the last inequality we used the relation

(1∨a∨ c)2(2q−1)(H−1)+1 ≤ (1∨a)(2q−1)(H−1)+ 1
2 (1∨ c)(2q−1)(H−1)+ 1

2 .

Using relation (3.4.57) as well as condition H > 3
4 , we conclude that G(q)

1,a+b(a,c) is

integrable in {(a,b,c) ∈ R3
+ | 1∨a∨ c≤ b}. In addition, from (3.4.55) we obtain

µ(x+ y,x,z)≤ H(2H−1)xz
∫
[0,1]2

(xv1 + zv2)
2H−2dv1dv2

≤ H(2H−1)xz
∫ 1

0
((x∨ z)w)2H−2dw

= Hxz(x∨ z)2H−2 = H(x∧ z)(x∨ z)2H−1.
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Hence, there exist constants K, K̃ ≥ 0 such that

G(q)
1,a+b(a,c)1(a∧c,a∨c)(b)

=
((

1+a2H)(1+ c2H))− 1
2−q

µ(a+b,a,c)2q−1

≤ K ((1∨a)(1∨ c))−H−2qH (a∧ c)2q−1(a∨ c)(2q−1)(2H−1)

≤ K ((1∨a)(1∨ c))−H−2qH (1∨ (a∧ c))2q−1(1∨a∨ c)(2q−1)(2H−1)

= K(1∨ (a∧ c))−H(2q+1)+2q−1(1∨a∨ c)−3H−2q+2qH+1.

(3.4.58)

Using relation (3.4.58) as well as condition H > 3
4 , we obtain that G(q)

1,a+b(a,c) is inte-

grable in the region {(a,b,c) ∈R3
+ | a∧c≤ b≤ a∨c}. From the previous analysis we

conclude that G(q)
1,a+b(a,c) is integrable in the variables a,b,c≥ 0, which in turn implies

that G(q)
1,x(u1,u2) is integrable in T3 as required.

Lemma 3.4.9. Let T > 0 and q ∈N, q≥ 2 be fixed, and define G(q)
0,x(u1,u2) by (3.1.20).

Then, for every 2
3 < H < 3

4 , we have

∫
[0,T ]3

G(q)
0,x(u1,u2)dxdu1du2 < ∞.

Proof. Let T > 0, and q ∈ N, and define the sets

T̃1 := {(x,u1,u2) ∈ [0,T ]3 | u1− x≥ 0, x+u2−u1 ≥ 0},

T̃2 := {(x,u1,u2) ∈ [0,T ]3 | u1− x−u2 ≥ 0},

T̃3 := {(x,u1,u2) ∈ [0,T ]3 | x−u1 ≥ 0}.

Since [0,T ]3 = T̃1 ∪ T̃2 ∪ T̃3, it suffices to check the integrability of G(q)
0,x(u1,u2) in

T̃i, for i = 1,2,3. To prove integrability in T̃1 change the coordinates (x,u1,u2) by
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(a := x,b := u1− x,c := x+u2−u1). Then,

∫
T̃1

G(q)
0,x(u1,u2)dxdu1du2 ≤

∫
[0,T ]3

G(q)
0,a(a+b,b+ c)dadbdc.

By the inequality µ(a,a+b,b+ c)≤ (a+b)H(b+ c)H , we can write

G(q)
0,a(a+b,b+ c)≤ (a+b)−2H(b+ c)−2H . (3.4.59)

Therefore, using 2a
3 + b

3 ≥ a
2
3 b

1
3 and 2c

3 + b
3 ≥ c

2
3 b

1
3 , as well as (3.4.59), we deduce that

there exists a universal constant K such that

G(q)
0,a(a+b,b+ c)≤ K(abc)−

4H
3 .

The right hand side in the previous inequality is integrable in [0,T ]3 thanks to the con-

dition H < 3
4 . Therefore, G(q)

0,x(u1,u2) is integrable in T̃1.

To prove the integrability of G(q)
0,x(u1,u2) in T̃2 we change the coordinates (x,u1,u2)

by (a := x,b := u2,c := u1− x−u2). Then,

∫
T̃2

G(q)
0,x(u1,u2)dxdu1du2 ≤

∫
[0,T ]3

G(q)
0,a(a+b+ c,b)dadbdc.

In order to bound the term G(q)
0,a(a+ b+ c,b) we proceed as follows. Applying the

inequality µ(a,a+b+c,b)≤ (a+b+c)HbH , as well as the condition q≥ 2, we obtain

G(q)
0,a(a+b+ c,b) = (a+b+ c)−5Hb−5H

µ(a,a+b+ c,b)3

×
(

µ(b,a+b+ c,b)
bH(a+b+b)H

)2(q−2)

≤ (a+b+ c)−5Hb−5H
µ(a,a+b+ c,b)3. (3.4.60)
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On the other hand, by the relation

µ(a,a+b+ c,b) =
1
2
(
(a+b)2H +(b+ c)2H−a2H− c2H)

= Hb
∫ 1

0

(
(a+bw)2H−1 +(c+bw)2H−1)dw,

we deduce that there exists a constant K > 0 such that

µ(a,a+b+ c,b)1(0,a∧c)(b)≤ 1(0,a∧c)(b)Hb
∫ 1

0

(
(a+bw)2H−1 +(c+bw)2H−1)dw

= Kb(a∨ c)2H−1. (3.4.61)

Using (3.4.60) and (3.4.61) we get

G(q)
0,a(a+b+ c,b)1(0,a∧c)(b)≤ Kb−5H+3(a+b+ c)−5H(a∨ c)6H−3

≤ Kb−5H+3(a∨ c)H−3. (3.4.62)

From (3.4.62) as well as the condition H < 3
4 , we deduce that G(q)

0,a(a + b + c,b) is

integrable in {(a,b,c) ∈ [0,T ]3 | b≤ a∧c}. In addition, using the relation µ(a,a+b+

c,b)≤ (a+b+ c)HbH , we can prove that

G(q)
0,a(a+b+ c,b)≤ b−2Hc−2H .

Therefore, by the condition H < 3
4 , we deduce that G(q)

0,a(a+ b+ c,b) is integrable in

{(a,b,c) ∈ [0,T ]3 | a≤ b∧ c}. Similarly, we can prove that

G(q)
0,a(a+b+ c,b)≤ b−2Ha−2H ,
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and hence, since H < 3
4 we conclude that G(q)

0,a(a+b+ c,b) is integrable in {(a,b,c) ∈

[0,T ]3 | c≤ b∧a}. From the analysis we conclude that G(q)
0,a(a+b+ c,b) is integrable

in [0,T ]3.

To prove the integrability of G(q)
0,x(u1,u2) in T̃3 we change the coordinates (x,u1,u2)

by (a := u1,b := x−u1,c := u2) to get

∫
T̃3

G(q)
0,x(u1,u2)dxdu1du2 ≤

∫
[0,T ]3

G(q)
0,a+b(a,c)dadbdc.

In order to bound the term G(q)
0,a+b(a,c) we proceed as follows. From relation

µ(x+ y,x,z) = H(2H−1)xz
∫
[0,1]2

(y+ xv1 + zv2)
2H−2dv1dv2, (3.4.63)

we can deduce that

µ(x+ y,x,z)≤ H(2H−1)xzy2H−2.

Hence, since

G(q)
0,a+b(a,c) = a−H−2qHc−H−2qH

µ(a+b,a,c)2q−1, (3.4.64)

we deduce that there exists a constant K > 0 only depending on H such that

G(q)
0,a+b(a,c)1(a∨c,T )(b)≤ a−H−2qH+2q−1c−H−2qH+2q−1b2(2q−1)(H−1)

1(a∨c,T )(b).

(3.4.65)

Since q ≥ 2, we have that H < 3
4 < 4

5 ≤
2q

1+2q . As a consequence, from (3.4.65) we

deduce that G(q)
0,a+b(a,c) is integrable in {(a,b,c) ∈ R3

+ | b ≥ a,c}. In addition, by
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(3.4.63) we get

µ(x+ y,x,z)≤ H(2H−1)xz
∫
[0,1]2

((x∨ z)w1)
2H−2dw1dw2

= Hxz(x∨ z)2H−2 = H(x∧ z)(x∨ z)2H−1.

Therefore,

G(q)
0,a+b(a,c)1(a∧c,a∨c)(b)

≤ (a∧ c)−H(2q+1)+2q−1(a∨ c)−3H−2q+2qH+1
1(a∧c,a∨c)(b). (3.4.66)

From (3.4.66), and H < 3
4 < 4

5 ≤
2q

1+2q , it follows that G(q)
0,a+b(a,c) is integrable in

{(a,b,c) ∈ [0,T ]3 | a∧ c≤ b≤ a∨ c}. Finally, by inequalities µ ≤ aHcH and (3.4.64),

we get

G(q)
0,a+b(a,c)1(0,a∧c)(b)≤ a−2Hc−2H . (3.4.67)

Using (3.4.67) as well as condition H < 3
4 , we deduce that G(q)

0,a+b(a,c) is integrable in

{(a,b,c) ∈ [0,T ]3 | b ≤ a∧ c}. From the previous analysis it follows that G(q)
0,x(u1,u2)

is integrable in T̃ as required.
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Chapter 4

Symmetric stochastic integrals with respect to a class of

self-similar Gaussian processes.

Consider a centered self-similar Gaussian process X := {Xt}t≥0 with self-similarity

exponent β ∈ (0,1) defined on a probability space (Ω,F ,P). That is, X is a centered

Gaussian process such that {c−β Xct}t≥0 has the same law as X , for every c> 0. We also

assume that X0 = 0. The covariance of X is characterized by the values of the function

φ : [1,∞)→ R, defined by

φ(x) := E [X1Xx] . (4.0.1)

Indeed, for 0 < s≤ t,

R(s, t) := E [XsXt ] = s2β
φ(t/s). (4.0.2)

The idea of describing a self-similar Guassian process in terms of the function φ was

first used by Harnett and Nualart in [18], and the concept was further developed in [20].
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The purpose of this paper is to study the behavior as n→∞ of ν-symmetric Riemann

sums with respect to X , defined by

Sν
n (g, t) :=

bntc−1

∑
j=0

∫ 1

0
g(X j

n
+ y∆X j

n
)∆X j

n
ν(dy), (4.0.3)

where ∆X j
n
= X j+1

n
−X j

n
, g : R→ R is a sufficiently smooth function and ν is a sym-

metric probability measure on [0,1], meaning that ν(A) = ν(1−A) for any Borel set

A⊂ [0,1].

The best known self-similar centered Gaussian process is the fractional Brownian

motion (fBm) of Hurst parameter H ∈ (0,1), whose covariance is given by

R(s, t) =
1
2

(
t2H + s2H−|t− s|2H

)
. (4.0.4)

The ν-symmetric Riemann sums Sν
n (g, t) given in (4.0.3) were investigated in the sem-

inal paper by Gradinaru, Nourdin, Russo and Vallois [15], when X is a fBm with Hurst

parameter H. In this case, if g is a function of the form g = f ′ with f ∈ C 4`(ν)+2(R)

and `= `(ν)≥ 1 denotes the largest integer such that

∫ 1

0
α

2 j
ν(dα) =

1
2 j+1

, for j = 1, . . . , `−1,

then, provided that H > 1
4`+2 , there exists a random variable

∫ t
0 g(Xs)dνXs such that

Sν
n (g, t)

P−→
∫ t

0
g(Xs)dνXs as n→ ∞.

160



The limit in the right-hand side is called the ν-symmetric integral of g with respect to

X , and satisfies the chain rule

f (Xt) = f (0)+
∫ t

0
f ′(Xs)dνXs.

The results from [15] provided a method for constructing Stratonovich-type integrals

in the rough-path case where H < 1/2. Some well-known examples of measures ν and

their corresponding ν-symmetric Riemann sums are:

1. Trapezoidal rule (`= 1): ν = 1
2(δ0 +δ1),

2. Simpson’s rule (`= 2): ν = 1
6(δ0 +4δ1/2 +δ1),

3. Milne’s rule (`= 3): ν = 1
90(7δ0 +32δ1/4 +12δ1/2 +32δ3/4 +7δ1),

where δx is the Dirac function. For example, if ν = 1
2(δ0 +δ1), then (4.0.3) is the sum

Sν
n (g, t) =

bntc−1

∑
j=0

g(X j
n
)+g(X j+1

n
)

2
∆X j

n
,

which is the standard Trapezoidal rule from elementary Calculus. If X is fBm with

Hurst parameter H > 1
6 , then the Trapezoidal rule sum converges in probability as n

tends to infinity (see [9, 15]), but in general the limit does not exist if H ≤ 1
6 .

More generally, it is known that Sν
n (g, t) does not necessarily converge in probabil-

ity if H ≤ 1
4`+2 . Nevertheless, in certain instances of the case H = 1

4`+2 , it has been

found that Sν
n (g, t) converges in law to a random variable with a conditional Gaussian

distribution. Cases ` = 1 and ` = 2 were studied in [41] and [19], respectively. More

recently, Binotto, Nourdin and Nualart have obtained the following general result for

H = 1
4`+2 :
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Theorem 4.0.1 ([5]). Assume X is a fBm of Hurst parameter H = 1
4`+4 . Consider a

function f ∈ C 20`+5(R) such that f and its derivatives up to the order 20`+ 5 have

moderate growth (they are bounded by AeB|x|α , with α < 2). Then,

Sν
n ( f ′, t) L→ f (Xt)− f (0)− cν

∫ t

0
f (2`+1)(Xs)dWs as n→ ∞, (4.0.5)

where cν is some positive constant, W is a Brownian motion independent of X and the

convergence holds in the topology of the Skorohod space D[0,∞).

The previous convergence can be written as the following change of variables for-

mula in law:

f (Xt) = f (0)+
∫ t

0
f ′(Xs)dνXs + cν

∫ t

0
f (2`+1)(Xs)dWs.

When extending these results to self-similar processes, surprisingly the critical

value is not the scaling parameter β but the increment exponent α which controls the

variance of the increments of X and is defined below.

Definition 4.0.1. We say that α is the increment exponent for X if for any 0< ε < T <∞

there are positive constants 0 < c1 ≤ c2 and δ > 0, such that

c1sα ≤ E
[
(Xt+s−Xt)

2]≤ c2sα , (4.0.6)

for every t ∈ [ε,T ] and s ∈ [0,δ ).

The extension of stochastic integration to nonstationary Gaussian processes has

been studied in the papers [53, 17, 18]. Each of these papers considered critical values

of α , for which particular ν-symmetric Riemann sums Sν
n (g, t) converge in distribu-

tion (but not necessarily in probability) to a limit which has a Gaussian distribution
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given the process X . For the fBm, α = 2H and the critical value for α coincides with

H = 1
4`+2 . Papers [53, 18] were both based on the Midpoint integral, and show that the

corresponding critical value is α = 1
2 . Because of the structure of the measure ν , the

Midpoint rule integral is not covered in our present paper. Harnett and Nualart con-

sidered in [17] a Trapezoidal integral with α = 1
3 and the results in this paper can be

expressed as a special case of Theorem 4.1.2 below.

4.1 Main results

Our goal for this paper is to extend the results of [5] and [15] to a general class of self-

similar Gaussian processes X , and a wider class of functions g. In the particular case

where X is a fBm, we extend Theorem 4.0.1 to the class of functions f with continuous

derivatives up to order 8`+ 2. The idea of the proof is similar to the one presented in

[5], but there are technical challenges that arise because in general X is not a stationary

process.

Our analysis of the asymptotic distribution of Sν
n ( f ′, t) relies heavily on a central

limit theorem for the odd variations of X , which we establish in Theorem 4.1.1. The

study of the fluctuations of the variations of X has an interest on its own, and has

been extensively studied for the case where X is a fBm (see for instance [40] and [10]).

Nevertheless, Theorem 4.1.1 is the first one to prove a result of this type for an extended

class of self-similar Gaussian process that are not necessarily stationary.

For most of the stochastic processes that we consider, such as the fBm and its vari-

ants, the self-similarity exponent β and the increment exponent α satisfy α = 2β , but

there are examples where α < 2β . In the sequel, we will assume that the parameters α
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and β satisfy 0 < α < 1, β ≤ 1/2 and α ≤ 2β . Following [20], we assume as well that

the function φ introduced in (4.0.1), satisfies the following conditions:

(H.1) φ is twice continuously differentiable in (1,∞) and for some λ > 0 and α ∈ (0,1),

the function

ψ(x) = φ(x)+λ (x−1)α (4.1.1)

has a bounded derivative in (1,2].

(H.2) There are constants C1,C2 > 0 and 1 < ν ≤ 2 such that

|φ ′′(x)| ≤C11(1,2](x)(x−1)α−2 +C21(2,∞)(x)x
−ν−1. (4.1.2)

Although the formulation is slightly different, these hypotheses are equivalent to con-

ditions (H.1) and (H.2) in [20], with the restrictions α < 1 and 2β ≤ 1. In particular,

they imply that

|φ ′(x)| ≤C′11(1,2](x)(x−1)α−1 +C′21(2,∞)(x)x
−ν , (4.1.3)

for some constants C′1 and C′2. Notice that by Lemma 4.5.1 in the Appendix, Hypothesis

(H.1) implies that α is the increment exponent of X . Moreover the upper bound in

(4.0.6) holds for any t ∈ [0,T ].

The following are examples of self-similar processes satisfying the above hypothe-

ses (see [20]):

(i) Fractional Brownian motion. This is a centered Gaussian process with covariance

function given by (4.0.4). Here (H.1) and (H.2) hold if H < 1
2 . In this case,

φ(x) =
1
2
(1+ x2H− (x−1)2H),
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α = 2β = 2H and ν = 2−2H.

(ii) Bifractional Brownian motion. This is a generalization of the fBm, with covari-

ance given by

R(s, t) =
1

2K

(
(t2H + s2H)K−|t− s|2HK)

for constants H ∈ (0,1) and K ∈ (0,1]. See [21, 33, 51] for properties, and note

that K = 1 gives the classic fBm case. Here (H.1) and (H.2) hold if HK < 1. For

this process we have

φ(x) =
1

2K

(
(1+ x2H)K− (x−1)2HK)

with λ = 2−K , α = 2β = 2HK and ν = (2+2H−2HK)∧ (3−2HK)−1.

(iii) Subfractional Brownian motion. This Gaussian process has been studied in [6, 8]

and it has a covariance given by

R(s, t) = s2H + t2H− 1
2
(
(s+ t)2H + |s− t|2H) ,

with parameter H ∈ (0,1). Here (H.1) and (H.2) hold if H < 1
2 , in which case

λ = 1/2, α = 2β = 2H, and

φ(x) = 1+ x2H− 1
2
(
(x+1)2H +(x−1)2H) .
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(iv) Two processes in a recent paper by Durieu and Wang. For 0<α < 1, we consider

the centered Gaussian processes Z1(t), Z2(t), with covariances given by:

E [Z1(s)Z1(t)] = Γ(1−α)((s+ t)α −max(s, t)α)

E [Z2(s)Z2(t)] = Γ(1−α)(sα + tα − (s+ t)α) ,

where Γ(y) denotes the Gamma function. These processes are discussed in a

recent paper by Durieu and Wang [13], where it is shown that the process Z =

Z1 +Z2 (where Z1, Z2 are independent) is the limit in law of a discrete process

studied by Karlin. The process Z2, with a different scaling constant, was first

described in Lei and Nualart [33]. The corresponding functions φ of these self-

similar processes are:

φ1(x) =−Γ(1−α)(x−1)α +Γ(1−α)((x−1)α +(x+1)α − xα)

and

φ2(x) = Γ(1−α)(1+ xα − (x+1)α)

=−Γ(1−α)(x−1)α +Γ(1−α)(1+ xα +(x−1)α − (x+1)α) .

It is shown in [20] that both φ1 and φ2 satisfy (H.1) and (H.2), with 2β = α and

ν = 2−α .

