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Abstract

This thesis is devoted to the study of the convergence in distribution of functionals of
Gaussian processes. Most of the problems that we present are addressed by using an

approach based on Malliavin calculus techniques.
Our main contributions are the following:

First we study the asymptotic law of the approximate derivative of the self-intersection
local time (SILT) in [0, 7’| for the fractional Brownian motion. In order to do this, we
describe the asymptotic behavior of the associated chaotic components and show that

the first chaos approximates the SILT in L.

Secondly, we examine the asymptotic law of the approximate self-intersection local
time process for the fractional Brownian motion. We achieve this in two steps: the first
part consists on proving the convergence of the finite dimensional distributions by using
the ‘multidimensional fourth moment theorem’. The second part consists on proving
the tightness property, for which we follow an approach based on Malliavin calculus

techniques.

The third problem consists on proving a non-central limit theorem for the process of
weak symmetric Riemann sums for a wide variety of self-similar Gaussian processes.
We address this problem by using the so-called small blocks-big blocks methodology

and a central limit theorem for the power variations of self-similar Gaussian processes.

il



Finally, we address the problem of determining conditions under which the eigen-
values of an Hermitian matrix-valued Gaussian process collide with positive probabil-
ity.

The material we present is taken from the manuscripts [26], [27], [[16]], [28], which
are a joint work between professors David Nualart, Daniel Harnett and myself. With

the exception of [28]], all of these papers have been accepted in peer reviewed journals.
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Introduction

The Malliavin calculus designates the theory and applications of a differential calculus,
whose operators act on functionals of general Gaussian processes. It was initiated by
Paul Malliavin and its motivation was the study of the regularity properties for the law
of Wiener functionals, such as the solutions of stochastic differential equations. The
range of its current applications, including density estimates, concentration inequalities,
anticipative stochastic calculus and computations of “Greeks” in mathematical finance,

has considerably broaden.

Our particular interest, is the relation of the theory of Malliavin calculus with limit
theorems in the Wiener space. This relation was first investigated by Nualart and Pec-
cati in a seminal paper of 2005, where a surprising central limit theorem for sequences
of multiple stochastic integrals of a fixed order (nowadays referred to as “fourth mo-
ment theorem™) was proved: in this context, convergence in distribution to the standard

normal law was proved to be equivalent to convergence of just the fourth moment.

There have been many refinements and applications of the fourth moment theo-
rem. Among them is the work by Nourdin and Peccati in [37], where estimations of
the distance in total variation between the law of multiple It6 integrals and the Gaus-
sian distribution are obtained by combining Malliavin calculus techniques with the so-

called Stein’s method, which can be roughly described as a collection of probabilistic



techniques for estimating the distance between probability distributions by means of

differential operators.

Since the publication of the aforementioned results, the interaction between the the-
ory of Malliavin calculus and Stein’s method, has played a major role in the study of
limit theorems in the Wiener space, as it has led to some remarkable new results in-
volving central and non-central limit theorems for functionals of infinite-dimensional
Gaussian fields. One process for which this methodology has been particularly suc-

cessful, is the fractional Brownian motion (fBm for short).

The fBm of Hurst parameter H € (0,1) is a self-similar Gaussian process with
stationary increments and self-similarity exponent H, which generalizes the classical
Brownian motion. It was first introduced by Kolmogorov for modeling turbulence in
liquids, and was further studied by Mandelbrot and Van Ness. The behavior of the fBm
is quite different as we vary the value for H: when H > %, its increments are positively
correlated and for H < %, they are negatively correlated. Moreover, for B € (0,H), its
sample paths are Holder continuous with index B and if H > %, it is a long memory
process. This flexibility on the behavior of the fBm, makes it very interesting for mod-
eling purposes, since the value for H can be adjusted to accurately fit the observations

of the random model we want to describe.

It is natural to ask if a stochastic calculus for fBm can be developed, which is
not obvious since in general this process is not a semimartingale. For this reason, it
is of great interest to investigate the theory of integration for the fractional Brownian
motion as well as its associated local time and self-intersection local time. The self-
intersection local time for the d-dimensional fractional Brownian motion (SILT), is a
stochastic process that measures the amount of time that the trajectories of the fBm

spend intersecting themselves. For the case H = 1/2, the SILT has been studied by



many authors (see Albeverio, Hu and Zhou (1997), Calais and Yor (1987), He, Yang,
Yao and Wang (1995), Hu (1996), Imkeller, Pérez Abreu and Vives (1995), Varadhan
(1969), Yor (1985) and the references therein). The case H # % was first studied by
Rosen in [49] for the planar case (d = 2), and further investigated using techniques

from Malliavin calculus by Hu and Nualart in [23].

One of the objectives of this dissertation, is to address the problem of determining
the fluctuations of the approximations of the SILT, as well as those of the derivative of
the SILT. We will show that, depending on the values of H and d, and after a suitable
renormalization, the SILT converges in law to either a scalar multiple of a Brown-
ian motion or a Rosenblatt process. We prove as well a central limit theorem for the
derivative of the SILT and its chaotic components. Our approach relies heavily on the
multivariated version of the fourth moment theorem and on techniques from Malliavin
calculus. Proving a functional limit theorem for the approximations of the SILT repre-
sents a big challenge, due to the fact that the standard approach for proving tightness
for a sequence of processes is hard to apply in this case. In order to overcome this diffi-
culty, we developed a technique for proving tightness, based on Malliavin calculus and
Meyer inequalities. This technique is new, and of independent interest in probability

theory.

A second problem that we address concerns the integration with respect to self-
similar Gaussian processes. It is well known that if X = {X;},>0 is a general Gaus-
sian process and g is a real smooth function, the integral of g(X) with respect to X
doesn’t exist in a general path-wise sense. Nevertheless, in [15], Gradinaru, Nourdin,
Russo and Vallois proved that when X is a fBm with Hurst parameter H, this integral
can be defined as the limit in probability of suitable v-symmetric Riemann sums, for

some symmetric measure Vv in [0, 1], if the Hurst parameter is strictly bigger than a



maximal threshold of the form (44(v)+2)~!, for some integer £(v) > 0. In the case
where the measure V is given by v(dx) = 3(& + &1), v(dx) = ¢(& +46; /5 + 61) or
v(dx) = 9]—0(750 + 3208 /4 +126; /5 + 32834 + 781 ), the associated Riemann sums are
the Trapezoidal rule, Simpson’s rule and Milne’s rule approximations respectively. The
behavior at the critical value H = (4¢(v)+2)~! was latter studied by Binotto and Nour-
din in [S]], where it was proved that the Symmetric Riemann sums converge in law to
the stochastic integral of g(2¢(V)) (X;) with respect to a standard Brownian motion inde-

pendent of X.

It is natural to ask whether these results hold for more general Gaussian processes.
Part of this thesis consists on determining the behavior of the v-symmetric Riemann
sums of X, in the case where X is self-similar of order B and has increment exponent
o (which is defined by the property E [(X,+S —Xt)z} = O(s%)). The results cover the
cases where X is a fractional, bifractional and subfractional Brownian motion, as well
the case where X is either the Gaussian process introduced by Durieu and Wang in
[[13] or those introduced by Swanson in [32]. It is worth mentioning that when X is a

fractional Brownian motion of Hurst parameter H, and H = (2/(v) +1)~!

, our proof
requires g to have only derivatives of order 8/(v) + 1, thus extending the results from

[5], where g is required to have derivatives of order 20¢(Vv) 44 and moderate growth.

The approach we present here is based on the description of the asymptotic behav-
ior of the Hermite variations of X, which is a topic with an interest on its own, and
wasn’t addressed before for general self-similar Gaussian processes (although it has
been widely studied for the fractional Brownian motion in recent years). We prove that

the process of Hermite variations of X, converges stably to a Gaussian process inde-



pendent of X, satisfying the property of independent increments. In contrast with the
case where X is a fractional Brownan motion (where the limit of the Hermite variations
is a multiple of a standard Brownian motion), for a general self-similar X, the limit
processes obtained from the Hermite variations might not be stationary. Surprisingly,
the transition in the behavior of the symmetric Riemann sums doesn’t occur neces-
sarily when the self-similarity B reaches the critical value (4¢(v)+2)~!, but rather
when the increment exponent o reaches (2£(v) +1)~!. To be precise, we prove con-
vergence in probability for the v-symmetric Riemann sums of X in the case where
a > (2¢(v)+1)~!, while in the case o = (2¢(v)+1)~!, we prove that the v-symmetric
Riemann sums converge to the integral of g(/())(X,) with respect to a suitable Gaus-

sian martingale, independent of X .

The final topic we present is related to the study of the eigenvalues of matrix valued
Gaussian processes. One big technical difficulty related to the study of this topic, is
that the function ® that associates a d X d symmetric matrix to its d-dimensional vec-
tor of ordered eigenvalues, is not smooth around matrices with at least one repeated
eigenvalue. For this reason, it is of great interest to determine conditions under which
the eigenvalues of a matrix-valued Gaussian process of dimension d, don’t collide. The
problem of collision of eigenvalues has been previously studied by Dyson in the Brow-
nian motion case, and more recently by Nualart and Pérez-Abreu in [44] for the fBm

with H > 1.