(v) Gaussian process in a paper by Swanson. This process was introduced in [52],

and arises as the limit of normalized empirical quantiles of a system of indepen-
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dent Brownian motions. The covariance is given by

R(s, t) =
√

st sin−1
(

s∧ t√
st

)
,

and the corresponding function φ is given by

φ(x) =
√

xsin−1
(

1√
x

)
.

This process has α = β = 1/2 and ν = 2, so is an example of the case α < 2β .

It is interesting to remark the differences on the asymptotic behavior of both the

power variations and the ν-symmetric integrals of X , depending on whether α = 2β

or α < 2β . As we show in Theorem 4.1.1, the process of variations of X satisfies an

asymptotic nonstationarity property when α < 2β , which differs from the case α = 2β ,

where the limit process is a scalar multiple of a Brownian motion. To better describe

this phenomena, we denote by Y = {Yt}t≥0 a continuous centered Gaussian process

independent of X , with covariance function

E [YsYt ] = Σ(s, t) := (t ∧ s)
2β

α , (4.1.4)

defined on an enlarged probability space (Ω,G ,P). The process Y is characterized by

the property of independent increments, and

E
[
(Yt+s−Ys)

2]= t
2β

α − s
2β

α for 0≤ s≤ t.

Notice that for α < 2β , the increments of Y are not stationary and when α = 2β , Y is

a standard Brownian motion. We need the following definition of stable convergence.
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Definition 4.1.1. Assume ξn is a sequence random variables defined on (Ω,F ,P) with

values on a complete and separable metric space S and ξ is an S-valued random vari-

able defined on the enlarged probability space (Ω,G ,P). We say that ξn converges

stably to ξ as n→ ∞, if for any continuous and bounded function f : S→ R and any

R-valued, F -measurable bounded random variable M, we have

lim
n→∞

E [ f (ξn)M] = E [ f (ξ )M] .

Next we present a central limit theorem for the odd power variations of X , which is a

key ingredient for proving Theorem 4.1.2 and illustrates the asymptotic nonstationarity

property that we mentioned before.

Theorem 4.1.1. Fix an integer `≥ 1. Define the functional

Vn(t) =
bntc−1

∑
j=0

∆X2`+1
j
n

, t ≥ 0. (4.1.5)

If α = 1
2`+1 and the process X satisfies (H.1) and (H.2), then for every 0≤ t1, . . . , tm <∞,

m≥ 1, the vector (Vn(t1), . . . ,Vn(tm)) converges stably to σ`(Yt1 , . . . ,Ytm), where

σ
2
` =

α

2β

`−1

∑
r=0

Kr,` ∑
p∈Z

(|p+1|α + |p−1|α −2|p|α)2(`−r)+1 , (4.1.6)

and Kr,` = c2
r,`2

2rλ 2`+1(2(`−r)+1)!, where λ is the constant appearing in Hypothesis

(H.1) and cr,` are the coefficients introduced in (1.2.1).

Our main results are Theorems 4.1.2 and 4.1.3 below.

Theorem 4.1.2. Assume f ∈ C 8`+2(R). For a given symmetric probability measure

ν and associated integer `(ν), assume the process X satisfies (H.1) and (H.2) with
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2β ≥ α = 1
2`+1 . Then, as n tends to infinity,

{Sν
n ( f ′, t)}t≥0

Stably−→ { f (Xt)− f (0)−κν ,`σ`

∫ t

0
f (2`+1)(Xs) dYs}t≥0,

where σ` and κν ,` are the constants given by (4.1.6) and (4.4.2), respectively, and

the convergence is in the Skorohod space D[0,∞). Consequently, we have the Itô-like

formula in law

f (Xt)
L
= f (0)+

∫ t

0
f ′(Xs) dνXs +κν ,`σ`

∫ t

0
f (2`+1)(Xs) dYs.

The proof of Theorem 4.1.2 follows the same path as the proof of Theorem 1.1 of

Binotto, Nourdin and Nualart [5], but there are technical challenges that arise because

in general X is not stationary. The next generalization of the result in [15] easily follows

from the proof of Theorem 4.1.2.

Theorem 4.1.3. Under the assumptions of Theorem 4.1.2, if α > 1
2`+1 , then the ν-

symmetric integral
∫ t

0 f ′(Xs) dνXs exists as the limit in probability of the ν-symmetric

Riemann sums Sν
n ( f ′, t) and for all t ≥ 0, we have

f (Xt) = f (0)+
∫ t

0
f ′(Xs) dνXs.

The important new developments compared to previous work are:

• A system for constructing stochastic integrals with respect to rough-path pro-

cesses, originally developed in [5, 15, 19, 41] for the fBm, is now extended to a

wider class of processes that are not necessarily stationary.

• We prove a central limit theorem for the power variations of general self-similar

Gaussian processes.
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• We present a more efficient proof of tightness, which allows for less restrictions

on the integrand function f compared with [5].

The chapter is organized as follows. In Section 4.3 we prove the convergence of the

variations of the process X . Section 4.4 is devoted to the proofs of Theorems 4.1.2 and

Theorem 4.1.3. Finally, in Section 4.5 we prove some technical lemmas.

4.2 Notation

For n ≥ 2 we consider the discretization of [0,∞) by the points { j
n , j ≥ 0}. For t ≥ 0,

j ≥ 0 and n≥ 2, we define:

εt = 1[0,t), ε̃ j
n
=

1
2

(
ε j

n
+ ε j+1

n

)
and ∂ j

n
= 1

[ j
n ,

j+1
n )

.

For the process X , we introduce the notation:

∆X t
n
= X t+1

n
−X t

n
; X̃ t

n
=

1
2

(
X t+1

n
+X t

n

)
and ξt,n = ‖∆X t

n
‖L2(Ω).

When not otherwise defined, the symbol C denotes a generic positive constant,

which may change from line to line. The value of C may depend on the parameters

of the process X and the length of the time interval [0, t] or [0,T ] we are considering.

4.3 Asymptotic behavior of the power variations

This section is devoted to the proof of Theorem 4.1.1. Define Vn(t) by (4.1.5) and

recall that α = 1
2`+1 . By the Hermite polynomial expansion of x2`+1 (see (1.2.1)), we
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can write

∆X2`+1
j
n

ξ
2`+1
j,n

=
`

∑
r=0

cr,` H2(`−r)+1

(
∆X j

n

ξ j,n

)
=

`

∑
r=0

cr,` I2(`−r)+1

∂
⊗2(`−r)+1
j
n

ξ
2(`−r)+1
j,n

 ,

where each cr,` is an integer with c0,` = 1. It follows that

∆X2`+1
j
n

=
`

∑
r=0

cr,` ξ
2r
j,nI2(`−r)+1

(
∂
⊗2(`−r)+1
j
n

)
.

Define qr = 2(`− r)+ 1 and notice that q` = 1 and 3 = q`−1 < · · · < q0 = 2`+ 1.

We can write for t ≥ 0

Vn(t) =
`

∑
r=0

cr,`V r
n (t), (4.3.1)

where

V r
n (t) =

bntc−1

∑
j=0

ξ
2r
j,nIqr(∂

⊗qr
j
n

) = Iqr(h
r
n(t)),

and

hr
n(t) =

bntc−1

∑
j=0

ξ
2r
j,n∂
⊗qr
j
n

.

In the next lemma, we show that the term V `
n (t) does not contribute to the limit of Vn(t)

as n tends to infinity.

Lemma 4.3.1. The term

V `
n (t) =

bntc−1

∑
j=0

ξ
2`
j,nI1(∂ j

n
) =

bntc−1

∑
j=0

ξ
2`
j,n∆X j

n

tends to zero in L2(Ω) as n tends to infinity.
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Proof. Recalling that X0 = 0 and ∆X j/n = X( j+1)/n−X j/n, we can rewrite the sum as

V `
n (t) = Xbntc

n
ξ

2`
bntc−1,n−X1

n

(
ξ

2`
1,n−ξ

2`
0,n

)
−
bntc−1

∑
j=2

X j
n

(
ξ

2`
j,n−ξ

2`
j−1,n

)
.

We have, for any integer j ≥ 1,

ξ
2
j,n =

(
j+1

n

)2β

φ(1)+
(

j
n

)2β

φ(1)−2
(

j
n

)2β

φ(
j+1

j
)

=
φ(1)
n2β

(
( j+1)2β − j2β

)
− 2 j2β

n2β

(
φ(1+

1
j
)−φ(1)

)
.

By (H.1), we can write this as

ξ
2
j,n =

2βφ(1)
n2β

∫ 1

0
( j+ y)2β−1dy− 2 j2β

n2β

(
−λ j−α +ψ(1+

1
j
)−ψ(1)

)
:= an( j).

By the previous formula, we can extend the function an to all reals x≥ 1. Using the fact

that ψ(x) has a bounded derivative in (1,2], we can find positive constants C,C′ such

that for all x≥ 1,

∣∣a′n(x)∣∣≤Cn−2β

(
x2β−2 + x2β−α−1

)
≤C′n−2β x2β−α−1.

Hence, by (4.5.2), it follows that for integers 2≤ j ≤ bntc,

∣∣∣a`n( j)−a`n( j−1)
∣∣∣ ≤ C sup

2≤ j≤bntc
|an( j)|`−1

×
∫ 1

0

∣∣a′n( j−1+ y)
∣∣ dy≤Cn−(`−1)α−2β ( j−1)2β−α−1.

172



As a consequence, using again inequality (4.5.2), we can write

E

(Xbntc
n

ξ
2`
bntc−1,n−X1

n

(
ξ

2`
1,n−ξ

2`
0,n

)
−
bntc−1

∑
j=2

X j
n

(
ξ

2`
j,n−ξ

2`
j−1,n

))2
 1

2

≤Cn−`α +C
bntc−1

∑
j=2

∣∣∣a`n( j)−a`n( j−1)
∣∣∣≤Cn−`α ,

which tends to zero as n tends to infinity.

Then, Theorem 4.1.1 will be a consequence of Theorem 1.2.1, if we show that the

remaining terms hr
n(t), 0 ≤ r ≤ `− 1, t ≥ 0, satisfy conditions (1.2.11) and (1.2.12).

This will be done in the next two lemmas.

Lemma 4.3.2. Let 1≤ p≤ qr−1 be an integer. Then,

lim
n→∞

∥∥hr
n(t)⊗p hr

n(t)
∥∥2
H⊗(2qr−2p) = 0.

Proof. We have for each n≥ 2

∥∥hr
n(t)⊗p hr

n(t)
∥∥2
H⊗(2qr−2p)

=
bntc−1

∑
j1, j2,k1,k2=0

ξ
2r
j1,nξ

2r
j2,nξ

2r
k1,nξ

2r
k2,n

〈
∂ j1

n
,∂ j2

n

〉p

H

〈
∂ k1

n
,∂ k2

n

〉p

H

〈
∂ j1

n
,∂ k1

n

〉qr−p

H

〈
∂ j2

n
,∂ k2

n

〉qr−p

H
.

Note that for applicable values of qr and p we always have p ≥ 1 and qr− p ≥ 1. By

(4.5.2) and Cauchy-Schwarz inequality, we have

sup
0≤ j,k≤bntc−1

∣∣∣〈∂ j
n
,∂ k

n

〉
H

∣∣∣≤Cn−α .
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As a consequence,

∥∥hr
n(t)⊗p hr

n(t)
∥∥2
H⊗(2qr−2p) ≤

(
sup

0≤ j≤bntc−1

∣∣ξ 2r
j,n
∣∣)4

sup
0≤ j,k≤bntc−1

∣∣∣〈∂ j
n
,∂ k

n

〉
H

∣∣∣2qr−3

×
bntc−1

∑
j1, j2,k1,k2=0

∣∣∣∣〈∂ j1
n
,∂ j2

n

〉
H

〈
∂ j1

n
,∂ k1

n

〉
H

〈
∂ j2

n
,∂ k2

n

〉
H

∣∣∣∣
≤ Cn−α(4r+2qr−3)+1

(
sup

0≤ j≤bntc−1

bntc−1

∑
k=0

∣∣∣〈∂ j
n
,∂ k

n

〉
H

∣∣∣)3

.

We now apply Lemma 4.5.1 and noting that 4r+ 2qr = 4`+ 2 = 2
α

, we have up to a

constant C, ∥∥hr
n(t)⊗p hr

n(t)
∥∥2
H⊗(2qr−2p) ≤Cn−1,

which tends to zero as n tends to infinity. This completes the proof of the lemma.

In the next lemma we show that the functions hr
n, 0 ≤ r ≤ `− 1, satisfy condition

(1.2.11) of Theorem 1.2.1, with some constants cr to be defined below.

Lemma 4.3.3. Under above notation, let s, t ≥ 0. Then for each integer 0≤ r ≤ `−1,

lim
n→∞
〈hr

n(t),h
r
n(s)〉H⊗qr =

α

2β
(s∧ t)

2β

α 22r
λ

2`+1
∑

m∈Z
(ρα(m))qr , (4.3.2)

where ρα(m) = |m+1|α + |m−1|α −2|m|α .

Proof. We can easily check that

〈hr
n(t),h

r
n(s)〉H⊗qr =

bntc−1

∑
j=0

bnsc−1

∑
k=0

Gn( j,k),

174



where the function Gn( j,k) is defined by

Gn( j,k) = ξ
2r
j,nξ

2r
k,n

〈
∂ j

n
,∂ k

n

〉qr

H
. (4.3.3)

Then the convergence (4.3.2) will be a consequence of the following two facts:

(i) For every 0 < s1 < t1 < s2 < t2,

lim
n→∞

bnt1c−1

∑
j=bns1c

bnt2c−1

∑
k=bns2c

|Gn( j,k)|= 0. (4.3.4)

(ii) For every t > 0,

lim
n→∞

bntc−1

∑
j,k=0

Gn( j,k) =
α

2β
t

2β

α 22r
λ

2`+1
∑

m∈Z
(ρα(m))qr . (4.3.5)

First we prove (4.3.4). We can assume that n≥ 6, bns1c ≥ 1 and bnt1c+2 < bns2c,

which is true if n is large enough. This implies that j + 3 ≤ k for each k and j such

that bns1c ≤ j ≤ bnt1c− 1 and bns2c ≤ k ≤ bnt2c− 1. As a consequence, applying

inequalities (4.5.1) and (4.5.3), we obtain the estimate

bnt1c−1

∑
j=bns1c

(2 j+2)∧(bnt2c−1)

∑
k=bns2c

|Gn( j,k)| ≤C
bnt1c−1

∑
j=bns1c

bnt2c−1

∑
k=bns2c

n−4β rk(2β−α)r j(2β−α)rn−2βqr j(2β−α)qrk(α−2)qr

≤Cn2−2(αr+qr),
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which converges to zero as n tends to infinity due to the fact that α > 0 and qr ≥ 1. On

the other hand, applying inequalities (4.5.1) and (4.5.4) we obtain the estimate

bnt1c−1

∑
j=bns1c

bnt2c−1

∑
k=(2 j+2)∨bns2c

|Gn( j,k)| ≤C
bnt1c−1

∑
j=bns1c

bnt2c−1

∑
k=bns2c

n−4β r j(2β−α)rk(2β−α)rn−2βqr j(2β+ν−2)qrk−νqr

≤Cn2−2(αr+qr).

The exponent of n is the above estimate is always negative, so this term converges to

zero as n tends to infinity.

Next we prove (4.3.5). We can write

bntc−1

∑
j,k=0

Gn( j,k) =
bntc−1

∑
x=0

bntc−1−x

∑
j=0

(2−δx,0)Gn( j, j+ x), (4.3.6)

where δx,0 denotes the Kronecker delta. First we will show that there exist constants

C,δ > 0, such that for 3≤ x≤ bntc−1,

bntc−1−x

∑
j=0

(2−δx,0)|Gn( j, j+ x)| ≤Cx−1−δ . (4.3.7)

To show (4.3.7) we consider three cases:

Case 1: For j = 0, we have, using (4.5.1) and (4.1.3),

|G(0,x)| ≤ Cn−4β rx(2β−α)r|n−2β (φ(x+1)−φ(x))|qr ≤Cn−2β (2`+1)x(2β−α)r−νqr

≤ Cx−2β (2`+1)+(2β−α)r−νqr (4.3.8)

176



which provides the desired estimate, because the largest value of the exponent−2β (2`+

1)+(2β −α)r−νqr is obtained for r = `−1, and in this case this exponent becomes

−2β (`+2)− (`−1)α−3ν ≤−α(2`+1)−3ν =−1−3ν .

Case 2: Applying (4.5.3), yields

bntc−1−x

∑
j=x−2

|Gn( j, j+ x)| ≤C
bntc−1−x

∑
j=x−2

n−2β (2`+1) j(2β−α)(r+qr)( j+ x)(2β−α)r+(α−2)qr

≤C
bntc−1−x

∑
j=x−2

n−2β (2`+1)( j+ x)(2β−α)(2`+1)+(α−2)qr

≤C′
bntc−1−x

∑
j=x−2

( j+ x)−α(2`+1)+(α−2)qr .

Hence, using the bound ( j+x)(α−2)qr ≤ j(α−2)(qr−1)xα−2, and the condition α = 1
2`+1 ,

we get

bntc−1−x

∑
j=x−2

|Gn( j, j+ x)| ≤Cxα−2
∞

∑
j=1

j−1+(α−2)(qr−1). (4.3.9)

The sum in the right hand side is finite due to the fact that qr ≥ 3 and α < 1.

Case 3: By (4.5.4),

x−2

∑
j=0
|Gn( j, j+ x)| ≤C

x−2

∑
j=0

n−2β (2`+1) j2β (r+qr)−αr+(ν−2)qr( j+ x)(2β−α)r−νqr . (4.3.10)

Notice that

n−2β (2`+1) j2β (r+qr)( j+ x)2β r ≤ n−2β (2`+1)( j+ x)2β (2`+1) ≤C
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and

( j+ x)−νqr ≤ j−ν(qr−1)x−ν .

Hence, by (4.3.10),

x−2

∑
j=0
|Gn( j, j+ x)| ≤

x−2

∑
j=0

j−αr+(ν−2)qr( j+ x)−αr−νqr ≤ x−ν
x−2

∑
j=0

j−αr−2qr+ν( j+ x)−αr

≤Cx−ν
x−2

∑
j=0

j−2αr−2qr+ν . (4.3.11)

The sum in the right hand side is finite due to the conditions qr ≥ 3 and ν ≤ 2.

Relation (4.3.7) follows from (4.3.8), (4.3.9) and (4.3.11). As a consequence, provided

that we prove the pointwise convergence

lim
n→∞

bntc−1−x

∑
j=0

Gn( j, j+ x) =
α

2β
22`+1−qrλ

2`+1t
2β

α (ρα(x))qr , (4.3.12)

for any x ≥ 0, by applying the dominated convergence theorem in (4.3.6), we obtain

(4.3.5). The proof of (4.3.12) will be done in three steps.

Step 1. Since φ(y) =−λ (y−1)α +ψ(y), for every x≥ 1 we can write

E
[
(X j+1−X j)(X j+x+1−X j+x)

]
= ( j+1)2β (φ(1+

x
j+1

)−φ(1+
x−1
j+1

))+ j2β (φ(1+
x
j
)−φ(1+

x+1
j

))

=−λ ( j+1)2β−α(xα − (x−1)α)−λ j2β−α(xα − (x+1)α)

+( j+1)2β (ψ(1+
x

j+1
)−ψ(1+

x−1
j+1

))+ j2β (ψ(1+
x
j
)−ψ(1+

x+1
j

)).
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Hence, using the Mean Value Theorem for ψ , as well as (H.1), we deduce that for every

x≥ 1, there exist constants γ1 and γ2 > 0, such that

E
[
(X j+1−X j)(X j+x+1−X j+x)

]
=−λ ( j+1)2β−α(xα − (x−1)α)−λ j2β−α(xα − (x+1)α)

+( j+1)2β−1
ψ
′(1+ γ1)− j2β−1

ψ
′(1+ γ2).

As a consequence, taking into account that ψ ′ is bounded and α < 1,

lim
j→∞

( j+1)α−2βE
[
(X j+1−X j)(X j+x+1−X j+x)

]
=−λ (2xα − (x−1)α − (x+1)α).

(4.3.13)

In addition, from Lemma 4.5.1, it follows that

lim
j→∞

( j+1)α−2βE
[
(X j+1−X j)

2]= lim
j→∞

( j+1)α−2βE
[
(X j+x+1−X j+x)

2]= 2λ .

(4.3.14)

Using (4.3.13) and (4.3.14), we get

lim
j→∞

ξ
−1
j,1 ξ

−1
j+x,1E

[
(X j+1−X j)(X j+x+1−X j+x)

]
=

1
2
(|x−1|α + |x+1|α −2 |x|α).

(4.3.15)

Notice that the previous relation is also true for x = 0. Therefore, we deduce that for

every ε > 0, there exists M > 0, such that for every j ≥M,

∣∣∣∣ξ−qr
j,1 ξ

−qr
j+x,1E

[
(X j+1−X j)(X j+x+1−X j+x)

]qr −2−qr(ρα(x))qr

∣∣∣∣< ε. (4.3.16)
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Step 2. Provided that we prove that

lim
n→∞

n−
2β

α

bntc−1−x

∑
j=0

ξ
2`+1
j,1 ξ

2`+1
j+x,1 =

α

2β
(2λ )2`+1t

2β

α , (4.3.17)

taking into account the self-similarity of the process X , and the fact that α = 1
2`+1 , the

proof of (4.3.12) will follow from

lim
n→∞

bntc−1−x

∑
j=0

∣∣∣ξ 2`+1−qr
j,n ξ

2`+1−qr
j+x,n

〈
∂ j

n
,∂ j+x

n

〉qr

H
−2−qrξ

2`+1
j,n ξ

2`+1
j+x,n(ρα(x))qr

∣∣∣= 0.

(4.3.18)

Using (4.5.2) we can easily prove that

limsup
n→∞

M

∑
j=0

∣∣∣ξ 2`+1−qr
j,n ξ

2`+1−qr
j+x,n

〈
∂ j

n
,∂ j+x

n

〉qr

H
−2−qrξ

2`+1
j,n ξ

2`+1
j+x,n(ρα(x))qr

∣∣∣= 0.

(4.3.19)

Applying the estimate (4.3.16) and the limit (4.3.17), we obtain

limsup
n→∞

bntc−1−x

∑
j=M

∣∣∣ξ 2`+1−qr
j,n ξ

2`+1−qr
j+x,n

〈
∂ j

n
,∂ j+x

n

〉qr

H
−2−qrξ

2`+1
j,n ξ

2`+1
j+x,n(ρα(x))qr

∣∣∣
= limsup

n→∞

n−
2β

α

bntc−1−x

∑
j=M

ξ
2`+1
j,1 ξ

2`+1
j+x,1

×
∣∣∣ξ−qr

j,1 ξ
−qr
j+x,1E

[
(X j+1−X j)(X j+x+1−X j+x)

]qr −2−qr(ρα(x))qr
∣∣∣

≤ ε
α

2β
(2λ )2`+1t

2β

α . (4.3.20)

Therefore, (4.3.19) and (4.3.20) imply (4.3.18).

Step 3. In order to prove (4.3.17) we proceed as follows. Using Lemma 4.5.1, as well

as the condition α < 1, we deduce that for every ε > 0, there exists M ∈ N, such that

for every j ≥M, ∣∣∣( j−(2β−α)
ξ j,1ξ j+x,1)

2`+1− (2λ )2`+1
∣∣∣< ε,
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and hence, since α = (2`+1)−1,

n−
2β

α

bntc−1−x

∑
j=M

∣∣∣ξ 2`+1
j,1 ξ

2`+1
j+x,1− (2λ )2`+1 j(2β−α)(2`+1)

∣∣∣
= n−

2β

α

bntc−1−x

∑
j=M

j(2β−α)(2`+1)
∣∣∣ξ 2`+1

j,1 ξ
2`+1
j+x,1 j−(2β−α)(2`+1)− (2λ )2`+1

∣∣∣
≤ εn−

2β

α

bntc−1−x

∑
j=M

j
2β−α

α .

Therefore, since

lim
n→∞

n−
2β

α

bntc−1−x

∑
j=0

j
2β−α

α =
α

2β
t

2β

α , (4.3.21)

we conclude that there exists a constant C > 0 depending on t and x, such that

limsup
n→∞

n−
2β

α

bntc−1−x

∑
j=M

∣∣∣ξ 2`+1
j,1 ξ

2`+1
j+x,1− (2λ )2`+1 j((2β−α)(2l+1)

∣∣∣<Cε,

and hence, by relation (4.3.21) and condition α = (2`+1)−1, we conclude that

lim
n→∞

n−2β (2`+1)
bntc−1−x

∑
j=0

ξ
2`+1
j,1 ξ

2`+1
j+x,1

= (2λ )2`+1 lim
n→∞

n−2β (2`+1)
bntc−1−x

∑
j=0

j(2β−α)(2`+1) =
α

2β
(2λ )2`+1t

2β

α ,

as required. The proof of Lemma 4.3.3 is now complete.
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4.4 Asymptotic behavior of weak symmetric Riemann

sums

In this section we prove the main results, Theorems 4.1.2 and 4.1.3. We follow argu-

ments similar to those used in the proof of Theorem 1.1 of Binotto, Nourdin and Nualart

[5], which was originally used in [15]. For f ∈ C 8`+2(R) and a < b, we consider the

approximation (4.4.1) below, which was proved in [15, Theorem 3.6] using Taylor’s

formula and the properties of ν

f (b) = f (a)+(b−a)
∫ 1

0
f ′(a+ y(b−a)) ν(dy)+

2`

∑
h=`

κν ,h f (2h+1)
(

a+b
2

)
(b−a)2h+1

+C(a,b)(b−a)4`+2, (4.4.1)

where C(a,b) is a continuous function with C(a,a) = 0, and the κν ,h are the constants

given in [15, Theorem 3.6]. In particular,

κν ,` =
1

(2`)!

(
1

(2`+1)22` −
∫ 1

0

(
y− 1

2

)2`

ν(dy)

)
. (4.4.2)

Recall the notation X̃ t
n

and ∆X t
n

introduced in Section 4.2. From (4.4.1), it follows that

for n≥ 2,

f (Xt)− f (0) = Sν
n ( f ′, t)+

2`

∑
h=`

bntc−1

∑
j=0

κν ,h f (2h+1)(X̃ j
n
)(∆X j

n
)2h+1 +Rn(t), (4.4.3)

where

Rn(t) =
bntc−1

∑
j=0

C(X j
n
,X j+1

n
)(∆X j

n
)4`+2.
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Then, we can write

f (Xt)− f (0) = Sν
n ( f ′, t)+

2`

∑
h=`

Φ
h
n(t)+Rn(t), (4.4.4)

where

Φ
h
n(t) = κν ,h

bntc−1

∑
j=0

f (2h+1)(X̃ j
n
)(∆X j

n
)2h+1. (4.4.5)

The term Rn converges to zero in probability, uniformly in compact sets. Indeed, for

every T,K,ε > 0, we can write

P

[
sup

0≤t≤T
|Rn(t)|> ε

]
≤ P

 sup
s,t∈[0,T ]
|t−s|≤ 1

n

|C(Xs,Xt)|>
1
K

+P

[
bnTc−1

∑
j=0

(∆X j
n
)4`+2 > Kε

]
.

(4.4.6)

Since ∆X j
n

is a centered Gaussian variable, by (4.5.2), for all even integer r

sup
1≤ j≤bnTc−1

E
[∣∣∣∆X j

n

∣∣∣r]≤ (r−1)!! sup
1≤ j≤bnTc−1

E
[∣∣∣∆X j

n

∣∣∣2] r
2

≤C(r−1)!!n−
rα

2 ,

where (r−1)!! denotes the double factorial (r−1)!! = ∏
r−1
k=0(r−1−2k). As a conse-

quence, using the Chebychev inequality and the condition α = 1
2`+1 , we get

P

[
bnTc−1

∑
j=0

(∆X j
n
)4`+2 > Kε

]
≤ C

Kε

bnTc
n
≤ C

Kε
. (4.4.7)

The convergence to zero in probability, uniformly in compact sets, of Rn(t) is obtained

from (4.4.6) and (4.4.7), by letting first n→ ∞, and then K→ ∞.
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The previous analysis shows that the term Rn appearing in right hand side (4.4.4),

does not contribute to the limit as n goes to infinity, so the asymptotic behavior of

Sν
n ( f ′, t) is completely determined by ∑

2`
h=`Φh

n(t). The study of the stochastic process

∑
2`
h=`Φh

n can be decomposed in the following steps: first, we reduce the problem of

proving Theorems 4.1.2 and 4.1.3, to the case where f is compactly supported, by

means of a localization argument. Then we prove that the processes Φh
n(t), with h =

`, . . . ,2` are tight in the Skorohod topology, and only contribute to the limit as n goes

to infinity, when h = `.

Finally, we determine the behavior of Φ`
n by splitting into the cases α = 1

2`+1 and

α > 1
2`+1 . In the case α > 1

2`+1 , we show that Φ`
n → 0 in probability, which proves

Theorem 4.1.3. For the case α = 1
2`+1 , we use the small blocks-big blocks method-

ology (see [5] and [10]) and Theorem 4.1.1, to prove that Φ`
n converges stably to

{κν ,`σ`
∫ t

0 f (2`+1)(Xs)dYs}t≥0, which proves Theorem 4.1.2.

We start reducing the problem of proving Theorems 4.1.2 and 4.1.3, to the case

where f is compactly supported. Define the process Z = {Zt}t≥0, by

Zt = κν ,`σ`

∫ t

0
f (2`+1)(Xs)dYs. (4.4.8)

By (4.4.4), it suffices to show that for all f ∈ C 8`+2(R), the following claims hold:

1. If α = 1
2`+1 ,

{
2`

∑
h=`

Φ
h
n(t)}t≥0

stably→ {Zt}t≥0 as n→ ∞, (4.4.9)

in the topology of D[0,∞).
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2. If α > 1
2`+1 , then for every t ≥ 0

2`

∑
h=`

Φ
h
n(t)

P→ 0, as n→ ∞. (4.4.10)

Notice that the convergences (4.4.9) and (4.4.10) hold, provided that:

1. If α = 1
2`+1 , then,

a) For every h = `, . . . ,2`, the sequence Φh
n is tight in D[0,∞).

b) The finite dimensional distributions of Φ`
n converge stably to those of Z.

c) For every h = `+1, . . . ,2` and t ≥ 0, the sequence Φh
n(t) converges to zero

in probability.

2. If α > 1
2`+1 , then Φh

n(t) converges to zero in probability for every h = `, . . . ,2`

and t > 0.

In turn, these conditions are a consequence of the following claims:

(i) For every ε,T > 0 and h = `, . . . ,2`, there is a compact set K ⊂D[0,T ], such that

sup
n≥1

P
[
Φ

h
n ∈ Kc

]
< ε.

(ii) For every ε,δ > 0, t ≥ 0 and h = `+1, . . . ,2`, there exists N ∈ N, such that for

every n≥ N,

P
[∣∣∣Φh

n(t)
∣∣∣> δ

]
< ε.

(iii) Let ε > 0 and 0≤ t1≤ ·· ·≤ td ≤T be fixed. If α = 1
2`+1 , then for every compactly

supported function φ ∈C 1(Rd,R), and every event B∈σ(X), there exists N ∈N,
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such that for n≥ N,

∣∣∣E[(φ(Φ`
n(t1), . . . ,Φ

`
n(td))−φ(Zt1, . . . ,Ztd))1B

]∣∣∣< ε. (4.4.11)

1. If α > 1
2`+1 , then for every ε,δ > 0, t ≥ 0 there exists N ∈N, such that for every

n≥ N,

P
[∣∣∣Φ`

n(t)
∣∣∣> δ

]
< ε.

Recall that Φh
n depends on f via (4.4.5). We claim that it suffices to show conditions

(i)-(iv) for f compactly supported. Suppose that (i)-(iv) hold for every function in

C 8`+2(R) with compact support, and take a general element g ∈ C 8`+2(R). Fix L ≥ 1

and let gL : R→ R be a compactly supported function, with derivatives up to order

8`+ 2, such that gL(x) = g(x) for every x ∈ [−L,L], and define the processes Φ̃
h,L
n =

{Φ̃h,L
n (t)}t≥0, h = `, . . . ,2` and Z̃L = {Z̃L

t }t≥0, by

Φ̃
h,L
n = kν ,h

bntc−1

∑
j=0

g(2h+1)
L (X̃ j

n
)(∆X j

n
)2h+1,

and

Z̃L
t = κν ,`σ`

∫ t

0
g(2`+1)

L (Xs)dYs.

Fix T > 0 and define as well the events AL,T = {sup0≤s≤T |Xs| ≤ L}. Then, for every

ε > 0, there exists a compact set KL ⊂ D[0,T ] such that for all h = `, . . . ,2`

sup
n≥1

P
[
Φ̃

h,L
n ∈ Kc

L

]
<

ε

2
. (4.4.12)
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Since Φh
n = Φ̃

h,L
n in AL,T , we have

P
[
Φ

h
n ∈ Kc

L

]
≤ P

[
Φ

h
n ∈ Kc

L,AL,T

]
+P

[
Ac

L,T
]
= P

[
Φ̃

h,L
n ∈ Kc

L,AL,T

]
+P

[
Ac

L,T
]

≤ ε

2
+P

[
Ac

L,T
]
≤ ε,

if L is large enough. This proves property (i) for g.

Given t ∈ [0,T ], for every ε > 0 there exists a constant NL > 0, such that for every

n≥ NL and for every h = `+1, . . . ,2`,

sup
n≥1

P
[∣∣∣Φ̃h,L

n (t)
∣∣∣> δ

]
<

ε

2
. (4.4.13)

Again, this implies that

P
[∣∣∣Φh

n(t)
∣∣∣> δ

]
≤ P

[∣∣∣Φh
n(t)
∣∣∣> δ ,AL,T

]
+P

[
Ac

L,T
]
= P

[∣∣∣Φ̃h,L
n (t)

∣∣∣> δ ,AL,T

]
+P

[
Ac

L,T
]

≤ ε

2
+P

[
Ac

L,T
]
≤ ε,

if L is large enough, which proves property (ii) for g.

Moreover, if α = 1
2`+1 , then for every 0 ≤ t1 ≤ ·· · ≤ td ≤ T there exists ML ∈ N,

such that for all n≥ML,

∣∣∣E[(φ(Φ̃`,L
n (t1), . . . ,Φ̃`,L

n (td))−φ(Z̃L
t1, . . . , Z̃

L
td))1B∩AL,T

]∣∣∣< ε

2
, (4.4.14)

and if t ∈ [0,T ] and α > 1
2`+1 , there exists RL ∈ N, such that for all n≥ RL,

sup
n≥1

P
[∣∣∣Φ̃`,L

n (t)
∣∣∣> δ

]
<

ε

2
. (4.4.15)
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Similarly, we have

∣∣∣E[(φ(Φ`
n(t1), . . . ,Φ

`
n(td))−φ(Zt1, . . . ,Ztd))1B

]∣∣∣
≤
∣∣∣E[(φ(Φ̃`,L

n (t1), . . . ,Φ̃`,L
n (td))−φ(Z̃L

t1, . . . , Z̃
L
td))1B1AL,T

]∣∣∣+2 sup
x∈Rd
|φ(x)|P

[
Ac

L,T
]

≤ ε

2
+2 sup

x∈Rd
|φ(x)|P

[
Ac

L,T
]

and

P
[∣∣∣Φh

n(t)
∣∣∣> δ

]
≤ P

[∣∣∣Φh
n(t)
∣∣∣> δ ,AL,T

]
+P

[
Ac

L,T
]
= P

[∣∣∣Φ̃h,L
n (t)

∣∣∣> δ ,AL

]
+P

[
Ac

L,T
]

≤ ε

2
+P

[
Ac

L,T
]
.

Taking L large enough we conclude that properties (iii) and (iv) hold for g.

Therefore, we can assume without loss of generality that f has compact support.

Relations (i), (ii) and (iv), for f compactly supported follow from Lemma 4.4.1, while

relation (iii) follows from Lemma 4.4.2. Modulo these two lemmas, which we state

below, the proof of Theorem 4.1.2 is now complete.

Lemma 4.4.1. Assume that α ≥ 1
2h+1 . Consider the process Φh

n, h = `, . . . ,2` defined

in (4.4.5), for f ∈ C 8`+2(R) with compact support. Then,

1. The sequence of processes {Φh
n}n≥1, is tight in D[0,∞), for h = `, . . . ,2`.

2. If h≥ `+1, then Φh
n

P→ 0, in the topology of D[0,∞), as n→ ∞.

3. If α > 1
2`+1 , then Φ`

n
P→ 0, in the topology of D[0,∞), as n→ ∞.
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Proof. Fix h, `≤ h≤ 2`. As in Section 4.3, c0,h, . . . ,ch,h will denote the coefficients of

the Hermite expansion of x2h+1, namely,

x2h+1 =
h

∑
u=0

cu,hH2(h−u)+1(x).

Then, we can write

∆X2h+1
j
n

ξ
2h+1
j,n

=
h

∑
u=0

cu,h H2(h−u)+1

(
∆X j

n

ξ j,n

)
=

h

∑
u=0

cu,h δ

∂
⊗2(h−u)+1
j
n

ξ
2(h−u)+1
j,n

 .

To prove the result, we use the above relation to write the process Φh
n as a sum of

multiple Skorohod integrals plus a remainder term that converges uniformly to zero on

compact intervals. Indeed, we can write, for h = `, . . . ,2`,

Φ
h
n(t) = κν ,h

bntc−1

∑
j=0

h

∑
u=0

cu,hξ
2u
j,n f (2h+1)(X̃ j

n
)δ 2h+1−2u(∂⊗2h+1−2u

j
n

).

Hence, applying Lemma 1.2.1 with F = f (2h+1)(X̃ j
n
), q= 2h+1−2u and u= ∂

⊗2h+1−2u
j
n

,

we obtain

Φ
h
n(t) = κν ,h

h

∑
u=0

2h+1−2u

∑
r=0

(
2h+1−2u

r

)
cu,hΘ

n
u,r(t), (4.4.16)

where the random variable Θn
u,r(t), for h = `, . . . ,2` fixed, is defined by

Θ
n
u,r(t) = δ

2h+1−2u−r
( bntc−1

∑
j=0

ξ
2u
j,n f (2h+1+r)(X̃ j

n
)∂⊗2h+1−2u−r

j
n

〈
ε̃ j

n
,∂ j

n

〉r

H

)
.
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By (4.4.16), we can decompose the process Φh
n(t), as

Φ
h
n(t) = Ψ

h
n(t)+Rh

n(t), (4.4.17)

where

Ψ
h
n(t) = κν ,h

h

∑
u=0

2h−2u

∑
r=0

(
2h+1−2u

r

)
cu,hΘ

n
u,r(t), (4.4.18)

and

Rh
n(t) = κν ,h

h

∑
u=0

cu,h

bntc−1

∑
j=0

ξ
2u
j,n f (4h+2−2u)(X̃ j

n
)
〈

ε̃ j
n
,∂ j

n

〉2h+1−2u

H
.

Therefore, to prove the lemma, it suffices to show the following four claims:

(a) The process Rh
n = {Rh

n(t)}t≥0 converges uniformly to zero in L1(Ω) on compact

intervals, namely, for each T > 0,

E

[
sup

t∈[0,T ]

∣∣∣Rh
n(t)
∣∣∣]→ 0

(b) The process Ψh
n = {Ψh

n(t)}t≥0 is tight in D[0,∞) for all `≤ h≤ 2`.