In this thesis, we determine sharp conditions for general matrix-valued Hermitian
Gaussian fields (including both the case of Hermitian complex matrices and symmetric
real matrices), under which the associated eigenvalues collide. As an application, we

show that the eigenvalues of a real symmetric matrix-valued fractional Brownian mo-



tion of Hurst parameter H € (0, 1), collide when H < % and don’t collide when H > %
while those of a complex Hermitian fractional Brownian motion collide when H < %
and don’t collide when H > % Our approach is based on the relation between hit-
ting probabilities for Gaussian processes with the capacity and Hausdorff dimension of

measurable sets.



Chapter 1

Background

Our main goal for this chapter is to introduce the basic definitions and results related to
Gaussian processes, with particular emphasis on the fractional Brownian motion. The
random elements defined in the sequel will be assumed to be defined in a probability

space (Q,9,P).

1.1 Fractional Brownian motion

Let r > 2. A random vector G = (Gy,...,G,) defined in (Q,¥,P) is said to have r-
dimensional Gaussian distribution if, for every A1,...,A,, the random variable }; | G

has Gaussian distribution. When G has r-dimensional Gaussian distribution we say that

Gi,...,G, are jointly Gaussian.
Notice that the distribution of any r-dimensional Gaussian distribution G = (Gy,...,G,)
is uniquely determined by its mean E[G| = (E[G,],...,E[G,]) and its covariance matrix

Cov[G] = {%; j }1<i j<r» Which is given by

Z,‘J = COV[G,’,GJ‘].



Next we introduce the notion of Gaussian process

Definition 1.1.1. A stochastic process X = {X;};>0 defined in (Q,9,P) is said to be

Gaussian if, for all r > 1 (Xy,,...,X;,) is an r-dimensional Gaussian vector.

The finite dimensional distributions of X are uniquely determined by the mean func-
tion i : Ry — R, defined by p(z) := E[X;]| and the covariance function R : ]R%r — R
given by R(s,t) := Cov[X;,X;]. We will say that X is a centered Gaussian process if

w(t) =0forallr > 0.

One of the most important examples of Gaussian processes is the classical Brow-
nian motion, which is a centered Gaussian process W = {W; },>¢ characterized by the

property
R(s,t) = E[W,W,] =sAt.

The Brownian motion has been a powerful tool for mathematical modeling. It has been
particularly useful for modeling of stock prices, thermal noise in electrical circuits,
queuing and inventory systems, and random perturbations in a variety of other physical,
biological, economic, and management systems. The existence of a Brownian motion
with continuous trajectories can be easily obtained by means of the Kolmogorov exis-
tence theorem and Kolmogorov’s continuity criterion. We refer the interested reader to
[31] for the proof of this claims, as well as for a comprehensive presentation of other

basic properties of the Brownian motion.

A closely related stochastic process is the fractional Brownian motion B = {B; };>

of Hurst parameter H € (0, 1), which is a centered Gaussian process with covariance



function

1
E[BsB;] = R(s,t) := E(SZH—HZH — |t —s|*H).

Notice that when H = % B is a classical Brownian motion. The fractional Brownian
motion was first introduced by Kolmogorov for modeling turbulence in liquids, and was
further studied by Mandelbrot and Van Ness. The behavior of the fractional Brownian
motion is quite different as we vary the value for H: when H > % its increments are
positively correlated and for H < %, they are negatively correlated. Moreover, for § €

(0,H), its sample paths are Holder continuous with index 3, namely,

B;—B
sup u < oo, [P-ae.
O<s<t<T [—S

for every T > 0. Moreover, if H > %, B is a long memory process, in the sense that

Z |CoV (B kn, Br]| = oo
k=1

for all ,t > 0. This flexibility on the behavior of the fractional Brownian motion makes
it very interesting for modeling purposes, since by adjusting the value for H we can ac-

curately fit the observations of the random model we want to describe.

The fractional Brownian motion satisfies the following properties

Law

1. Selfsimilarity: For all ¢ > 0, {c"# B, };>0 = {B:}s>0.

Law

2. Stationarity of increments: For all 4 > 0, (B;,, —B;) = By,.

Law

3. Time inversion: {tzHBl/,},>0 = {B}s~0-



The fractional Brownian motion can be constructed as a Volterra process in the follow-

ing manner

(B }r=0 LéW/O Ky (s,t)dW (1), (1.1.1)

where {W, },>¢ is a classical Brownian motion and

Kp(s,1) :==cp ((t/s)Hi(t — ) (H—1/2)s27H /st =2 (4 — s)Hédu) :

where cy = (2H)*%(1 —2H) fol(l —x)*szH*%dx. The integration in (L.1.1)) should
be understood in the Itd sense (see [31] for details). We refer the interested reader to
[35] for a proof of the identity (I.1.T]), and for a detailed treatment of the basic properties

of the fractional Brownian motion.

1.2 Some elements of Malliavin calculus

In the sequel, X = {(X,(l), . ,Xt(d))},zo will denote a d-dimensional centered Gaus-
sian process with covariance R(s,?) defined in (Q,%,P), namely, the components of
X are independent and identically distributed centered Gaussian processes with covari-
ance R(s,t). In the case where X is a fractional Brownian motion of Hurst parameter
H € (0,1), the notation X and (X1, ..., X(@)) will be replaced by B and (B, ..., B¥)

respectively.

We will denote by .% the G-algebra generated by X, by L?(Q) the space of real
square integrable functions measurable with respect to ¢ and by L?(Q;.%) the space of

real square integrable functions measurable with respect to .%.

10



Next we introduce the basic operators from the theory of Malliavin calculus and
state some of their properties. The results we present in this section will be stated
without proofs, and the reader will be refered to [43, Chapter 1] for a detailed treatment

of these topics.

Denote by $) the Hilbert space obtained by taking the completion of the space of

real step functions on [0, ), endowed with the inner product
(M Vea)y =B (%" =X () =xM) |, for 0<a<p, and0<e<a.

For every 1 < j <d fixed, the mapping Lo, — X,(j ) can be extended to linear isometry
between ) and the Gaussian subspace of L? (Q) generated by the process X (/). We will
denote this isometry by XU)(f), for f € 9. If f € $? is of the form f = (f1,..., f4),
with f; € 9, we set X (f) := Z;?:] XU)(f;). Then f+ X (f) is a linear isometry between
$ and the Gaussian subspace of L% (Q) generated by X.

For any integer ¢ > 1, we denote by (£9)%7 and (£¢) the gth tensor product of
$?, and the gth symmetric tensor product of $¢, respectively. The gth Wiener chaos of

L?*(Q), denoted by 4, is the closed subspace of L?(Q) generated by the variables

d , d
{Hqu(X(J)(fj)H Y gj=q, and fi.....f1 € 9.||fill;, = 1}7
J=1 j=1

where H, is the gth Hermite polynomal, defined by

S}
[

Hy(x) :=(—1)%e? e

11



20+1

We observe that any monomial of the form x~*™", for £ € N, can be expressed as a linear

combination of odd Hermite polynomials with integer coefficients c; ,, namely,

x2r+1 — Z Cj,rH2(r—j)+1 (X) (121)
j=0

For g € N, with ¢ > 1, and f € $? of the form f = (fi,..., f;), with Hfijj =1, we can

write

d
fP=Y fi®---9f,

i1ymig=1
For such f, we define the mapping

d d .

L(re =Y T1Hy .00 X)),
i1ymig=1 j=1

where ¢(i1,...,iy) denotes the number of indices in (i1,...,i;) equal to j. The range

of I, is contained in 7. Furthermore, this mapping can be extended to a linear isom-
etry between $“7 (equipped with the norm /¢! ||- |](ﬁd)®q) and J; (equipped with the
L?()-norm).

It is well known that every .% -measurable, square integrable random variable has a

chaos decomposition of the type

[e)

F=E[F]+ ) Ii(/y),

g=1

for some £, € (). In what follows, we will denote by J,(F), for ¢ > 1, the projec-

tion of F over the gth Wiener chaos .7, and by Jo(F) the expectation of F.

12



Let {e,},>1 be a complete orthonormal system in $?. Given f € (§9)°P, g €
(H9)94 and r € {0,...,p A q}, the rth-order contraction of f and g is the element of

(54)®(P+4-2) defined by

(o)

f®rg= Z <f, €, X & ei,)(y)d)@r & (g,e,-l - ®eir>(fjd)®" )

i ir=1

where f®og = f®g, and for p =g, f @q8 = (f,8) (5¢)24-

Let . denote the set of all cylindrical random variables of the form

=

F :g()?(hl)v'"wx(hn))a

where g : R” — R is an infinitely differentiable function with compact support, and
hj e $4. In the sequel, for every Hilbert space V, we will denote by LZ(Q;V) the set
of square integrable V-valued random variables. The Malliavin derivative of F with

respect to X, is the element of L2 (Q;ﬁd ), defined by

no9 .
DF =Y, S K)o X ()

By iteration, one can define the rth derivative D" for every r > 2, which is an element
of L2(Q; ($H4)%").
For p > 1 and r > 1, the space D"? denotes the closure of .’ with respect to the

norm ||-||p,, defined by

1
P

IFllger = (EHFI”] +LE ["DiF"fﬁ">®f]>

13



The operator D" can be consistently extended to the space D"*”. We denote by 6 the
adjoint of the operator D, also called the divergence operator. A random element u €

LZ(Q;ﬁd ) belongs to the domain of §, denoted by Dom 9, if and only if satisfies
1
|E [(DF,u)ga]| < C,E[F?]?, forevery F € D',

where C, is a constant only depending on u. If u € Dom 8, then the random variable

0(u) is defined by the duality relationship
E[F&(u)] =E [(DF,u)ga],

which holds for every F € D!?. The operator L is defined on the Wiener chaos by
LF =Y —qJ,F, for F € [*(Q),

g=1

and coincides with the infinitesimal generator of the Ornstein-Uhlenbeck semigroup

{Po } >0, which is defined by

o)

Py:=Y e,
q=0

A random variable F belongs to the domain of L if and only if F € D2, and DF €

Dom d, in which case

ODF = —LF.