(c) The process Ψh
n = {Ψh

n(t)}t≥0 converges to zero in D[0,∞) for `+1≤ h≤ 2`.

(d) If α > 1
2`+1 , then the process Ψ`

n = {Ψ`
n(t)}t≥0 converges to zero in probability

in D[0,∞).
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Proof of claim (a): Using inequality (4.5.2), as well as the fact that f has compact

support, we deduce that

E

[
sup

t∈[0,T ]

∣∣∣Rh
n(t)
∣∣∣]≤C

h

∑
u=0

bnTc−1

∑
j=0

E
[∣∣∣ f (4h+2−2u)(X̃ j

n
)
∣∣∣]ξ

2u
j,n

∣∣∣〈ε̃ j
n
,∂ j

n

〉
H

∣∣∣2h+1−2u

≤C
h

∑
u=0

bnTc−1

∑
j=0

n−αu
∣∣∣〈ε̃ j

n
,∂ j

n

〉
H

∣∣∣2h+1−2u
.

Hence, by inequality (4.5.6), there exists a constant C > 0, such that

E

[
sup

t∈[0,T ]

∣∣∣Rh,m
n (t)

∣∣∣]≤C
h

∑
u=0

n−αu−4β (h−u)

=C(n−αh +
h−1

∑
u=0

n−αun−4β (h−u))≤C(n−αh +hn−4β ), (4.4.19)

which implies that supt∈[0,T ]R
h
n converges to zero in L1(Ω), as required.

Proof of claims (b), (c) and (d): Since h ≥ ` and α ≥ (2`+ 1)−1, by the ‘Billingsley

criterion’ (see [4, Theorem 13.5]), it suffices to show that for every 0≤ s≤ t ≤ T , and

p > 2, there exists a constant C > 0, such that

E
[∣∣∣Ψh

n(t)−Ψ
h
n(s)
∣∣∣p]≤Cn

p
2 (1−α(2h+1))

∣∣∣∣bntc−bnsc
n

∣∣∣∣ p
2

. (4.4.20)

Indeed, relation (4.4.20) implies that

E
[∣∣∣Ψh

n(t)−Ψ
h
n(s)
∣∣∣p]≤C

∣∣∣∣bntc−bnsc
n

∣∣∣∣ p
2

,

so that Ψh
n is tight. Moreover, if `+1≥ h or α > 1

2`+1 , then E
[∣∣Ψh

n(t)−Ψh
n(w)

∣∣p]→ 0

as n→ ∞, which implies conditions (c) and (d).
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To prove (4.4.20) we proceed as follows. By (4.4.18), there exists a constant C > 0,

only depending on h,ν and T , such that

∥∥∥Ψ
h
n(t)−Ψ

h
n(s)
∥∥∥

Lp(Ω)
≤C max

0≤u≤h
0≤r≤2h−2u

∥∥Θ
n
u,r(t)−Θ

n
u,r(s)

∥∥
Lp(Ω)

. (4.4.21)

For 0 ≤ u ≤ h and 0 ≤ r ≤ 2h− 2u, define the constant w = 2h+ 1− 2u− r ≥ 1. By

Meyer’s inequality (1.2.2), we have the following bound for the Lp-norm appearing in

the right-hand side of (4.4.21).

∥∥Θ
n
u,r(t)−Θ

n
u,r(s)

∥∥2
Lp(Ω)

=

∥∥∥∥∥δ
w

(
bntc−1

∑
j=bnsc

ξ
2u
j,n f (2h+1+r)(X̃ j

n
)∂⊗w

j
n

〈
ε̃ j

n
,∂ j

n

〉r

H

)∥∥∥∥∥
2

Lp(Ω)

≤C
w

∑
i=0

∥∥∥∥ bntc−1

∑
j=bnsc

ξ
2u
j,n f (2h+1+r+i)(X̃ j

n
)∂⊗w

j
n
⊗ ε̃
⊗i
j
n

〈
ε̃ j

n
,∂ j

n

〉r

H

∥∥∥∥2

Lp(Ω,H⊗(w+i))

=C
w

∑
i=0

∥∥∥∥∥∥
∥∥∥∥∥bntc−1

∑
j=bnsc

ξ
2u
j,n f (2h+1+r+i)(X̃ j

n
)∂⊗w

j
n
⊗ ε̃
⊗i
j
n

〈
ε̃ j

n
,∂ j

n

〉r

H

∥∥∥∥∥
2

H⊗(w+i)

∥∥∥∥∥∥
L

p
2 (Ω)

.

(4.4.22)

From the previous relation, it follows that there exists a constant C > 0, such that

∥∥Θ
n
u,r(t)−Θ

n
u,r(s)

∥∥2
Lp(Ω)

≤ C
w

∑
i=0

∥∥∥∥ bntc−1

∑
j,k=bnsc

ξ
2u
j,nξ

2u
k,n f (2h+1+r+i)(X̃ j

n
) f (2h+1+r+i)(X̃ k

n
)

×
〈

∂ j
n
,∂ k

n

〉w

H

〈
ε̃ j

n
, ε̃ k

n

〉i

H

〈
ε̃ j

n
,∂ j

n

〉r

H

〈
ε̃ k

n
,∂ k

n

〉r

H

∥∥∥∥
L

p
2 (Ω)

.(4.4.23)

Since f has compact support, by applying Minkowski inequality and Cauchy-Schwarz

inequality in (4.4.23), we deduce that

∥∥Θ
n
u,r(t)−Θ

n
u,r(s)

∥∥2
Lp(Ω)

≤C
w

∑
i=0

bntc−1

∑
j,k=bnsc

ξ
2u+r
j,n ξ

2u+r
k,n

∥∥∥ε̃ j
n

∥∥∥i+r

H

∥∥∥ε̃ k
n

∥∥∥i+r

H

∣∣∣〈∂ j
n
,∂ k

n

〉
H

∣∣∣w .
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From here, using the Cauchy Schwarz inequality, it follows that

∥∥Θ
n
u,r(t)−Θ

n
u,r(s)

∥∥2
Lp(Ω)

≤C
bntc−1

∑
j,k=bnsc

ξ
2u+r
j,n ξ

2u+r
k,n

∣∣∣〈∂ j
n
,∂ k

n

〉
H

∣∣∣w
≤C

bntc−1

∑
j,k=bnsc

ξ
2h
j,nξ

2h
k,n

∣∣∣〈∂ j
n
,∂ k

n

〉
H

∣∣∣ .
Consequently, we get

∥∥Θ
n
u,r(t)−Θ

n
u,r(s)

∥∥2
Lp(Ω)

≤C
bntc−bnsc−1

∑
x=0

bntc−1−x

∑
j=bnsc

ξ
2h
j,nξ

2h
j+x,n

∣∣∣〈∂ j
n
,∂ j+x

n

〉
H

∣∣∣ . (4.4.24)

Then the estimate (4.4.20) will follow from

ξ
2h
j,nξ

2h
j+x,n

∣∣∣〈∂ j
n
,∂ j+x

n

〉
H

∣∣∣≤Cn−α(2h+1)x−1−δ , (4.4.25)

for some δ > 0 and for all x≥ 3 and bnsc ≤ j ≤ bntc−1. Set

Ĝ( j, j+ x) = ξ
2h
j,nξ

2h
j+x,n|

〈
∂ j

n
,∂ j+x

n

〉
H
|.

By considering the cases j = 0, j ≥ x+ 2 and 1 ≤ j ≤ x+ 2, for x ≥ 3, we obtain the

following bounds:

Case j = 0: Using (4.1.3) and (4.5.2), we get

Ĝ(0,x)≤Cn−(2αh+2β )|φ(x+1)−φ(x)|

≤Cn−α(2h+1)x−ν .
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Case j ≥ x+2: Using (4.5.3), we deduce that for every j ≥ x−2,

Ĝ( j,x)≤Cn−2β (2h+1) j(2β−α)(h+1)( j+ x)(2β−α)h+α−2

≤Cn−2β (2h+1) j(2β−α)(h+1)( j+ x)(2β−α)hxα−2

≤Cn−2β (2h+1)( j+ x)(2β−α)(2h+1)xα−2 =Cn−α(2h+1)xα−2.

Case j ≤ x+2 : Using (4.5.4), we deduce that for all j ≤ x−2,

Ĝ( j,x)≤Cn−2β (2h+1) j(2β−α)h+2β+ν−2( j+ x)(2β−α)h−ν . (4.4.26)

If ν ≥ 2−α , then

( j+ x)−ν = ( j+ x)α−2( j+ x)2−α−ν ≤ xα−2 j2−α−ν ,

and thus, by (4.4.26),

Ĝ( j,x)≤Cn−2β (2h+1) j(2β−α)(h+1)( j+ x)(2β−α)hxα−2 ≤Cn−α(2h+1)xα−2. (4.4.27)

On the other hand, if ν ≤ 2−α , then by (4.4.26),

Ĝ( j,x)≤Cn−2β (2h+1) j(2β−α)h+2β−α( j+ x)(2β−α)h−ν

≤Cn−2β (2h+1) j(2β−α)(h+1)( j+ x)(2β−α)hx−ν

≤Cn−α(2h+1)x−ν . (4.4.28)

The proof of the lemma is now complete.

Lemma 4.4.2. Assume that α = 1
2`+1 and let 0≤ t1 ≤ ·· · ≤ td ≤ T be fixed. Define Φ`

n

and Z by (4.4.5) and (4.4.8) respectively, for some function f with compact support.
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Then,

(Φ`
n(t1), . . . ,Φ

`
n(td))

stably→ (Zt1, . . . ,Ztd). (4.4.29)

Proof. We follow the small blocks-big blocks methodology (see [5] and [10]). Let

2≤ p < n. For k ≥ 0, define the set

Ik = { j ∈ {0, . . . ,bntc−1} | k
p
≤ j

n
<

k+1
p
}.

The basic idea of the proof of (4.4.29), consists on approximating (Φ`
n(t1), . . . ,Φ

`
n(td))

by the random vector (Φ̃n,p(t1), . . . ,Φ̃n,p(td)), where

Φ̃n,p(t) = κν ,`

bptc

∑
k=0

∑
j∈Ik

f (2`+1)(X k
p
)(∆X j

n
)2`+1.

By Proposition 4.1.1, for every F -measurable and bounded random variable η , the

vector (Φ̃n,p(t1), . . . ,Φ̃n,p(td),η) converges in law, as n tends to infinity, to the vector

(Ξ1
p, . . . ,Ξ

d
p,η), where

Ξ
i
p = κν ,`σ`

bptic

∑
k=0

f (2`+1)(X k
p
)(Yk+1

p
−Y k

p
), for i = 1, . . . ,d.

In turn, when p→ ∞, the random vector (Ξ1
p, . . . ,Ξ

d
p,η) converges in probability to a

random vector with the same law as (Zt1, . . . ,Ztd ,η), which implies (4.4.29), provided

that

lim
p→∞

limsup
n→∞

d

∑
i=0

∥∥∥Φ
`
n(ti)− Φ̃n,p(ti)

∥∥∥
L2(Ω)

= 0. (4.4.30)
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Indeed, if (4.4.30) holds, then for all g : Rd+1→R differentiable with compact support,

and every p≥ 1,

limsup
n→∞

∣∣∣E[g(Φ`
n(t1), . . . ,Φ

`
n(td),η)−g(Zt1, . . . ,Ztd ,η)

]∣∣∣
≤ limsup

n→∞

∣∣∣E[g(Φ`
n(t1), . . . ,Φ

`
n(td),η)−g(Φ̃n,p(t1), . . . ,Φ̃n,p(td),η)

]∣∣∣
+ limsup

n→∞

∣∣∣E[g(Φ̃n,p(t1), . . . ,Φ̃n,p(td),η)−g(Zt1, . . . ,Ztd ,η)
]∣∣∣

= limsup
n→∞

∣∣∣E[g(Φ`
n(t1), . . . ,Φ

`
n(td),η)−g(Φ̃n,p(t1), . . . ,Φ̃n,p(td),η)

]∣∣∣
+
∣∣∣E[g(Ξ1

p, . . . ,Ξ
d
p,η)−g(Zt1, . . . ,Ztd ,η)

]∣∣∣ .
Then, taking p→ ∞, we get

lim
n→∞

∣∣∣E[g(Φ`
n(t1), . . . ,Φ

`
n(td),η)

]
−E [g(zt1, . . . ,Ztd ,η)]

∣∣∣= 0,

as required.

In order to prove (4.4.30) we proceed as follows. Following the proof of (4.4.16),

we can show that

Φ
`
n(ti) = κν ,`

`

∑
u=0

2`+1−2u

∑
r=0

 2`+1−2u

r

cu,`Θ
n
u,r(ti), (4.4.31)

Φ̃n,p(ti) = κν ,`

`

∑
u=0

2`+1−2u

∑
r=0

 2`+1−2u

r

cu,`Θ̃
n,p
u,r (ti), (4.4.32)
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where Θn
u,r(t) and Θ̃

n,p
u,r (t) are defined, for 0≤ u≤ ` and 0≤ r ≤ 2`+1−2u, by

Θ
n
u,r(t) = δ

2`+1−2u−r
( bptic

∑
k=0

∑
j∈Ik

ξ
2u
j,n f (2`+1+r)(X̃ j

n
)∂⊗2`+1−2u−r

j
n

〈
ε̃ j

n
,∂ j

n

〉r
)
,

Θ̃
n,p
u,r (t) = δ

2`+1−2u−r
( bptic

∑
k=0

∑
j∈Ik

ξ
2u
j,n f (2`+1+r)(X k

p
)∂⊗2`+1−2u−r

j
n

〈
ε k

p
,∂ j

n

〉r
)
.

In view of (4.4.31) and (4.4.32), relation (4.4.30) holds true, provided that we show that

for every t ≥ 0

lim
p→∞

limsup
n→∞

∥∥∥Θ
n
u,r(t)− Θ̃

n,p
u,r (t)

∥∥∥
L2(Ω)

= 0. (4.4.33)

We divide the proof of (4.4.33) in several steps.

Step 1. First we prove (4.4.33) in the case r = 2`+ 1− 2u. To this end, it suffices to

show that for every p fixed,

lim
n→∞

∥∥∥∥∥bptc

∑
k=0

∑
j∈Ik

ξ
2u
j,n f (4`+2−2u)(X k

p
)
〈

ε k
p
,∂ j

n

〉2`+1−2u

H

∥∥∥∥∥
L2(Ω)

= 0, (4.4.34)

and

lim
n→∞

∥∥∥∥∥bptc

∑
k=0

∑
j∈Ik

ξ
2u
j,n f (4`+2−2u)(X̃ j

n
)
〈

ε̃ j
n
,∂ j

n

〉2`+1−2u

H

∥∥∥∥∥
L2(Ω)

= 0. (4.4.35)

Relation (4.4.35) was already proved in Lemma 4.4.1 (see inequality (4.4.19)). In order

to prove (4.4.34) we proceed as follows. Since f has compact support, there exists a
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constant C > 0, such that for every u = 0, . . . , `, we have

∥∥∥∥∥bptc

∑
k=0

∑
j∈Ik

ξ
2u
j,n f (4`+2−2u)(X k

p
)
〈

ε k
p
,∂ j

n

〉2`+1−2u

H

∥∥∥∥∥
L2(Ω)

≤C
bptc

∑
k=0

∑
j∈Ik

ξ
2u
j,n

∣∣∣∣〈ε k
p
,∂ j

n

〉
H

∣∣∣∣2`+1−2u

≤C
(

k
p

)2β (`−u)

φ(1)`−u
bptc

∑
k=0

∑
j∈Ik

ξ
2`
j,n

∣∣∣∣〈ε k
p
,∂ j

n

〉
H

∣∣∣∣ ,
where the last inequality follows from Cauchy-Schwarz inequality and (4.0.2). There-

fore, by relation (4.5.2) there exist a constant Ck,p > 0, such that

∥∥∥∥∥bptc

∑
k=0

∑
j∈Ik

ξ
2u
j,n f (4`+2−2u)(X k

p
)
〈

ε k
p
,∂ j

n

〉2`+1−2u

H

∥∥∥∥∥
L2(Ω)

≤Ck,pn−α`
bptc

∑
k=1

∑
j∈Ik

(
k
p

)2β
∣∣∣∣φ (( j+1)p

nk

)
−φ

(
jp
nk

)∣∣∣∣ .
Using the decomposition (4.1.1) we get

∣∣∣∣φ (( j+1)p
nk

)
−φ

(
jp
nk

)∣∣∣∣ ≤ λ

[(
( j+1)p

nk
−1
)α

−
(

jp
nk
−1
)α]

+

∣∣∣∣ψ(( j+1)p
nk

)
−ψ

(
jp
nk

)∣∣∣∣
≤ λ

[(
( j+1)p

nk
−1
)α

−
(

jp
nk
−1
)α]

+ sup
x≥1
|ψ ′(x)| p

nk
.

The sum in j ∈ Ik of this expression is bounded by a constant not depending on n

because the first term produces a telescopic sum and the second term is bounded by a

constant times 1/n. This completes the proof of the convergence (4.4.34).
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Step 2. Next we show (4.4.33) for 0≤ r ≤ 2`−2u. To this end, define the variables

Fn,p
k, j,r = f (2`+1+r)(X̃ j

n
)
〈

ε̃ j
n
,∂ j

n

〉r
− f (2`+1+r)(X k

p
)
〈

ε k
p
,∂ j

n

〉r
.

We aim to show that for every u = 0, . . . , `, and 0≤ r ≤ 2`−2u,

lim
p→∞

limsup
n→∞

∥∥∥∥∥δ
2`+1−2u−r

(
bptc

∑
k=0

∑
j∈Ik

ξ
2u
j,nFn,p

k, j,r∂
⊗2`+1−2u−r
j
n

)∥∥∥∥∥
L2(Ω)

= 0. (4.4.36)

Define w = 2`+1−2u− r. By Meyer’s inequality (1.2.2), we have

∥∥∥∥∥δ
w

(
bptc

∑
k=0

∑
j∈Ik

ξ
2u
j,nFn,p

k, j,r∂
⊗w
j
n

)∥∥∥∥∥
2

L2(Ω)

≤C
w

∑
i=0

∥∥∥∥∥bptc

∑
k=0

∑
j∈Ik

ξ
2u
j,nDiFn,p

k, j,r⊗∂
⊗w
j
n

∥∥∥∥∥
2

L2(Ω;H⊗(w+i))

=C
w

∑
i=0

bptc

∑
k1,k2=0

∑
j1∈Ik1
j2∈Ik2

ξ
2u
j1,nξ

2u
j2,nE

[〈
DiFn,p

k1, j1,r
,DiFn,p

k2, j2,r

〉
H⊗i

]〈
∂ j1

n
,∂ j2

n

〉w

H
.

(4.4.37)

By the Cauchy-Schwarz inequality, we have
∣∣∣∣〈∂ j1

n
,∂ j2

n

〉
H

∣∣∣∣≤ ξ j1,nξ j2,n, and hence,

∣∣∣∣〈∂ j1
n
,∂ j2

n

〉
H

∣∣∣∣w ≤ (ξ j1,nξ j2,n)
2`−2u−r

∣∣∣∣〈∂ j1
n
,∂ j2

n

〉
H

∣∣∣∣ ,
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which, by (4.4.37), implies that

∥∥∥∥∥δ
w

(
bptc

∑
k=0

∑
j∈Ik

ξ
2u
j,nFn,p

k, j,r∂
⊗q
j
n

)∥∥∥∥∥
2

L2(Ω)

≤
w

∑
i=0

bptc

∑
k1,k2=0

∑
j1∈Ik1
j2∈Ik2

ξ
2`−r
j1,n ξ

2`−r
j2,n

∥∥∥DiFn,p
k1, j1,r

∥∥∥
L2(Ω,H⊗i)

∥∥∥DiFn,p
k2, j2,r

∥∥∥
L2(Ω,H⊗i)

∣∣∣∣〈∂ j1
n
,∂ j2

n

〉
H

∣∣∣∣
≤

w

∑
i=0

max
(k, j)∈Jn,p

∥∥∥DiFn,p
k, j,r

∥∥∥2

L2(Ω,H⊗i)

bptc

∑
k1,k2=0

∑
j1∈Ik1
j2∈Ik2

ξ
2`−r
j1,n ξ

2`−r
j2,n

∣∣∣∣〈∂ j1
n
,∂ j2

n

〉
H

∣∣∣∣ ,
(4.4.38)

where Jn,p denotes the set of indices

Jn,p = {(k, j) ∈ N | 0≤ k ≤ bptc+1 and
k
p
≤ j

n
≤ k+1

p
}.