14



We also define the operator L' as

|
L'F=Y ——J,F, forF € L*(Q).
g=1 4
Notice that L~! is a bounded operator and satisfies LL~!F = F —E[F] for every F €

L?(Q), so that L™ acts as a pseudo-inverse of L. The operator L™! satisfies the follow-

ing contraction property for every F € L?(Q) with E[F] =0,
E[[|pL7'F|l| <E[F?].

Next we state Meyers inequalities (see [43, Theorem 1.5.1]), which is a fundamental
result in the theory of Malliavin calculus, as it implies the continuity of the operator
S over the space A2, The most general version of Meyer’s inequalities, sates that for

every p > 1, there exists a constant ¢, > 0 such that

||5q(”)||]]]>k*q,p < Crp ||D”||]D>kvp(f3®q) . (1.2.2)
Using (T.2.2), we can show that for every F € D*”, with E[F] =0,

8L )1y < p107L gy + B [DLF] 123

lisye)

The proof of this claim can be found in [43) Proposition 1.5.8].

Assume that X is an independent copy of X, and such that X ,)’(v are defined in the
product space (Q x Q,.Z ® Z, P®P). Given arandom variable F € L?(Q), measurable
with respect to the o-algebra generated by X, we can write F = W (f( ), where Wr is a

measurable mapping from RY to R, determined P-a.s. Then, for every 8 > 0 we have

15



the Mehler formula
PyF = [\PF(e—G)? +V1- e—295f)] : (1.2.4)

where E denotes the expectation with respect to P. The operator L' can be expressed

in terms of Py, as follows
L 'F= / PyFd®, for F such that E[F] = 0. (1.2.5)
0
We end this section by stating the following lemma, which has been proved in [38,

Lemma 2.1]:

Lemma 1.2.1. Let g > 1 be an integer. Suppose that F € D92, and let u be a sym-
metric element in Dom&9. Assume that, for any 0 < r+ j < g, <D’F, 3j(u)>5®, €
L>(Q:$H®97"=1). Then, for any r =0,...,q—1, (D'F, u)ger belongs to the domain of

097" and we have

1.2.1 Hermite process

In this section we assume that X = B is a d-dimensional fractional fractional Brownian
motion with Hurst parameter H € (0,1). When H > %, the inner product in the space

$) can be written, for every step functions @, ¥ on [0,0), as

(0, 8)y = H(2H — 1)/R2 o(E)O(V)|E — v 2 agdv. (1.2.6)

+

16



Following [36]], we introduce the Hermite process {%TJ }r>0 of order 2, associated to
the jth component of B, {B,(j )},20, and describe some of its properties. The family of
kernels {@%; [T >0,e € (0,1)} C (H9)*2, defined, for every multi-index i = (i1, i),

1 <iy,ip <d, by

T
QDJ?,T(iaxla-XZ) = 8_2/0\ 5j,i16j,i21[s7s+8] (xl)]]-[s,s-ﬁ-e} (XZ)dsa (1.2.7)

satisfies the following relation for every H > %, and T >0

- 4AH—4 _
lim <(PJ€T7 ¢2T>(ﬁd)®2 = H2(2H — 1)2/ ) |Sl —Sz‘ dsids, = CHT4H 27

£,n—0 [0,T]
(1.2.8)
2
where cy := %. This implies that (piT converges, as € — 0, to an element of
(H4)%2, denoted by 71:% In particular, for every K > 0, (pﬁ K ‘(ﬁd)w is bounded by

some constant Ck g, only depending on K and H. On the other hand, by (1.2.6) and

(1.2.7), we deduce that for every T € [0, K], it holds H(pﬁT ‘(ﬁd)@ < H(pﬁK ‘(f)d)m, and
hence
su < e @l > < su - ) n
nne(0K] Pitir Pite ) e i Be(Ok] 95l ]| 57 (50)22
ene(0,1) ene(0,1)
2
< sup {97kl a2 < Crom (1.2.9)
£€(0,1)

17



The element 77,']];, can be characterized as follows. For any vector of step functions with

compact support f; = (fi(l),...,fi(d)) e H? i=1,2, we have

<7rtj’f1 ®f2>(yjd)®2 - éig})<(P]€,;,f1 ®f2>(3§d)®2

= lime 2H*(2H — 1)*

e—0
T s+& T .