We can easily check that

Fn,p
k, j,r = f (2`+1+r)(X̃ j

n
)

〈
ε̃
⊗r
j
n
− ε
⊗r
k
p
,∂⊗r

j
n

〉
H⊗r

+
(

f (2`+1+r)(X̃ j
n
)− f (2`+1+r)(X k

p
)
)〈

ε k
p
,∂ j

n

〉r

H
,

and hence, we have

DiFn,p
k, j,r = f (2`+1+r+i)(X̃ j

n
)ε̃⊗i

j
n

〈
ε̃
⊗r
j
n
− ε
⊗r
k
p
,∂⊗r

j
n

〉
H⊗r

+ f (2`+1+r+i)(X̃ j
n
)

(
ε̃
⊗i
j
n
− ε
⊗i
k
p

)〈
ε k

p
,∂ j

n

〉r

H

+
(

f (2`+1+r+i)(X̃ j
n
)− f (2`+1+r+i)(X k

p
)
)

ε
⊗i
k
p

〈
ε k

p
,∂ j

n

〉r

H
.
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From the previous equality, and the compact support condition of f , we deduce that

there exists a constant C > 0, such that

∥∥∥DiFn,p
k, j,r

∥∥∥
L2(Ω,H⊗i)

≤C
∥∥∥∥ε̃
⊗i
j
n

∥∥∥∥
H⊗i

∣∣∣∣〈ε̃
⊗r
j
n
− ε
⊗r
k
p
,∂⊗r

j
n

〉
H⊗r

∣∣∣∣+C
∥∥∥∥ε̃
⊗i
j
n
− ε
⊗i
k
p

∥∥∥∥
H⊗i

∣∣∣∣〈ε k
p
,∂ j

n

〉r

H

∣∣∣∣
+
∥∥∥ f (2`+1+r+i)(X̃ j

n
)− f (2`+1+r+i)(X k

p
)
∥∥∥

L2(Ω)

∥∥∥∥ε
⊗i
k
p

∥∥∥∥
H⊗i

∣∣∣∣〈ε k
p
,∂ j

n

〉r

H

∣∣∣∣ ,
and hence,

∥∥∥DiFn,p
k, j,r

∥∥∥
L2(Ω,H⊗i)

≤C
∥∥∥ε̃ j

n

∥∥∥i

H

∥∥∥∥ε̃
⊗r
j
n
− ε
⊗r
k
p

∥∥∥∥
H⊗r

∥∥∥∂ j
n

∥∥∥r

H
(4.4.39)

+C
∥∥∥∥ε̃
⊗i
j
n
− ε
⊗i
k
p

∥∥∥∥
H⊗i

∥∥∥ε k
p

∥∥∥r

H

∥∥∥∂ j
n

∥∥∥r

H

+
∥∥∥ f (2`+1+r+i)(X̃ j

n
)− f (2`+1+r+i)(X k

p
)
∥∥∥

L2(Ω)

∥∥∥ε k
p

∥∥∥r+i

H

∥∥∥∂ j
n

∥∥∥r

H
.

Using the Cauchy-Schwarz inequality, as well as (4.0.2), we have that for every γ ∈ N,

γ ≥ 1, there exists a constant C > 0 such that

∥∥∥∥ε̃
⊗γ

j
n
− ε
⊗γ

k
p

∥∥∥∥
H⊗γ

≤
∥∥∥ε̃ j

n
− ε k

p

∥∥∥
H

γ−1

∑
i=0

∥∥∥ε̃ j
n

∥∥∥i

H

∥∥∥ε k
p

∥∥∥γ−1−i

H
≤C

∥∥∥ε̃ j
n
− ε k

p

∥∥∥
H
.

As a consequence, by (4.4.39), there exists a constant C > 0 such that

∥∥∥DiFn,p
k, j,r

∥∥∥
L2(Ω,H⊗i)

≤Cξ
r
j,n

(∥∥∥ε̃ j
n
− ε k

p

∥∥∥
H
+
∥∥∥ f (2`+1+r+i)(X̃ j

n
)− f (2`+1+r+i)(X k

p
)
∥∥∥

L2(Ω)

)

≤Cξ
r
j,n

(
E

 sup
|t−s|≤ 1

p

∣∣∣X̃t−Xs

∣∣∣2
 1

2

+E

 sup
|t−s|≤ 1

p

∣∣∣ f (2`+1+r+i)(X̃t)− f (2`+1+r+i)(Xs)
∣∣∣2
 1

2 )
.
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From the previous inequality, we deduce that the function

Qp = sup
n≥1

ξ
−2r
j,n

q

∑
i=0

max
(k, j)∈Jn,p

∥∥∥DiFn,p
k, j,r

∥∥∥2

L2(Ω,H⊗i)
,

satisfies limp→∞ Qp = 0. Hence, by (4.5.2) and (4.4.38),

∥∥∥∥∥δ
q

(
bptc

∑
k=0

∑
j∈Ik

ξ
2u
j,nFn,p

k, j,r∂
⊗q
j
n

)∥∥∥∥∥
2

L2(Ω)

≤CQp

bptc

∑
k1,k2=0

∑
j1∈Ik1
j2∈Ik2

ξ
2`
j1,nξ

2`
j2,n

∣∣∣∣〈∂ j1
n
,∂ j2

n

〉
H

∣∣∣∣
=CQp

bntc

∑
i1,i2=0

ξ
2`
i1,nξ

2`
i2,n

∣∣∣∣〈∂ i1
n
,∂ i2

n

〉
H

∣∣∣∣
≤CQp

bntc−1

∑
x=0

bntc−1−x

∑
j=0

ξ
2`
j,nξ

2`
j+x,n

∣∣∣〈∂ j
n
,∂ j+x

n

〉
H

∣∣∣ .
(4.4.40)

Using the previous inequality, as well as (4.4.25), we deduce that

∥∥∥∥∥δ
q

(
bptc

∑
k=0

∑
j∈Ik

ξ
2u
j,nFn,p

k, j,r∂
⊗q
j
n

)∥∥∥∥∥
2

L2(Ω)

≤CtQp

∞

∑
x=0

n1−α(2`+1)(1+ x)−1−δ , (4.4.41)

for some δ > 0. Since, α = 1
2`+1 , relation (4.4.41) implies that

∥∥∥∥∥δ
q

(
bptc

∑
k=0

∑
j∈Ik

ξ
2u
j,nFn,p

k, j,r∂
⊗q
j
n

)∥∥∥∥∥
2

L2(Ω)

≤CtQp. (4.4.42)

Relation (4.4.36) then follows from (4.4.42) since limp→∞ Qp = 0. The proof is now

complete.
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4.5 Appendix

The following lemmas are estimations on the covariances of increments of X . The proof

of these results relies on some technical lemmas proved by Nualart and Harnett in [20].

In what follows C is a generic constant depending only on the covariance of the process

X .

Lemma 4.5.1. Under (H.1), for 0 < s≤ t we have

E
[
(Xt+s−Xt)

2]= 2λ t2β−αsα +g1(t,s),

where |g1(t,s)| ≤Cst2β−1.

Proof. See [20, Lemma 3.1] and notice that the proof only uses that |ψ ′| is bounded in

(1,2].

Remark 4.5.2. Notice that g1(t,s) satisfies |g1(t,s)| ≤Csαt2β−α , because α < 1 and

α ≤ 2β . Therefore, for any 0 < s≤ t, we obtain

E
[
(Xt+s−Xt)

2]≤Csαt2β−α .

With the notation of Section 2.3, this implies

ξ
2
j,n ≤Cn−2β j2β−α . (4.5.1)

On the other hand, we deduce that for every T > 0, there exists C > 0, which depends

on T and the covariance of X, such that

sup
0≤t≤bnTc

E
[
∆X2

t
n

]
≤Cn−α . (4.5.2)
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Lemma 4.5.3. Let j,k,n be integers with n≥ 6 and 1≤ j ≤ k. Under (H.1)-(H.2), we

have the following estimates:

(a) If j+3≤ k ≤ 2 j+2, then

∣∣∣E[∆X j
n
∆X k

n

]∣∣∣≤Cn−2β j2β−αkα−2. (4.5.3)

(b) If k ≥ 2 j+2, then

∣∣∣E[∆X j
n
∆X k

n

]∣∣∣≤Cn−2β j2β+ν−2k−ν . (4.5.4)

Proof. We have

E
[
∆X k

n
∆X j

n

]
= n−2β ( j+1)2β

(
φ

(
k+1
j+1

)
−φ

(
k

j+1

))
−n−2β j2β

(
φ

(
k+1

j

)
−φ

(
k
j

))
= n−2β

(
( j+1)2β − j2β

)(
φ

(
k+1
j+1

)
−φ

(
k

j+1

))
+n−2β j2β

[
φ

(
k+1
j+1

)
−φ

(
k

j+1

)
−φ

(
k+1

j

)
+φ

(
k
j

)]
.

We first show (4.5.3). Condition j+3≤ k≤ 2 j+2 implies that the interval
[

k
j+1 ,

k+1
j

]
is included in the interval [1,5]. Therefore, using (4.1.2) and (4.1.3), we deduce that

there exists a constant C > 0 such that for all x ∈
[

k
j+1 ,

k+1
j

]
,

∣∣φ ′ (x)∣∣≤C(k/ j)α−1.

and ∣∣φ ′′ (x)∣∣≤C(k/ j)α−2.
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The estimate (4.5.3) follows easily from the Mean Value Theorem.

On the other hand k ≥ 2 j + 2 implies that the interval
[

k
j+1 ,

k+1
j

]
is included in

the interval [2,∞]. Therefore, using (4.1.2) and (4.1.3), we deduce that there exists a

constant C > 0 such that for all x ∈
[

k
j+1 ,

k+1
j

]
,

∣∣φ ′ (x)∣∣≤C(k/ j)−ν .

and ∣∣φ ′′ (x)∣∣≤C(k/ j)−ν−1.

Therefore, estimate (4.5.4) follows easily from the Mean Value Theorem. The proof of

the lemma is now complete.

Last, we have two technical results that have been used in the proofs of Theorems

4.1.2 and 4.1.3. For a fixed integer n and nonnegative real t1, t2, note that the notation

of Section 4.2 gives

E[∆X t1
n

∆X t2
n
] =
〈

∂ t1
n
,∂ t2

n

〉
H
.

Lemma 4.5.1. Assume X satisfies (H.1) and (H.2). Then for any integer n≥ 2 and real

T > 0, there is a constant C is a constant which depends on T and the covariance of X,

such that

sup
0≤k≤bnTc−1

bnTc−1

∑
j=0

∣∣∣〈∂ j
n
,∂ k

n

〉
H

∣∣∣≤Cn−α . (4.5.5)

Proof. In view of the estimate (4.5.2), we can assume that n ≥ 6 and 4 ≤ j+3 ≤ k or

4≤ k+3≤ j. If 4≤ j+3≤ k, from the estimates (4.5.3) and (4.5.4), we deduce

∣∣∣〈∂ j
n
,∂ k

n

〉
H

∣∣∣≤Cn−2β j2β−2.
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Summing in the index j we get the desired result, because 2β −1≤ 0 and 2β ≥ α . On

the other hand, if 4≤ k+3≤ j ≤ 2k+2, the estimates (4.5.3) yields

∣∣∣〈∂ j
n
,∂ k

n

〉
H

∣∣∣≤Cn−2β k2β−α jα−2 ≤Cn−α jα−2,

which gives the desired estimate. Finally, if 4 ≤ k + 3 and 2k + 2 ≤ j, the estimate

(4.5.4) yields ∣∣∣〈∂ j
n
,∂ k

n

〉
H

∣∣∣≤Cn−2β k2β+ν−2 j−ν .

If α +ν−2≤ 0, then summing the above estimate in j we obtain the bound

Cn−2β k2β−α+(α+ν−2) ≤Cn−α .

On the other hand, if α +ν−2 > 0, then

Cn−2β k2β+ν−2 j−ν ≤Cn−2β k2β−α

(
k
j

)α+ν−2

jα−2 ≤Cn−α jα−2

and summing in j we get the desired bound.

Lemma 4.5.4. Assume that 0 < α < 1 and let n ≥ 1 be an integer. Then, for every

r ∈ N and T ≥ 0,

bnTc−1

∑
j=0

∣∣∣〈∂ j
n
, ε̃ j

n

〉
H

∣∣∣r ≤Cn−2β (r−1). (4.5.6)

Proof. By (4.0.2),

〈
∂ j

n
, ε̃ j

n

〉
H
=

1
2
E
[
(X j+1

n
−X j

n
)(X j+1

n
+X j

n
)
]
=

1
2
E
[

X2
j+1
n
−X2

j
n

]
= φ(1)Ψn( j),
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where

Ψn( j) =

((
j+1

n

)2β

−
(

j
n

)2β
)
.

We can easily show that Ψn( j)≤Cn−2β , and hence,

bnTc−1

∑
j=0

∣∣∣〈∂ j
n
, ε̃ j

n

〉
H

∣∣∣r = φ(1)r
bnTc−1

∑
j=0

Ψn( j)r ≤Cn−2β (r−1)
bnTc−1

∑
j=0

Ψn( j).

Since the right-hand side of the last inequality is a telescopic sum, we get

bnTc−1

∑
j=0

∣∣∣〈∂ j
n
, ε̃ j

n

〉
H

∣∣∣r ≤Cn−2β (r−1)
(
bnTc

n

)2β

.

Relation (4.5.6) follows from the previous inequality.
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Chapter 5

Collision of eigenvalues for matrix-valued processes.

5.1 Introduction

For r ∈N fixed, consider a centered Gaussian random field ξ = {ξ (t);r ∈Rr
+}, defined

in a probability space (Ω,F ,P), with covariance function given by

E
[
ξ (s)ξ (t)

]
= R(s, t),

for some non-negative definite function R : (Rr
+)

2 → R. Let {ξi, j,ηi, j; i, j ∈ N}, be a

family of independent copies of ξ . For β ∈ {1,2} and d ∈N, with d ≥ 2 fixed, consider

the matrix-valued process Xβ = {Xβ

i, j(t); t ∈ Rr
+, 1≤ i, j ≤ d}, defined by

Xβ

i, j(t) =


ξi, j(t)+ i1{β=2}ηi, j(t) if i < j

(1{β=1}
√

2+1{β=2})ξi,i(t)+ i1{β=2}ηi,i(t) if i = j

ξi, j(t)− i1{β=2}ηi, j(t) if j < i.

(5.1.1)

In accordance to the type of symmetry of Xβ (t), we will refer to X1 and X2 as the

Gaussian orthogonal ensemble process (GOE) and Gaussian unitary ensemble process
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(GUE), respectively. Let Aβ be a fixed Hermitian deterministic matrix, such that Aβ

has real entries in the case β = 1, and complex entries in the case β = 2.

Consider the set of the ordered eigenvalues λ
β

1 (t)≥ ·· · ≥ λ
β

d (t) of

Y β (t) := Aβ +Xβ (t). (5.1.2)

The purpose of this paper is to determine necessary and sufficient conditions under

which, with probability one, we have λ
β

1 (t)> · · ·> λ
β

d (t) for all t belonging to a suit-

able rectangle of Rr
+.

The matrix-valued process Y β was first studied by Dyson for β = r = 1, in the case

where ξ is a standard Brownian. In particular, he proved that the processes λ 1
1 , . . . ,λ

1
d

satisfy a system of stochastic differential equations with non-smooth diffusion coeffi-

cients, as well as the non-collision property

P
[
λ

1
i (t) = λ

1
j (t) for some t > 0 and 1≤ i < j ≤ n

]
= 0. (5.1.3)

For a more recent treatment of these results, see [2, Section 4.3].

Afterwards, Nualart and Pérez-Abreu used Young’s theory of integration, to prove

that in the case where β = r = 1 and ξ is a Gaussian process with Hölder continuous

parths larger than 1
2 , relation (5.1.3) holds. This result can be applied to the case where

X1 is a fractional Brownian matrix with Hurst parameter 1
2 < H < 1. Namely, when

ξ = {ξ (t); t ≥ 0} is centered Gaussian processes with covariance

R(s, t) =
1
2
(t2H + s2H−|t− s|2H). (5.1.4)
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In this manuscript we prove, among other things, that the results presented in [45] are

sharp, in the sense that for H < 1/2, the eigenvalues λ 1
1 , . . . ,λ

1
d collide with positive

probability, and with probability one if A1 = 0. We also give an alternative proof of the

results obtained by Nualart and Pérez-Abreu in [45]. On the other hand, we obtain the

surprising results that for the fractional Hermitian matrix X2, the eigenvalues λ 2
1 , . . . ,λ

2
d

do not collide when H > 1
3 and collide with positive probability (or with probability one

if A2 = 0), when H < 1
3 . The case H = 1

3 cannot be handled with the techniques used

in this paper and remains an open problem.

When ψ(s, t) is of the form (5.1.4) and β = 1, the non-collision property is of great

interest, since it is a necessary condition for characterizing (λ 1
1 , . . . ,λ

1
d ) as the unique

solution of a Young integral equation (in the case where H > 1
2 ), or as an Itô stochastic

differential equation (in the case H = 1
2 ). We refer the reader to [2] and [46] for a proof

of such characterizations.

The goal of this manuscript is to investigate the probability of collision of the eigen-

values λ
β

1 , . . . ,λ
β

d , for ξ belonging to a class of processes that includes the complex

Hermitian and real symmmetric fractional Brownian motion of Hurst parameter H 6= 1
2 .

The proofs of our main results are based on estimations of hitting probabilities for

Gaussian processes, as well as some geometric properties of the set of degenerate ma-

trices. This approach is different from the methodology used in [45] and [2], where the

process (λ 1
1 , . . . ,λ

1
d ) is studied by means of stochastic integral techniques.

5.2 Main results

As mentioned before, the ideas presented in this manuscript rely heavily on the the

hitting probability estimations presented in [3]. In order to apply such results, we will
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assume that the there exists a multiparameter index (H1, . . . ,Hr) ∈ (0,1)r, and an inter-

val

I = [a,b] :=
r

∏
j=1

[a j,b j]⊂ Rr
+, (5.2.1)

with a = (a1, . . . ,ar),b = (b1, . . . ,br) ∈ Rr
+ satisfying ai ≤ bi for 1 ≤ i ≤ r, such that

the following technical conditions hold:

(H1) There exist strictly positive and finite constants c2,1,c2,2 and c2,3 such that E
[
ξ (t)2]≥

c2,1 for all t ∈ I and

c2,2

r

∑
j=1

∣∣s j− t j
∣∣2H j ≤ E

[
(ξ (s)−ξ (t))2]≤ c2,3

r

∑
j=1

∣∣s j− t j
∣∣2H j ,

for s, t ∈ I of the form s = (s1, . . . ,sr) and t = (t1, . . . , tr).

(H2) There exists a constant c2,4 > 0 such that for all s = (s1, . . . ,sr), t = (t1, . . . , tr)∈ I,

Var [ξ (t) | ξ (s)]≥ c2,4

r

∑
j=1

∣∣s j− t j
∣∣2H j ,

where Var [ξ (t) | ξ (s)] denotes the conditional variance of ξ (t) given ξ (s).