[T [ 1=l s yandgas
i=1,278

and hence
<7szaf1®f2>(ﬁd) 2000~ 1) / H/ Is— 229 (n)ands. (1.2.10)
i=1,2

We define the second order Hermite process {%T] }r>0, With respect to {B,(j )},20, as

i = h(n)).

1.2.2 Central limit theorems via chaos expansion

In the seminal paper [44]], Nualart and Peccati established a central limit theorem for
sequences of multiple stochastic integrals of a fixed order. In this context, assuming
that the variances converge, convergence in distribution to a centered Gaussian law
is actually equivalent to convergence of just the fourth moment. Shortly afterwards,
in [47], Peccati and Tudor gave a multidimensional version of this characterization.
More recent developments on these type of results have been addressed by using Stein’s
method and Malliavin techniques (see the monograph by Nourdin and Peccati [37] and

the references therein).

We will need the following modification of the Peccati-Tudor criterion, in which

we will make use of the notation introduced in Chapter [I]
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Theorem 1.2.1. Let 1 < g1 < q» < --- < qq be positive integers. Consider a sequence
of stochastic processes F, = {F!(t) };>0 of the form F(t) = I,,(hi,(t)), where each hi(t)
is an element of %9 and 1 < i < d. Suppose in addition, that the following conditions

hold for everyt > 0and 1 <i<d:

(i) There exist cy,...,cq > 0, such that for every s,t > 0

. . 2
tim (K (5), (1) ) g e = —-2(5,0). (1.2.11)
qi:

n—soo
(ii) Foralli=1,...,dandr=1,...,q;—1,

lim ||/, () @, B, (1)]| 201 = 0. (1.2.12)

n—soo

Then the finite dimensional distributions of the process Zld: 1 F! converge stably to those

szld:1 vV Qi!CiYi-

We will use as well the following multivariate central limit theorem obtained by

Peccati and Tudor in [47]] (see also Theorems 6.2.3 and 6.3.1 in [37]).

Theorem 1.2.2. For r € N fixed, consider a sequence {F,},>1 of random vectors of
the form F,, = (Fn(l)7...,Fn(r)). Suppose that for i = 1,...,r and n € N, the random
(i)

variables F," belong to L*(Q), and have chaos decomposition
PONEE S
n Z q(f q,z,n)v
g=1

for some f,;, € (5924, Suppose, in addition, that for every q > 1, there is a real
symmetric non negative definite matrix C, = {Cf]’j | 1 <i,j<r}, suchthat the following

conditions hold:
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(i) For every fixed g > 1, and 1 <i,j <r, we have q! <fq7i7n,fq7j7n>(ﬁd)®q — C;J as

n — oo,

(ii) There exists a real symmetric nonnegative definite matrix C = {C" | 1 <i, j<r},

such that C*J = limg_, ):g:l ng.

(iii) Forallq>1andi=1,...,r, the sequence {I,(fq.in)}n>1 converges in law to a

centered Gaussian distribution as n — oo.
C -~ 2 .
(iv) limg_;esup,,~ Zq:Qq! qu-,ivnH(ﬁd)e@q =0, foralli=1,...,r.

Then, F, converges in law as n — oo, to a centered Gaussian vector with covariance

matrix C.
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Chapter 2

Self-intersection local time for the fractional Brownian

motion

Let B = {B;};>0 be a d-dimensional fractional Brownian motion of Hurst parameter
H € (0,1). Fix T > 0. The self-intersection local time of B in the interval [0,T] is

formally defined by
T [t
1::/ /S(B,—Bs)dsdt,
0 Jo

where 6 denotes the Dirac delta function. A rigorous definition of this random variable

may be obtained by approximating the delta function by the heat kernel

1
pel®) ::<2ne>—‘z’exp{—£ux||2}, ceRY

In the case H = %, B is a classical Brownian motion, and its self-intersection local
time has been studied by many authors (see the work by Albeverio (1995), Hu (1996),
Imkeller, Pérez-Abreu and Vives (1995), Varadhan (1969) and Yor (1985) in [[1]], [22],
[25]], [551, [S8]]). In the case H # % the self-intersection local time for B was first stud-
ied by Rosen in [49]] in the planar case and it was further investigated using techniques

from Malliavin calculus by Hu and Nualart in [23]]. In particular, it was proved that the
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approximation of the self-intersection local time of Bin [0,T], defined by

T pt
B = / / pe(B, — By)dsdt, (2.0.1)
0 JO

converges in L? (Q) when H < 5. Furthermore, it was shown that when é <HC<K %,
I£ —E[I£] to converges in L*(Q), and for the case 5; < H < 3, the following limit

theorem holds (see [23 Theorem 2]).

Theorem 2.0.1. If % <H< %, then €2~ (15 —E[I%]) converges in law to a centered

Gaussian distribution with variance 6°T, as € — 0, where the constant 6? is given by

(2.2.3).

The case H = % was addressed as well in [23]], where it was shown that the se-
quence (log(1/ 8))’% (I% — E[I%]) converges in law to a centered Gaussian distribution

with variance o>

log> aS € = 0, where Glzog is the constant given by [23, Equation (42)].

The aim of this paper is to prove a functional version of Theorem[2.0.1} and extend

it to the case % < H < 1. Our main results are Theorems |2.0.2|, |2.().3| and |2.0.4L

Theorem 2.0.2. Let 5; < H < 2, d > 2 be fixed. Then,
d_ 3
(€279 (I8 —B[I£]) }r>0 % {oWr}r=0, (2.0.2)

in the space C|0,0), endowed with the topology of uniform convergence on compact

sets, where W is a standard Brownian motion, and the constant 6? is given by (2.2.3).

We briefly outline the proof of (2.0.2). The proof of the convergence of the finite-
dimensional distributions, is based on the application of a multivariate central limit
theorem established by Peccati and Tudor in [47] (see Section[I.2.2)), and follows ideas

similar to those presented in [23]]. On the other hand, proving the tightness property for
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the process

= d
2

o= ed (1L —R[]),

presents a great technical difficulty. In fact, by the Billingsley criterion (see [4, Theo-
rem 12.3]), the tightness property can be obtained by showing that there exists p > 2,
such that for every 0 < T| < T,

B[|E -

p P
| <cm-mn, (2.0.3)

for some constant C > 0 independent of 71,73 and €. The problem of finding a bound
like comes from the fact that the smallest even integer such that p > 2 1s p =4,
and a direct computation of the moment of order four £ [\I% — 7% ]4] is too complicated
to be handled. To overcome this difficulty, in this paper we introduce a new approach
to prove tightness based on the techniques of Malliavin calculus. Let us describe the

main ingredients of this approach.

First, we write the centered random variable Z := 7%2 - 7;1 as
Z=-8DL7'Z,

where 8, D and L are the basic operators in Malliavin calculus. Then, taking into
consideration that £ [DL’IZ} = 0 we apply Meyer’s inequalities to obtain a bound of

the type

”ZHLP(Q) < Cp||D2L_lZ”LP(Q;(de)®2), (2.0.4)
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for any p > 1, where the Hilbert space $) is defined in Section Notice that

<P£(§t _Es) —E |:pg(§t —Es)] ) dsdt.

Applying Minkowski’s inequality and (2.0.4)), we obtain

3
1Zlr(@) < cpet 0 | DL pe(B, — Bo) | dsd.

<s<t,T1<t<T

Then, we get the desired estimate by choosing p > 2 close to 2, using the self-similarity
of the fractional Brownian motion, the expression of the operator L™! in terms of the
Ornstein-Uhlenbeck semigroup, Mehler’s formula and Gaussian computations. In this
way, we reduce the problem to showing the finiteness of an integral (see Lemma|2.4.3),
similar to the integral appearing in the proof of the convergence of the variances. It
is worth mentioning that this approach for proving tightness has not been used before,

and has its own interest.

In the case H > 43'1’ the process e’ 2H+1(I —E[I%]) also converges in law, in the
topology of C[0,c), but the limit is no longer a multiple of a Brownian motion, but a
multiple of a sum of independent Hermite processes of order two. More precisely, if
{2+ }T>0 denotes the second order Hermite process, with respect to {B }t>0, defined

in Section (1.2} then {I¢} ec(0,1) satisfies the following limit theorem

Theorem 2.0.3. Let H > 3, and d > 2 be fixed. Then, for every T > 0,

2 d .
F_AY 2, (2.0.5)

j=1

g2~ (If ~E[If])
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where the constant A is defined by

2 — oo
A::( 7r2) / (1+2H)~ 5"l du, (2.0.6)
0
In addition,
d_3 +1/7e £ Law d j
{ez7m (Iy —E[Ir]) }r>0 = {_AZ 273150, (2.0.7)

j=1

in the space C|0,0), endowed with the topology of uniform convergence on compact

sets.

We briefly outline the proof of Theorem The convergence is obtained
from the chaotic decomposition of I%. It turns out that the chaos of order two completely
determines the asymptotic behavior of g2 am+1 (If —E[I5]), and consequently, (2.0.5)
can be obtained by the characterization of the Hermite processes presented in [36],
applied to the second chaotic component of /7. Similarly to the case 2371 <H< %, we

d 3 . . . .
show that the sequence €2~ 2 "1 (I& —E[I%]) is tight, which proves the convergence in
law (Z.07).