The collection of random fields satisfying conditions (H1) and (H2) includes, among

others, the fractional Brownian sheet and the solutions to the stochastic heat equation

driven by space-time white noise. Our main results are Theorem 5.2.1 and Corollary

5.2.2 below. The proofs will be presented in Section 5.5.

Theorem 5.2.1. Define Q :=∑
r
j=1

1
H j

. Then, for β = 1,2, we have the following results:
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(i) If Q < β +1,

P
[
λ

β

i (t) = λ
β

j (t) for some t ∈ I and 1≤ i < j ≤ n
]
= 0. (5.2.2)

(ii) If Q > β +1,

P
[
λ

β

i (t) = λ
β

j (t) for some t ∈ I and 1≤ i < j ≤ n
]
> 0. (5.2.3)

In particular, when ξ is a one-parameter fractional Brownian motion with Hurst

parameter H ∈ (0,1), we obtain the following result.

Corollary 5.2.2. If ξ = {ξ (t); t ≥ 0} is a fractional Brownian motion with Hurst pa-

rameter 0 < H < 1 and I = [a,b], where 0 < a < b. we have the following results:

(i) If 1
1+β

< H < 1,

P
[
λ

β

i (t) = λ
β

j (t) for some t ∈ I and 1≤ i, j ≤ n
]
= 0. (5.2.4)

(ii) If 0 < H < 1
1+β

,

P
[
λ

β

i (t) = λ
β

j (t) for some t ∈ I and 1≤ i, j ≤ n
]
> 0. (5.2.5)

Moreover, if either Aβ = 0 or the spectrum of Aβ has cardinality d−1, then

P
[
λ

β

i (t) = λ
β

j (t) for some t > 0 and 1≤ i, j ≤ n
]
= 1. (5.2.6)

Remark 5.2.3. Combining Corollary 5.2.2 with [2, Section 4.3], we conclude that

the condition H ≥ 1
2 is necessary and sufficient for the non-collision property of real
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symmetric fractional Brownian matrices. On the other hand, the critical value for the

collision property for the fractional GUE is H = 1
3 . Nevertheless, our proof of Corollary

5.2.2 is not valid for the critical value H = 1
1+β

. Thus, if β = 2 and H = 1
3 , the non-

collision property for λ 2
1 , . . . ,λ

2
d is still an open problem.

The rest of the paper is organized as follows. Section 3 contains the results from

hitting probabilities for Gaussian fields that we will use throughout the paper. In Section

4, we describe some geometric properties of the set of degenerate Hermitian matrices

of dimension d; namely, the Hermitian matrices with at least one repeated eigenvalue.

Finally, in Section 5 we prove Theorem 5.2.2 and Corollary 5.2.2.

5.3 Hitting probabilities

In this section we present some results on hitting probabilities for Gaussian fields and

their relation to the capacity and Hausdorff dimension of Borel sets. We will closely

follow the work by Biermé, Lacaux and Xiao presented in [3], and we refer the inter-

ested reader to [3, 56, 57] for a detailed treatment of the theory of hitting probabilities.

For n∈N, let W = {(W1(t), . . . ,Wn(t)); t ∈Rr
+} be an n-dimensional Gaussian field,

whose entries are independent copies of ξ . In the sequel, for every q > 0 and any Borel

set F ⊂ Rn, Hq(F) will denote the q-dimensional Hausdorff measure of F and Cα(F)

will denote the Bessel-Riesz capacity of order α of F , defined by

Cα(F) :=
(

inf
µ∈P(F)

∫
Rn

∫
Rn

fα(‖x− y‖)µ(dx)µ(dy)
)−1

, (5.3.1)
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where P(F) is the family of probability measures supported in F and the function

fα : R+→ R+ is defined by

fα(r) :=


r−α if α > 0,

log
( e

r∧1

)
if α = 0,

1 if α < 0.

(5.3.2)

Define as well the Hausdorff dimension dimH(F), by

dimH(F) := inf{q > 0 |Hq(F) = 0}.

We refer the reader to [14, 30] for basic properties of the Hausdorff measure and ca-

pacity of Borel sets. The following results, presented in [3, Theorem 2.1], will be used

to prove Theorem 5.2.1.

Theorem 5.3.1 (Biermé, Lacaux and Xiao). Consider an interval I of the form (5.2.1).

If F ⊂ Rn is a Borel set, then there exist constants c1,c2 > 0, such that

c1Cn−Q(F)≤ P
[
W−1(F)∩ I 6= /0

]
≤ c2Hn−Q(F),

where Q = ∑
r
j=1

1
H j

.

As a consequence, we have the following result.

Corollary 5.3.2. Let F ⊂ Rn be a Borel set. Then

1. If dimH(F)< n−Q, the set W−1(F)∩ I is empty with probability one.

2. If dimH(F)> n−Q, the set W−1(F)∩ I is non-empty with positive probability.
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5.4 Geometric properties of degenerate Hermitian ma-

trices

Let S (d) and H (d) denote the set of real symmetric matrices and complex Hermitian

matrices, respectively. Define

nβ (d) :=

 d(d +1)/2 if β = 1

d2 if β = 2.

In the sequel, we will identify an element x∈Rn1(d) with the unique x̂ = {x̂i, j}1≤i, j≤d ∈

S (d) satisfying x̂i, j = x 1
2 i(1+2d−i)−d+ j, for 1 ≤ i ≤ j ≤ d. In a similar way, we can

identify an element x ∈ Rn2(d) with the unique x̂ ∈H (d) given by

x̂i, j =

 x 1
2 i(1+2d−i)−d if i = j

x 1
2 i(1+2d−i)−d+ j + ixn1(d)+ 1

2 i(2d−i−1)−d+ j if i < j.

We will denote by Φi(x) the i-th largest eigenvalue of x̂. Notice that since (Φ1(x), . . .Φd(x))

are the ordered roots of the characteristic polynomial of x̂, it follows that Φi(x) is con-

tinuous over x for every 1≤ i≤ d.

Define the sets H d
deg and S d

deg by

H d
deg := {x ∈ Rn2(d) | Φi(x) = Φ j(x), for some 1≤ i < j ≤ d}, (5.4.1)

S d
deg := {x ∈ Rn1(d) | Φi(x) = Φ j(x), for some 1≤ i < j ≤ d}. (5.4.2)

We are interested in describing the size of the sets H d
deg and S d

deg. The main results of

this section are Propositions 5.4.5, 5.4.6, 5.4.7 and 5.4.8 which, roughly speaking, state
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that there exist measurable sets S d
in,S

d
out ⊂ Rn1(d) and H d

in ,H
d

out ⊂ Rn2(d), satisfying

S d
in ⊂S d

deg ⊂S d
out and H d

in ⊂H d
deg ⊂H d

out ,

as well as the following properties:

1. S d
in and H d

in are manifolds of dimensions n1(d)−2 and n2(d)−3, respectively.

2. S d
out is the image of a smooth function defined in an open subset of Rn1(d)−2 with

values in Rn1(d) and H d
in is the image of a smooth function defined in an open

subset of Rn2(d)−3 with values in Rn2(d).

In Section 5.5, we will use these properties to show that S d
deg and H d

deg have Hausdorff

dimension n1(d)−2 and n2(d)−3 respectively, which will be an important ingredient

in the proof of Theorem 5.2.1. Notice that after identifying the random matrix Y β (t)

defined in (5.1.2) as a random vector with values in Rnβ (d), we have that

{λ 1
i (t) = λ

1
j (t) for some t ∈ I and 1≤ i < j ≤ n}= {Y 1(t) ∈S d

deg for some t ∈ I},

and

{λ 2
i (t) = λ

2
j (t) for some t ∈ I and 1≤ i < j ≤ n}= {Y 2(t) ∈H d

deg for some t ∈ I}.

Thus, in order to prove Theorem 5.2.1, it suffices to study the hitting probability of

Y 1(t) to S d
deg and Y 2(t) to H d

deg.

To prove the main results of this section, we will require the following terminology

from differential geometry. In the sequel, for every n ∈ N, x ∈ Rn and δ > 0, we will

denote by Bδ (x) the open ball of radius δ and center x. In addition, we will say that an
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Rn-valued function, defined over an open subset of Rm with m ∈ N, is smooth, if it is

infinitely differentiable.

Definition 5.4.1. Let m,n ∈ N be such that m ≤ n. A set M ⊂ Rn is a smooth sub-

manifold of Rn, with dimension m, if for every x0 ∈ M, there exists ε > 0, an open

neighborhood of zero U ⊂ Rm and a smooth mapping

F : U →M,

satisfying F(0) = x0, as well as the following properties:

- F is a homeomorphism from U to M∩Bε(x0).

- For every p∈U, the derivative of F at p, denoted by DFp, is an injective mapping.

If such mapping F exists, we call it a local chart for M covering x0.

If M is a smooth submanifold of Rn, we define its tangent plane at a given point

x ∈M, denoted by T Mx, as the set of vectors of the form α ′(0), where α : (−1,1)→M

is a smooth curve satisfying α(0) = x.

Let M and N be smooth manifolds. We say that f : M→ N is smooth if for every

x ∈M and all charts F and G, covering x and f (x) respectively, the function G−1 ◦ f ◦F

is smooth. In this case, we can define the derivative of f at a given point x ∈M, as the

function D fx : T Mx→ T N f (x), that maps every vector v ∈ T Mx of the form v = α ′(0),

to the vector D fx(v) := d
dt f (α(t))|t=0.

Let f : M→ N be a smooth mapping between manifolds M,N ⊂ Rn. We say that a

point y ∈ N is a regular value for f , if for all x ∈ f−1{y}, the derivative D fx : T Mx→

T Ny is surjective. The following result allows us to identify the level curves of a smooth
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function, as smooth manifolds. Its proof can be found, for instance, in [54, Theo-

rem 9.9].

Theorem 5.4.2 (Preimage theorem). Consider a smooth mapping f : M → N, where

M and N are smooth submanifolds of Rn of dimensions mM and mN respectively, with

mN ≤ mM ≤ n. If y ∈ N is a regular value for f , then f−1{y} is a smooth submanifold

of Rn of dimension mM−mN .

Along the paper we will denote by ‖ · ‖ the Euclidean norm on RN and by 〈·, ·〉 the

corresponding inner product. We will use the same notation for the norm and inner

product in CN .

For d,h ∈ N, let Rd×h denote the set of real matrices of dimensions d×h and let Id

be the identity element of Rd×d . For every integer 0≤ i≤ d, we define the sets

O(d; i) := {A ∈ Rd×(d−i) : A∗A = Id−i}, (5.4.3)

where A∗ is the transpose of A. In the case where i = 0, the set O(d; i) is the orthogonal

group of dimension d, which will be denoted simply by O(d) := O(d;0). Using the

preimage theorem, we can show that O(d; i) is a submanifold of Rd×(d−i) ∼=Rd(d−i), of

dimension d(d−1)−i(i−1)
2 . This result can be proved in the following manner. Consider

the mapping f : Rd×(d−i)→S (d− i), defined by

f (X) := X∗X− Id−i.

Then, for every A ∈ f−1{0}, the derivative of f at A, denoted by D fA, satisfies

D fAB = A∗B+B∗A, for every B ∈ Rd×(d−i). (5.4.4)
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In particular, for every C ∈S (d− i), the matrix B := 1
2AC satisfies D fAB =C, so that

D fA is surjective for every A ∈ f−1{0}. Consequently, zero is a regular value for f ,

and by the preimage theorem, O(d; i) = f−1{0} is a smooth submanifold of Rd×(d−i)

of dimension dim(Rd(d−i))−dim(S (d− i)) = d(d−1)−i(i−1)
2 .

Similarly, for d,h∈N we denote by Cd×h the set of complex matrices of dimensions

d×h, and define

U (d; i) := {A ∈ Cd×(d−i) : A∗A = Id−i}, (5.4.5)

where A∗ denotes the conjugate of the transpose of A. Proceeding as before, we can

show that U (d; i) is a smooth submanifold of Cd×(d−i) ∼= R2d(d−i), of dimension d2−

i2. In particular, the unitary group U (d) := U (d;0) has dimension d2.

In the sequel, for every A ∈ Cd×h, we will denote by A∗, j the j-th column of A,

where 1≤ j ≤ h. Next we will show the following technical result.

Lemma 5.4.1. For every R ∈U (d;2), there exists γ > 0, such that the set

V R
γ := {A ∈U (d;2)∩Bγ(R) :

〈
A∗, j,R∗, j

〉
= |
〈
A∗, j,R∗, j

〉
| for 1≤ j ≤ d−2},

(5.4.6)

is a (d2−d−2)-dimensional submanifold of U (d;2)∩Bγ(R).

Proof. Consider the manifold

Td−2 := {(eiθ1, . . . ,eiθd−2) ∈ Cd−2 : θi ∈ [−π/2,π/2)}.
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We will prove that if γ > 0 is sufficiently small, the point~1 := (1, . . . ,1) is a regular

value for the smooth function f : U (d;2)∩Bγ(R)→ Td−2, defined by

f (A) := (|
〈
A∗,1,R∗,1

〉
|−1 〈A∗,1,R∗,1〉 , . . . , |〈A∗,d−2,R∗,d−2

〉
|−1 〈A∗,d−2,R∗,d−2

〉
).

(5.4.7)

Notice that U (d;2) is a (d2− 4)-dimensional manifold. This implies, by Theorem

5.4.2, that the set V R
γ = f−1{~1} is a (d2−d−2)-dimensional manifold. To check that

~1 is a regular value for f , notice that the tangent plane to Td−2 at~1, consists of the the

set of vectors η ∈Cd−2 of the form η = (iη1, . . . , iηd−2), for ηi ∈R. For such η , there

exists δ > 0, such that the mapping A : (−δ ,δ )→ V R
γ , given by

Ai, j(t) = eiη jtRi, j,

is a curve inside of U (d;2)∩Bγ(R), satisfying D fR(
d
dt f (A(t))

∣∣
t=0) = η . This proves

that~1 is indeed a regular value of f .

The next lemma is a refinement of the well-known continuity property for the eigen-

projections of real symmetric matrices. In the sequel, D(d) will denote the set of diag-

onal real matrices of dimension d. In addition, for every A ∈ Cd×d , the set Sp(A) will

denote the spectrum of A and for λ ∈ Sp(A), EA
λ

will denote the eigenspace associated

to λ . For every w1, . . .wh ∈ Cd , with h ∈ N, we will denote by [w1, . . . ,wh] the element

of Cd×h, whose j-th column is equal to w j for all 1≤ j ≤ h.

Lemma 5.4.3. Let A be a d×d real symmetric matrix, with |Sp(A)|= d−1, such that

A = PDP∗,
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for some P ∈ O(d) and D ∈ D(d). Then, for every ε > 0 there exists δ > 0, such that

for all B ∈S d
deg satisfying

max
1≤i, j≤d

∣∣Ai, j−Bi, j
∣∣< δ , (5.4.8)

there exists a spectral decomposition of the form B = Q∆Q∗, where Q ∈ O(d) and

∆ ∈D(d) satisfy

max
1≤i, j≤d

∣∣Qi, j−Pi, j
∣∣< ε (5.4.9)

and

max
1≤i≤d

|Di,i−∆i,i|< ε. (5.4.10)

Proof. The existence of a matrix ∆ satisfying (5.4.10) follows from the continuity of Φ,

so it suffices to prove (5.4.9). The idea for proving this relation is the following: first we

express the eigenprojections of the degenerate symmetric matrices lying within a small

neighborhood U around A, as matrix-valued Cauchy integrals. This representation al-

lows us to prove that the mapping that sends an element B∈U , to the eigenprojection of

B over its i-th largest eigenvalue, is continuous with respect to the entries of B. Finally,

we will choose a set of eigenvectors for B by applying the (continuous) eigenprojections

of B to the eigenvectors of A. The matrix Q, with columns given by the renormalization

of such eigenvectors will then satisfy (5.4.9).

The detailed proof is as follows. Define λi := Di,i for 1≤ i≤ d, and assume without

loss of generality that λ1 ≤ ·· · ≤ λd−1 = λd . Using the fact that |Sp(A)| = d− 1, we
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get

λ1 < λ2 < · · ·< λd−2 < λd−1 = λd. (5.4.11)

For i = 1, . . . ,d, let C i
A ⊂ C\Sp(A) be any smooth closed curve around λi and denote

by I i
A the closure of the interior of C i

A. Assume that C d−1
A = C d

A and that the diameter

of C i
A is sufficiently small, so that I 1

A , . . . ,I
d−1

A are disjoint. For δ > 0, define the set

Vδ := {B ∈S d
deg | max

1≤i, j≤d

∣∣Ai, j−Bi, j
∣∣< δ}.

Using (5.4.11), as well as the continuity of Φ1, . . . ,Φd and the fact that Vδ ⊂S d
deg, we

can easily show that there exists δ > 0, such that for all B ∈Vδ ,

Φ1(B)< Φ2(B)< · · ·< Φd−2(B)< Φd−1(B) = Φd(B), (5.4.12)

and

Φi(B) ∈I i
A for all B ∈Vδ and 1≤ i≤ d. (5.4.13)

For such δ , define the mapping κ i
A : Vδ →S (d), by

κ
i
A(B) :=

1
2πi

∫
C i

A

(ξ Id−B)−1dξ . (5.4.14)

The matrix κ i
A(B) is the projection over the sum of the eigenspaces associated to eigen-

values of B inside of I i
A (see [32, page 200, Theorem 6]). Thus, using (5.4.12), (5.4.13)

and the fact that I 1
A , . . . ,I

d−1
A are disjoint, we conclude that κ i

A(B) is the projection

over EB
Φi(B)

, for all 1≤ i≤ d.
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From (5.4.14), it follows that the mapping B 7→ κ i
A(B), defined on Vδ , is a continu-

ous function of the entries of B. Let v1, . . . ,vd denote the columns of P and define

w j :=
κ

j
A(B)v

j

‖κ j
A(B)v

j‖
, (5.4.15)

for 1≤ j ≤ d−1 and

wd :=
κd

A(B)v
d

‖κd
A(B)v

d‖
−
〈κd

A(B)v
d,κd−1

A (B)vd−1〉
‖κd

A(B)v
d‖‖κd−1

A (B)vd−1‖2
κ

d−1
A (B)vd−1. (5.4.16)

Since κ
j

A(B) is the projection over EB
Φi(B)

, for all 1 ≤ j ≤ d and B ∈ Vδ , we can easily

check that w1, . . . ,wd are orthonormal eigenvectors for B. Thus, using the continuity of

κ
j

A and the fact that κ i
A(A)v

j = v j for all 1≤ j ≤ d, we deduce that there exists δ ′ > 0,

such that for all B ∈Vδ ′ , the vectors w1, . . . ,wd given by (5.4.15) and (5.4.16), form an

orthonormal base of eigenvectors for B satisfying

max
1≤i, j≤d

∣∣∣v j
i −w j

i

∣∣∣< ε,

where

v j = (v j
1, . . . ,v

j
d), and w j = (w j

1, . . .w
j
d).

Thus, the matrix Q = [w1, . . . ,wd] satisfies B = Q∆Q∗ and (5.4.9), as required.

The next result is the complex version of Lemma 5.4.3, where the sets S (d) and

O(d) are replaced by H (d) and U (d), respectively.
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Lemma 5.4.4. Let A be a d×d complex Hermitian matrix, with |Sp(A)|= d−1, such

that

A = PDP∗,

for some P ∈U (d) and D ∈D(d). Then, for every ε > 0, there exists δ > 0 such that

for all B ∈H d
deg satisfying

max
1≤i, j≤d

∣∣Ai, j−Bi, j
∣∣< δ ,

there exist a spectral decomposition of the form B = Q∆Q∗, where Q ∈ U (d) and

∆ ∈D(d) satisfy the relations

max
1≤i, j≤d

∣∣Qi, j−Pi, j
∣∣< ε and max

1≤i≤d
|Di,i−∆i,i|< ε.

Proof. It follows from arguments similar to those used in the proof of Lemma 5.4.3.

Define the function Λ : Rd−1 → D(d), that maps the vector β = (β1, . . . ,βd−1) ∈

Rd−1, to the matrix Λ(β ) = {Λi, j(β );1≤ i, j ≤ d}, given by

Λi, j(β ) :=

 δi, jβi if 1≤ i≤ d−2

δi, jβd−1 if i = d−1,d.
(5.4.17)

In the next proposition, we bound from above the set S d
deg.
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Proposition 5.4.5. There exists a compactly supported smooth function Π :R
d(d−1)

2 −1→

Rd×d , such that the mapping F : R
d(d−1)

2 −1×Rd−1→S (d), defined by

F(α,β ) := Π(α)Λ(β )Π(α)∗, (5.4.18)

for α ∈ R
d(d−1)

2 −1 and β ∈ Rd−1, satisfies

S d
deg ⊂S d

out := {x ∈ Rn1(d) : x̂ ∈ Im(F)}. (5.4.19)

Proof. For ε > 0, define the interval Jε := (−ε,ε)
d(d−1)

2 −1. First we reduce the problem,

to proving that there exist L ∈N and smooth functions Π1, . . . ,ΠL : R
d(d−1)

2 −1→ Rd×d ,

supported in Jε , such that the mappings F l : Jε ×Rd−1→S (d), defined by

F l(α,β ) := Π
l(α)Λ(β )Πl(α)∗, (5.4.20)

for 1≤ l ≤ L, α ∈ Jε and β ∈ Rd−1, satisfy

S d
deg ⊂ {x ∈ Rn1(d) : x̂ ∈

L⋃
l=1

Im(F l)}. (5.4.21)

To show this reduction, notice that if (5.4.21) holds, then any smooth function Π, sup-

ported in J3εL, satisfying

Π(x) := Π
l(x−3lε,0, . . . ,0)) if x ∈ Bε(3lε,0, . . . ,0)⊂ R

d(d−1)
2 −1,

is such that the mapping (5.4.18) satisfies (5.4.19).
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Therefore, it suffices to find Π1, . . . ,ΠL. The heuristics for constructing such func-

tions is the following: every matrix X ∈S d
deg can be expressed in the form

X = PDP∗,

with D ∈ D(d) and P ∈ O(d). Since X is degenerate, we have some flexibility for

choosing P, due to the fact that if X has eigenvalues µ1, . . . ,µd , and µh = µh+1, then

the eigenspaces EX
µ j

, with µ j 6= µh, completely determine EX
µh

. This allows us to con-

struct P by describing only the eigenvectors associated to EX
µ j

, with µ j 6= µh. We can

show that these spaces can be locally embedded into the set O(d;2), which has di-

mension d(d−1)
2 − 1. Then we extend such local embeddings to compactly supported

Rd×d-valued functions, and apply a compactness argument to obtain the existence of

Π1, . . . ,ΠL.

The detailed construction is as follows. For each matrix R ∈ O(d;2), we have

that R∗R = Id−2, and thus, the columns of R are orthonormal. As a consequence, by

completing {R∗,1, . . . ,R∗,d−2} to an orthonormal basis of Rd , we can choose an element

P∈O(d), such that P∗, j =R∗, j for all 1≤ j≤ d−2. Since O(d;2) is a smooth manifold

of dimension d(d−1)
2 − 1, we have that if γ > 0 is sufficiently small, the set O(d;2)∩

Bγ(R) can be parametrized with a chart ϕ , defined on Jε , for some ε > 0. Namely, the

mapping

ϕ : Jε → O(d;2)∩Bγ(R)

is a diffeomorphism satisfying ϕ(0) = R. Denote by ϕ∗, j the j-th column vector of ϕ .

By construction, every matrix S ∈ O(d;2) of the form S = ϕ(α), with α ∈ Jε , satisfies
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∥∥P∗, j−S∗, j
∥∥< γ for all 1≤ j ≤ d−2, and thus, for γ sufficiently small,

∣∣∣∣∣‖P∗,d−1−
d−2

∑
j=1

〈
S∗, j,P∗,d−1

〉
S∗, j‖−1

∣∣∣∣∣
=

∣∣∣∣∣‖P∗,d−1−
d−2

∑
j=1

〈
S∗, j,P∗,d−1

〉
S∗, j‖−‖P∗,d−1−

d−2

∑
j=1

〈
P∗, j,P∗,d−1

〉
P∗, j‖

∣∣∣∣∣< 1
2
.

As a consequence,
∥∥P∗,d−1−∑

d−2
j=1
〈
ϕ∗, j(α),P∗, j

〉
ϕ∗, j(α)

∥∥ is bounded away from zero

for all α ∈ Jε , and hence, the mapping α 7→ ψ1(α), with

ψ1(α) :=
P∗,d−1−∑

d−2
j=1
〈
ϕ∗, j(α),P∗,d−1

〉
ϕ∗, j(α)∥∥P∗,d−1−∑

d−2
j=1
〈
ϕ∗, j(α),P∗,d−1

〉
ϕ∗, j(α)

∥∥ (5.4.22)

is smooth. Proceeding similarly, we can show that for γ sufficiently small, the mapping

α 7→ ψ2(α), with

ψ2(α) :=
P∗,d−

〈
ψ1(α),P∗,d

〉
ψ1(α)−∑

d−2
j=1
〈
ϕ∗, j(α),P∗,d

〉
ϕ∗, j(α)∥∥P∗,d−

〈
ψ1(α),P∗,d

〉
ψ1(α)−∑

d−2
j=1
〈
ϕ∗, j(α),P∗,d

〉
ϕ∗, j(α)

∥∥ (5.4.23)

is smooth as well. Let Π : R
d(d−1)

2 −1→ Rd×d be any smooth function, supported in Jε ,

such that for all α ∈ Jε/2,

Π∗, j(α) :=


ϕ∗, j(α) if 1≤ j ≤ d−2

ψ1(α) if j = d−1

ψ2(α) if j = d.

(5.4.24)

By construction, Π has the property that

V R
Π := {[Π∗,1(α), . . . ,Π∗,d−2(α)] : α ∈ Jε/2}= ϕ(Jε/2), (5.4.25)
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is an open subset of O(d;2) containing R. Therefore, since O(d;2) is compact and

the collection of sets {V R
Π

: R ∈ O(d;2)} is an open cover for O(d;2), we deduce that

there exist L ∈ N and smooth Rd×d-valued functions Π1, . . . ,ΠL of the form (5.4.24),

supported in intervals of the form Jεl , with εl > 0, such that the sets

Vl = {[Πl
∗,1(α), . . . ,Πl

∗,d−2(α)] : α ∈ Jε/2},

satisfy

O(d;2) =V1∪·· ·∪VL. (5.4.26)

In the sequel, we will assume without loss of the generality that there exists ε > 0, such

that εl = ε for all l = 1, . . . ,L.

By construction, the functions Π1, . . . ,ΠL are smooth and compactly supported, so

it suffices to show that

S d
deg ⊂

⋃
1≤l≤L

{x ∈ Rn1(d) : x̂ ∈ Im(F l)},

where F1, . . .FL are defined by (5.4.20). To this end, take x ∈Sdeg and let Q ∈ O(d)

and ∆ ∈ D(d) be such that x̂ = Q∆Q∗. By permuting the diagonal of ∆ and the

columns of Q if necessary, we can assume that ∆d−1,d−1 = ∆d,d . Applying (5.4.26)

to [Q∗,1, . . . ,Q∗,d−2] ∈ O(d;2), we deduce that there exist 1 ≤ l ≤ L and α ∈ Jε , such

that [Q∗,1, . . . ,Q∗,d−2] = [Πl
∗,1(α), . . . ,Πl

∗,d−2(α)].
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Let ∆ = Λ(β ) for β ∈ Rd−1. To finish the proof, it suffices to show that x̂ =

Πl(α)Λ(β )Πl(α)∗. By construction,

{Πl
∗,1(α), . . . ,Πl

∗,d(α)} and {Q∗,1, . . . ,Q∗,d}

are orthonormal bases of Rd satisfying

{Πl
∗,1(α), . . . ,Πl

∗,d−2(α)}= {Q∗,1, . . . ,Q∗,d−2}.

Thus, span{Πl
∗,d−1(α),Π

l

∗,d(α)}= span{Q∗,d−1,Q∗,d}. In particular, span{Πl
∗,d−1(α),Πl

∗,d(α)}

is contained in the eigenspace associated to ∆d−1,d−1, which implies that Πl
∗,d−1(α),Πl

∗,d(α)

are orthonormal eigenvectors of x̂ with eigenvalue ∆d−1,d−1. From here we conclude

that {Πl
∗,1(α), . . . ,Πl

∗,d(α)} is a basis of eigenvectors for x̂, hence implying that

x̂ = Π
l(α)Λ(β )Πl(α)∗,

as required.

In the next proposition, we bound from above the set H d
deg.

Proposition 5.4.6. There exists a compactly supported smooth function Π̃ : Rd2−d−2→

Cd×d , such that the mapping F̃ : Rd2−d−2→H (d), defined by

F̃(α,β ) := Π̃(α)Λ(β )Π̃(α)∗, (5.4.27)

for α ∈ Rd2−d−2 and β ∈ Rd−1, satisfies

H d
deg ⊂ {x ∈ Rn2(d) : x̂ ∈ Im(F̃)}. (5.4.28)
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Proof. For ε > 0, set J̃ε := (−ε,ε)d2−d−2. Similarly to the proof of Proposition 5.4.5,

it suffices to show that there exist M ∈ N and smooth Cd×d-valued functions Π̃l , with

1≤ l ≤M, supported in J̃ε , with ε > 0, such that the mappings F̃ l : J̃ε×Rd−1→H (d),

defined by

F̃ l(α,β ) := Π̃l(α)Λ(β )Π̃l(α)∗, (5.4.29)

satisfy

H d
deg ⊂H d

out := {x ∈ Rn2(d) : x̂ ∈
M⋃

l=1

Im(F̃ l)}. (5.4.30)

For each R ∈ U (d;2), choose a unitary matrix P ∈ U (d), such that Pi, j = Ri, j for

all 1 ≤ i ≤ d and 1 ≤ j ≤ d− 2. Using the fact that the set V R
ν , defined by (5.4.6),

is a smooth manifold of dimension d2− d− 2 for ν sufficiently small, it follows that

there exist ε,γ > 0, and a smooth diffeomorphism ϕ̃ : J̃ε → V R
γ , such that ϕ̃(0) = R.

Moreover, as in the proof of Proposition 5.4.5, if γ is sufficiently small, the mappings

ψ̃1 and ψ̃2 defined as in (5.4.22) and (5.4.23) (when ϕ is replaced by ϕ̃), are smooth.

Let Π̃ : Rd2−d−2 → Cd×d be any smooth function, supported in J̃d
ε , such that for all

α ∈ J̃ε/2,

Π̃∗, j(α) :=


ϕ̃∗, j(α) if 1≤ j ≤ d−2

ψ̃1(α) if j = d−1

ψ̃2(α) if j = d.

(5.4.31)
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Define the function ζ R : U (d;2)∩ Bγ(R) → U (d;2) by ζ R(A) = {ζ R
i, j(A);1 ≤ i ≤

d and 1≤ j ≤ d−2}, where

ζ
R
∗, j(A) :=

〈
A∗, j,R∗, j

〉−1 |
〈
A∗, j,R∗, j

〉
|A∗, j,

and the set

V R
Π̃,δ

:= {[Π̃∗,1(α), . . . ,Π̃∗,d−2(α)] : α ∈ J̃δ}= ϕ̃(J̃δ ),

for 0 < δ < ε . By the continuity of the inner product in Cd , there exists 0 < ε ′ < ε/2,

such that

ζ
R(ϕ̃(J̃ε ′))⊂ ϕ̃(J̃ε).

By construction, Π̃(0) = P and V R
Π̃,ε ′

is an open subset of U (d;2) containing R, such

that

ζ
R(V R

Π̃,ε ′
)⊂V R

Π̃,ε
.

Therefore, since U (d;2) is compact and the collection {V R
Π̃,ε ′

: R ∈ U (d;2)} is an

open cover for U (d;2), we deduce that there exist M ∈ N, ε ′1,ε1, . . . ,ε
′
M,εM > 0 and

smooth Cd×d-valued functions Π̃1, . . . ,Π̃M, supported in intervals of the form J̃εl , with

ε ′l < εl/2, such that the sets

Ṽl := {[Π̃l
∗,1(α), . . . ,Π̃l

∗,d−2(α)] : α ∈ J̃εl/2},
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satisfy

U (d;2) = Ṽ1∪·· ·∪ṼM, (5.4.32)

and the matrices Rl := [Π̃l
∗,1(0), . . . ,Π̃

l
∗,d−2(0)], with 1≤ l ≤M, satisfy

ζ
Rl(V R

Π̃l ,ε ′l
)⊂V R

Π̃l ,
εl
2
. (5.4.33)

In the sequel, we will assume without loss of the generality that there exist ε,ε ′ > 0,

such that εl = ε and ε ′l = ε ′ for all l = 1, . . . ,M.

By construction, the functions Π̃1, . . . ,Π̃M are smooth and supported in J̃ε , so it

suffices to show relation (5.4.30). To this end, take x ∈H d
deg and let ∆ ∈ D(d), Q ∈

U (d) be such that

x̂ = Q∆Q∗. (5.4.34)

As in the proof of Proposition 5.4.5, we can assume that ∆d−1,d−1 = ∆d,d and thus

there exists β ∈ Rd−1 such that ∆ = Λ(β ). Let B ∈ Cd×(d−2) be given by Bi, j = Qi, j,

for 1 ≤ i ≤ d and 1 ≤ j ≤ d − 2. By (5.4.32), there exists 1 ≤ l0 ≤ M, such that

B ∈ Π̃l0(J̃ε ′). Define P := Π̃l0(0) and R ∈ Cd×(d−2) by Ri, j := Pi, j for all 1 ≤ i ≤ d

and 1 ≤ j ≤ d− 2. Notice that the decomposition (5.4.34) still holds if the columns

of Q are multiplied by any complex number of unit length. Moreover, by (5.4.33),

ζ R(B) belongs to V R
Π̃

l0 ,
εl0
2

, and thus, since the columns of [Q∗,1, . . . ,Q∗,d−2] are scalar

multiples of ζ R(B), by replacing the first d− 2 columns of Q by those of the matrix

ζ R(B) in relation (5.4.34), we can assume that

[Q∗,1, . . . ,Q∗,d−2] = [Π̃l0
∗,1(α), . . . ,Π̃l0

∗,d−2(α)],
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for some α ∈ J̃ε/2. To finish the proof, it suffices to show that x̂ = Π̃l0(α)Λ(β )Π̃l0(α)∗.

By construction,

{Q∗,1 = Π̃
l0
∗,1(α), . . . ,Q∗,d−2 = Π̃

l0
∗,d−2(α),Π̃l0

∗,d−1(α),Π̃l0
∗,d(α)}

and

{Q∗,1, . . . ,Q∗,d}

are orthonormal basis of Cd , and thus, span{Π̃l0
∗,d−1(α),Π̃l0

∗,d(α)}= span{Q∗,d−1,Q∗,d}.

In particular, span{Π̃l0
∗,d−1(α),Π̃l0

∗,d(α)} is contained in the eigenspace associated to

∆d−1,d−1 = ∆d,d , which implies that Π̃
l0
∗,d−1(α),Π̃l0

∗,d(α) are orthonormal eigenvectors

of x̂ with eigenvalue Λd−1,d−1(β ). From here we conclude that

{Π̃l0
∗,1(α), . . . ,Π̃l0

∗,d(α)},

forms a base of eigenvectors for x̂, hence implying that

x̂ = Π̃(α)Λ(β )Π̃(α)∗,

as required. The proof is now complete.

The following result gives sufficient conditions for points x0 ∈Sdeg to have a neigh-

borhood diffeomorphic to Rn1(d)−2.

Proposition 5.4.7. Let x0 ∈S d
deg be such that |Sp(x̂0)|= d−1. Then there exists γ > 0

such that S d
deg∩Bγ(x0) is an (n1(d)−2)-dimensional manifold.
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Proof. The ideas of the proof are similar to those used in Proposition 5.4.5, but in this

case, the compactness argument that leads to (5.4.26), is replaced by a localization

argument for the matrix of eigenvectors of x̂0.

Let P ∈ O(d) and D ∈D(d) be such that

x̂0 = PDP∗.

Since |Sp(x̂0)|= d−1, only one of the eigenvalues D1,1, . . . ,Dd,d of x̂0 is repeated. We

will assume without loss of generality that Dd−1,d−1 = Dd,d . Define Jε , for ε > 0, by

Jε := (−ε,ε)
d(d−1)

2 −1, and let R ∈ O(d;2) be the matrix R = {Ri, j;1≤ i≤ d, 1≤ j ≤

d−2}, with Ri, j = Pi, j for all 1≤ i≤ d and 1≤ j ≤ d−2. Since O(d;2) is a manifold

of dimension d(d−1)
2 −1, there exists γ > 0 and a smooth diffeomorphism

ϕ : Jε → O(d;2)∩Bγ(R),

with ϕ(0) = R. Denote by ϕ∗, j the j-th column vector of ϕ . Proceeding as in the proof

of Proposition 5.4.5, we can show that if γ is sufficiently small, the functions ψ1 and

ψ2 defined in (5.4.22) and (5.4.23) are smooth. Define Π : Jε → O(d) by

Π∗, j(α) :=


ϕ∗, j(α) if 1≤ j ≤ d−2

ψ1(α) if j = d−1

ψ2(α) if j = d,

and F : Jε ×Rd−1→S d
deg by

F(α,β ) := Π(α)Λ(β )Π(α)∗.
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In order to show that S d
deg ∩Bγ(x0) is an (n1(d)− 2)-dimensional manifold, we

will prove that there exist open subsets U ⊂ Jε and V ⊂S d
deg ∩Bγ(x̂0), such that the

mapping

U×Rd−1 → V

(α,β ) 7−→ F(α,β )
(5.4.35)

is a diffeomorphism. To this end, define

r :=
1
2

min
µ,ν∈Sp(x̂0)

µ 6=ν

|µ−ν |. (5.4.36)

Notice that by Lemma 5.4.3, there exists δ > 0 satisfying that for all x∈S d
deg∩Bδ (x̂0),

there exist Q ∈ O(d) and ∆ ∈D(d), such that x̂ = Q∆Q∗,

Q ∈ O(d)∩Bγ/2(P), (5.4.37)

and

∆ ∈D(d)∩Br(D). (5.4.38)

By (5.4.37), there exists α ∈ Jε such that ϕ(α) = [Q∗,1, . . . ,Q∗,d−2]. As a consequence,

since

{Π∗,1(α), . . . ,Π∗,d(α)} and {Q∗,1, . . . ,Q∗,d}

are orthonormal bases of Rd satisfying

{Π∗,1(α), . . . ,Π∗,d−2(α)}= {Q∗,1, . . . ,Q∗,d−2},
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we have that span{Π∗,d−1(α),Π∗,d(α)} = span{Q∗,d−1,Q∗,d}. On the other hand,

by (5.4.38), we have that ∆1,1 < · · · < ∆d−1,d−1 = ∆d,d , and thus, we conclude that

Π∗,d−1(α),Π∗,d(α) are eigenvectors of x̂ with eigenvalue ∆d−1,d−1, hence implying

that

{Π∗,1(α), . . . ,Π∗,d(α)}

is a basis of eigenvectors for x̂ and

x̂ = Π(α)Λ(β )Π(α)∗.

From here it follows that if U ⊂ Rn1(d)−2 and V ⊂ S d
deg are given by V := Bδ (x̂0)

and U := F−1(V ), the mapping (5.4.35) is onto. Therefore, in order to show that the

mapping F defined in (5.4.35) is a diffeomorphism, it suffices to show that the following

conditions hold:

(i) The restriction of F to U is injective,

(ii) The function F−1 is continuous over V ,

(iii) DpF is injective for every p ∈ Jε ×Rd−1.

Notice that condition (iii) implies that F is locally injective, which gives condition (i)

for δ > 0 sufficiently small. Hence, it suffices to show that F−1 is continuous and

DpF is injective for every p ∈ Jε ×Rd−1. We split the proof of these claims into the

following two steps:

Step 1. First we show that F−1 is continuous. Consider a sequence {yn}n≥1 ⊂S d
deg∩

Bδ (x̂0) such that limn yn = y for some y∈S d
deg∩Bδ (x̂0). Consider the elements (αn,βn),(α,β )∈
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Jε ×Rd−1, defined by (αn,βn) = F−1(yn) and (α,β ) := F−1(y), that satisfy

yn = Π(αn)Λ(βn)Π(αn)

and

y = Π(α)Λ(β )Π(α). (5.4.39)

Our aim is to show that limn αn = α and limn βn = β . Condition limn βn = β follows

from the continuity of Φ1, . . . ,Φd . To show that

lim
n

αn = α, (5.4.40)

we proceed as follows. By construction, for all n ∈ N, Π(αn) ∈ O(d)∩Bγ/2(P), and

thus ϕ(αn) ∈O(d;2)∩Bγ/2(R). As a consequence, the sequence {αn}n≥1 is contained

in the compact set K := ϕ−1(O(d;2)∩Bγ/2(R)). Therefore, it suffices to show that

every convergent subsequence {αmn}n≥1 ⊂ {αn}n≥1, satisfies limn αmn = α .

By taking limit as n→ ∞ in the relation ymn = Π(αmn)Λ(βmn)Π(αmn)
∗, we get

y = Π(lim
n

αmn)Λ(β )Π(lim
n

αmn)
∗. (5.4.41)

Assume that Λ(β ) = (µ1, . . . ,µd) for some µ1, . . . ,µd such that µd−1 = µd . Since K ⊂

Jε , then limn αmn belongs to the domain of Π. Moreover, by (5.4.41), we have that

Π∗, j(lim
n

αmn) ∈ Eŷ
µ j for all 1≤ j ≤ d−2. (5.4.42)

On the other hand, since Λ(β ) ∈ Br(D), we have that µ1 > µ2 > · · · > µd−1, and con-

sequently, Eŷ
µ j is one-dimensional for 1≤ j ≤ d−2. Therefore, using (5.4.42) as well
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as the fact that |Π∗, j(limn αmn)|= 1 for all 1≤ j ≤ d, it follows that

Π∗, j(lim
n

αmn) ∈ {Π∗, j(α),−Π∗, j(α)}, (5.4.43)

for all 1≤ j≤ d−2. Since the image of Π∗, j is contained in B 1
2
(Π∗, j(α)), we conclude

that Π∗, j(limn αmn) = Π∗, j(α), which implies that ϕ(limn αmn) = ϕ(α). Therefore,

using the fact that ϕ is a diffeomorphism, we conclude that limn αmn = α , as required.

Step 2. Next we prove that DFp is injective for all p ∈ Jε . Consider an element (a,b) ∈

R
d(d−1)

2 −1×Rd−1 satisfying DFx̂0(a,b) = 0. Then, for ε > 0 sufficiently small, the

curve M : (−ε,ε)→Sdeg∩Bδ (x̂0) given by M(t) := F(ta, tb), satisfies M(0) = x̂0 and

Ṁ(0) = DFx̂0(a,b) = 0. Denote by v1(t), . . . ,vd(t) the columns of Π(ta) and define

µi(t) := Λi,i(tb). Then, we have

M(t)vi(t) = µi(t)vi(t). (5.4.44)

By taking derivative with respect to t in (5.4.44), we get

Ṁ(t)vi(t)+M(t)v̇i(t) = µ̇i(t)vi(t)+µi(t)v̇i(t), for all 1≤ i≤ d,

which, by the condition Ṁ(0) = 0, implies that

M(0)v̇i(0) = µ̇i(0)vi(0)+µi(0)v̇i(0), for all 1≤ i≤ d. (5.4.45)

By taking the inner product with v j(0) in (5.4.45), for j 6= i, we get

〈
v j(0), v̇i(0)

〉
(µ j(0)−µi(0)) = 0.
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In particular, since µd−1 = µd is the only repeated eigenvalue for x̂0, we deduce that for

1≤ i, j ≤ d−1 satisfying i 6= j,

〈
v j(0), v̇i(0)

〉
= 0. (5.4.46)

On the other hand, the condition
∥∥vi(t)

∥∥2
= 1 implies that

〈
v̇i(0),vi(0)

〉
= 0, (5.4.47)

which by (5.4.46) leads to v̇i(0) = 0 for all 1≤ i≤ d−1. Since the last two columns of

Π are smooth functions of the first d−2 (see equations (5.4.22) and (5.4.23)), from the

equations v̇1(0) = · · · = v̇d−1(0) = 0, we conclude that d
dt Π(ta)

∣∣
t=0 = 0. On the other

hand, since Π is a local chart for the manifold O(d;2) around Π(0), the derivative Π̇(0)

is injective, and thus the equation d
dt Π(ta)

∣∣
t=0 = 0 implies that a = 0.

Finally we prove that b = 0. By definition, M(t) = Π(αt)Λ(β t)Π(αt)∗, and hence

Ṁ(t) =
( d

dt
Π(αt)

)
Λ(β t)Π(αt)∗+Π(αt)

d
dt

Λ(β t)Π(αt)∗+Π(αt)Λ(β t)
( d

dt
Π(αt)

)
.

Since a = 0, by evaluating the previous identity at t = 0, we get

0 = Π(0)(Λ̇(0)β )Π(0)∗,

which implies that b = 0. From here we conclude that the only solution to DFx0(a,b) =

0 is (a,b) = 0. This finishes the proof of the injectivity for DFx0 . The proof is now

complete.
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The next result gives a sufficient condition for points x0 ∈Hdeg to have a neighbor-

hood diffeomorphic to Rn2(d)−3.

Proposition 5.4.8. Let x0 ∈Hdeg be such that |Sp(x̂0)| = d − 1. Then, there exists

γ > 0, such that H d
deg∩Bγ(x0) is an (n2(d)−3)-dimensional manifold.

Proof. Let P ∈H (d) and D ∈D(d) be such that

x̂0 = PDP∗.

Since |Sp(x̂0)|= d−1, only one of the eigenvalues D1,1, . . . ,Dd,d of x̂0 is repeated. We

will assume without loss of generality that Dd−1,d−1 = Dd,d . Define J̃ε , for ε > 0, by

J̃ε := (−ε,ε)d2−d−2, and let R ∈U (d;2) be the matrix R = {Ri, j;1 ≤ i ≤ d, 1 ≤ j ≤

d−2}, with Ri, j = Pi, j for all 1≤ i≤ d and 1≤ j≤ d−2. Using the fact that for ν > 0

sufficiently small the set V R
ν given by (5.4.6) is a manifold, we deduce that there exist

ε,γ > 0 and a diffeomorphism

ϕ̃ : J̃ε → V R
γ ,

such that ϕ̃(0) = R. As in the proof of Proposition 5.4.7, we can construct a smooth

function Π : J̃ε → U (d) with entries Πi, j, such that Πi, j(α) = ϕ̃i, j(α) for all α ∈ J̃ε

and 1≤ i≤ d and 1≤ j ≤ d−2.

Define F̃ : J̃ε ×Rd−1→H d
deg by

F̃(α,β ) := Π̃(α)Λ(β )Π̃(α)∗.
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By Lemma 5.4.4, there exists δ > 0 such that for all x ∈H d
deg ∩Bδ (x̂0), there exist

Q ∈U (d) and ∆ ∈D(d), satisfying

x̂ = Q∆Q∗, (5.4.48)

as well as

Q ∈U (d)∩Bγ/2(P) and ∆ ∈D(d)∩Br(∆),

where r is given by (5.4.36). Notice that relation (5.4.48) still holds if we multiply the

j-th column of Q, for 1 ≤ j ≤ d− 2, by 〈P∗, j,R∗, j〉/|〈P∗, j,R∗, j〉|, so we can assume

without loss of generality that [Q∗,1, . . . ,Q∗,d−2]∈ V R
γ . In particular, there exists α ∈ J̃ε

such that ϕ̃(α) = [Q∗,1, . . . ,Q∗,d−2]. Then, by proceeding as in the proof of Proposition

5.4.7, we can show that

x̂ = Π̃(α)Λ(β )Π̃(α)∗

for some β ∈ Rd−1. As a consequence, if we define Ṽ := Bδ (x̂0) and Ũ := F−1(Ṽ ),

then the mapping

Ũ×Rd−1 → Ṽ

(α,β ) 7−→ F̃(α,β )
(5.4.49)

is onto. As in the proof of Proposition 5.4.7, provided that we show the conditions

(ii) F̃−1 is continuous over Ũ

(iii) DF̃p is injective for every J̃ε ,

then the mapping (5.4.49) is a diffeomorphism. The proof of the continuity of F̃−1

follows ideas similar to those from the GOE case. The only argument that needs to be

241



modified is the proof of (5.4.40), since equation (5.4.43) is not necessarily true when

β = 2. To fix this problem, we replace equation (5.4.43) by

Π̃∗,i(lim
n

αmn) = ηΠ̃∗,i(α), for 1≤ i≤ d−2,

which holds for some η ∈C with |η |= 1. Then, by using the fact that [Π∗,1(α), . . . ,Π∗,d−2(α)]

belongs to V R
γ , we conclude that Π̃(limn αmn) = Π̃(α), which in turn implies that

ϕ(limn αmn) = ϕ(α). Then, since ϕ is a diffeomorphism we conclude that limn αmn =

α , as required.

The proof of the injectivity of DFp , for p ∈ J̃ε , follows the same arguments as in

the GOE case, with the exception that identity (5.4.47) must be replaced by

Re(
〈
v̇i(t),vi(t)

〉
) = 0. (5.4.50)

Then, since
〈
vi(t),vi(0)

〉
= |
〈
vi(t),vi(0)

〉
|, we conclude that

〈
vi(t),vi(0)

〉
Cd is real.

This relation can be combined with (5.4.50), in order to get (5.4.47). The rest of the

proof is analogous to Proposition 5.4.7.

5.5 Proof of the main results

This section is devoted to the proofs of Theorem 5.2.1 and Corollary 5.2.2.

Proof of Theorem 5.2.1. The cases β = 1 and β = 2 can be handled similarly, so it

suffices to prove the result for β = 1. First suppose that Q < 2. By Proposition 5.4.5,

there exists an infinitely differentiable mapping F : Rn1(d)−2→S (d), such that S d
deg−
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A1 ⊂ Im(F). As a consequence,

P
[
λ

1
i (t) = λ

1
j (t) for some t ∈ I and 1≤ i < j ≤ d

]
= P

[
X1(t) ∈S d

deg−A1 for some t ∈ I
]

≤ P
[
X1(t) ∈ Im(F) for some t ∈ I

]
.

(5.5.1)

Since the smooth mapping F is defined over Rn1(d)−2, it follows that the set Im(F) has

Hausdorff dimension at most n1(d)−2. Thus, since Q < 2, by Corollary 5.3.2,

P
[
X1(t) ∈ Im(F) for some t ∈ I

]
= 0.

Therefore, by (5.5.1) we get that

P
[
λ

1
i (t) = λ

1
j (t) for some t ∈ I and 1≤ i < j ≤ n

]
= 0,

as required. To prove (5.2.3) in the case Q > 2, choose any x0 ∈ S d
deg satisfying

|Sp(x̂0)| = d − 1. By Lemma 5.4.7, there exists δ > 0, such that S d
deg ∩ Bδ (x0) is

an n1(d)-dimensional manifold. In particular, the Hausdorff dimension of S d
deg is at

least n1(d)− 2. The Hausdorff dimension of the shifted manifold S d
deg−A2 is also

larger than or equal to n1(d)−2. Relation (5.2.3) then follows by Corollary 5.3.2. This

finishes the proof of Theorem 5.2.1.

Proof of Corollary 5.2.2. The cases β = 1 and β = 2 can be handled similarly, so we

will assume without loss of generality, that β = 1. Our goal is to prove that with strictly

positive probability, the eigenvalues of Y 1(t) collide for values of t arbitrarily close to

zero. Corollary 5.2.2 then follows from the representation of the fractional Brownian

motion as a Volterra process and Blumenthal’s zero-one law.
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Suppose that the process ξ is a one dimensional fractional Brownian motion of

Hurst parameter 0 < H < 1. If H > 1
2 , relation (5.2.4) follows from equation (5.2.2) in

Theorem 5.2.1. Moreover, if H < 1
2 , then relation (5.2.5) follows from equation (5.2.3).

Therefore, it suffices to show relation (5.2.6) in the case where H < 1
2 and A1 ∈S d

deg

satisfies either |Sp(A1)|= d−1 or A1 = 0.

The proof of (5.2.6) will be done in several steps.

Step 1. We will show first that there exists δ ′ > 0 such that for any 0 < T < 1,

P
[
λ

1
i (t) = λ

1
j (t) for some t ∈ (0,T ] and 1≤ i < j ≤ n

]
≥ δ

′ > 0. (5.5.2)

We will split the proof of (5.5.2) into the cases A1 = 0 and |Sp(A1)|= d−1.

(i) Suppose |Sp(A1)| = d− 1. Then A1 has exactly one repeated eigenvalue. We will

assume without loss of generality that Φd−1(A1) = Φd(A1). Fix T < 1. By the self-

similarity of X1(t), we can write

P
[
λ

1
i (t) = λ

1
j (t) for some t ∈ (0,T ] and 1≤ i < j ≤ n

]
= P

[
X1(t) ∈ (S d

deg−A1) for some t ∈ (0,T ] and 1≤ i < j ≤ n
]

= P
[
X1(s) ∈ T−H(S d

deg−A1) for some s ∈ (0,1] and 1≤ i < j ≤ n
]

≥ P
[
X1(s) ∈ T−H(S d

deg−A1) for some s ∈ (1/2,1] and 1≤ i < j ≤ n
]
.

(5.5.3)

By Theorem 5.3.1, there exists c1 > 0, such that

P
[
X(s) ∈ T−H(S d

deg−A1) for some s ∈ (1/2,1] and 1≤ i < j ≤ n
]

≥ c1Cn1(d)− 1
H
(T−H(S d

deg−A1)). (5.5.4)
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Let G : (−1,1)n1(d)−2→S d
deg−A1 be a parametrization of the manifold S d

deg−A1

around zero. Consider the probability measure mε(dx) := (2ε)2−n1(d)1[−ε,ε]n1(d)−2(x)dx

and let νε(dx) be the pullback measure of mε under the map x 7→ ε−1G(x). Define fα

by (5.3.2). Since νT H (dx) is a probability measure with support in T−H(S d
deg−A1),

we have

Cn1(d)− 1
H
(T−H(S d

deg−A1))≥
(∫

T−H(S d
deg−A1)

fn1(d)− 1
H
(‖u− v‖)νT H (du)νT H (dv)

)−1

≥
(
(2T H)2(2−n1(d))

∫
(−T H ,T H)2(n1(d)−2)

fn1(d)− 1
H
(T−H‖G(x)−G(y)‖)dxdy

)−1

= 22(n1(d)−2)
(∫

(−1,1)2(n1(d)−2)
fn1(d)− 1

H
(T−H‖G(T Hx)−G(T Hy)‖)dxdy

)−1

.

(5.5.5)

By the mean value theorem, there exists τ ∈ (0,1), depending on T , such that the vector

v(τ) := τ(1− x)+ τy satisfies

T−H(G(T Hx)−G(T Hy)) = T−H d
dτ

G(T H(τ(1− x)+ τy)) = DGv(τ)[x− y]. (5.5.6)

Consider the mapping (w,v) 7→ ‖DGv[w]‖, defined over the compact set K := {(w,v) :

‖w‖ = 1, and v ∈ [−T H ,T H ]n1(d)−2}. By the smoothness of G, this mapping has

a minimizer (w0,τ0). Moreover, since DGv is injective for v near zero, we have that

δ := ‖DGv0[w0]‖> 0. Using this observation as well as relation (5.5.6), we get that

T−H‖G(T Hx)−G(T Hy)‖= ‖x− y‖‖DGv(τ)[‖x− y‖−1(x− y)]‖

≥ δ‖y− x‖.
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Therefore, by (5.5.5), it follows that if n1(d)> 1
H ,

Cn1(d)− 1
H
(T−H(S d

deg−A1))≥ (2δ )2(n1(d)− 1
H )

(∫
(−1,1)2(n1(d)−2)

‖x− y‖
1
H−n1(d)dxdy

)−1

.

The integral in the right-hand side is finite due to the condition 1
H > 2, and thus, there

exists a constant δ ′ > 0, such that

Cn1(d)− 1
H
(T−H(S d

deg−A1))≥ δ
′ > 0. (5.5.7)

By following a similar approach, we can show that (5.5.7) also holds for the case

n1(d) = 1
H , while in the case n1(d) < 1

H , identity (5.5.7) follows from the fact that

fα = 1 for all α > 0. Combining (5.5.3), (5.5.4) and (5.5.7), we conclude that there

exists δ ′ > 0 such that for all T ∈ (0,1), (5.5.2) holds.

(ii) Next we show that relation (5.5.2) holds as well in the case A = 0, if δ ′ > 0 is

sufficiently small. Notice that if A = 0, by the self-similarity of ξ and the homogenity

of the function (Φ1, . . . ,Φd), we have

P
[
λ

1
i (t) = λ

1
j (t) for some t ∈ (0,T ] and 1≤ i < j ≤ n

]
= P

[
Φi(X1(t)) = Φ j(X1(t)) for some t ∈ (0,T ] and 1≤ i < j ≤ n

]
= P

[
Φi(T HX1(t)) = Φ j(T HX1(t)) for some t ∈ (0,1] and 1≤ i < j ≤ n

]
= P

[
λ

1
i (t) = λ

1
j (t) for some t ∈ (0,1] and 1≤ i < j ≤ n

]
≥ P

[
λ

1
i (t) = λ

1
j (t) for some t ∈ [1/2,1] and 1≤ i < j ≤ n

]
.

Relation (5.5.2) for A = 0 then follows from Theorem 5.2.1.
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Step 2. By taking T → 0 in the left hand side of (5.5.2), we get

P

 ⋂
T∈(0,1)

{λ 1
i (t) = λ

1
j (t) for some t ∈ (0,T ] and 1≤ i < j ≤ n}

≥ δ
′ > 0. (5.5.8)

Finally, for i≤ j, we write ξi, j as a Volterra process of the form ξi, j(t)=
∫ t

0 KH(s, t)dWi, j(t),

where the {Wi, j(t); t ≥ 0} are independent standard Brownian motions and

KH(s, t) := cH

((
t/s
)H− 1

2 (t− s)H− 1
2 − (H−1/2)s

1
2−H

∫ t

s
uH− 3

2 (u− s)H− 1
2 du
)
,

where cH := (2H)−
1
2 (1−2H)

∫ 1
0 (1− x)−2HxH− 1

2 dx. We can easily check that

⋂
T∈(0,1)

{λ 1
i (t) = λ

1
j (t) for some t ∈ (0,T ] and 1≤ i < j ≤ n}

belongs to the germ σ -algebra F0+ :=
⋂

s>0 σ{Wi, j(u);0< u≤ s,0≤ i≤ j≤ d}. Thus,

combining (5.5.8) with Blumenthal’s zero-one law, we conclude that

P

 ⋂
T∈(0,1)

{λ 1
i (t) = λ

1
j (t) for some t ∈ (0,T ] and 1≤ i < j ≤ n}

= 1.

The proof is now complete.
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