The technique we use to prove tightness doesn’t work for the case Hd < %, so the
convergence in law of {log(1/ 8)’% (If —E[I%]) }r>0 to a scalar multiple of a Brownian
motion for the case Hd = % still remains open. Nevertheless, for the critical case H = %

and d > 3, the technique does work, and we prove the following limit theorem
Theorem 2.0.4. Suppose H = % and d > 3. Then,

d
g2~!

{Wu%—la[m)}uo%” {oWr}r>0, (2.0.8)

25



in the space C|0,0), endowed with the topology of uniform convergence on compact

sets, where W is a standard Brownian motion, and the constant p is defined by (2.2.52)).

Remark
We impose the stronger condition d > 3 instead of d > 2, since the choice H = %, d=2
gives Hd = %, and as mentioned before, it is not clear how to prove tightness for this

case.

We briefly outline the proof of Theorem The proof of the tightness property
is analogous to the case % <H< %. On the other hand, the proof of the convergence of
the finite dimensional distributions requires a new approach. First we show that, as in
the case H > %, the chaos of order two determines the asymptotic behavior of {5 } r>¢.
Then we describe the behavior of the second chaotic component of /%, which we denote

by J>(I%), and is given by

d d - 3 —
2m) 2€372 T re 3(T—s) 3 2 s
L (IE) = _L / / u—3H2 _stedu duds,
1 0 0 (1+ 2

(2.0.9)
where H, denotes the Hermite polynomial of order 2. Then we show that we can
replace the domain of integration of u by [0,0), and this integral can be approximated

by Riemann sums of the type

() ()
MM 3 T " — By
. dL / Hy | gy, (2.0.10)
2" = (14 uk)s)a+t Jo Jeu(k)i
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where u(k) = ZLM, and M is some fixed positive number. By [11, Equation (1.4)], we

have that, for k fixed, the random variable

o o (B9, BV
((T)=—F——= | H s+eulk) 3 ds
V/log(1/¢g) Jo eu(k)’

converges in law to a Gaussian distribution as € — 0. Hence, after a suitable analysis of
the covariances of the process {&€(T) |2 <k <M2M, and T > 0} and an application

of the Peccati-Tudor criterion (see [47]), we obtain that the process (2.0.10) multiplied

d |
“2¢73 . . .
(2m) e converges to a constant multiple of a Brownian motion py/W,

24/log(1/¢)
for some pys > 0. The result then follows by proving that the approximations (2.0.10)

by the factor

to the integrals in the right-hand side of (2.0.9) are uniform over € € (0,1/e) as M — oo,

and that pp; — p as M — oo.

This chapter is organized as follows. In Section 2 we present some preliminary
results on the fractional Brownian motion and the chaotic decomposition of I%. In Sec-
tion 3, we compute the asymptotic behavior of the variances of the chaotic components
of If as € — 0. The proofs of the main results are presented in Section 4. Finally, in

Section 5 we prove some technical lemmas.
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2.1 Chaos decomposition for the self-intersection local
time

In this section we describe the chaos decomposition of the variable I% defined by

(2.0.1). Let e € (0,1), and T > 0 be fixed. Define the set
B ={(s,t) ERZ | s <1 <1},
For every y > 0, we will denote by Y% the set Y% := {yv | v € Z}. First we write

I = /Rz 175 (s,1)pe(B; — By)dsdt. (2.1.1)

+

We can determine the chaos decomposition of the random variable pg (Ez — Es) appear-
ing in (2.1.1)) as follows. Given a multi-index i, = (i1,...,iy), n € N, 1 <i; < d, we

set

o(in) ;= E[G - G,
where the ; are independent standard Gaussian random variables. Notice that

(2q1)!---(2qa)!
(q1)!---(qa)'24’

a(ing) = (2.1.2)

if n = 2q is even and for each k = 1,...,d, the number of components of i, equal to ,

denoted by 2¢, is also even, and a(i,) = 0 otherwise. Proceeding as in [23, Lemma 7],
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we can prove that

=

pe(B— By) = E [pe(B, ~ B)] +;12q (Fs). 213)

where ffq ,; is the element of (ﬁd)®2q, given by

B (27[)_7 a(iZq) (8 + (f —S)zH)_%_q Iz__qll :H-[SJ} (xj),

Fogsalog: X1, x24) 1= (1) BRI J

(2.1.4)
and

E [pg(é, —Es)] = (2m) " 2(e+ (1 —s5)H)1. (2.1.5)

By @2.1.1), 2.1.3) and 2.1.5), it follows that the random variable /% has the chaos

decomposition
Iy =E[I7]+ illzq(hﬁﬂ), (2.1.6)
g=
where
S, 1 (ing X1, ag) 1= /R 15,0y g, s 2.1.7)
and
E[E] = (21)% /R Lraas.r)(e+ (e —5))~$dsdr. (2.1.8)
+
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In Section 3, we will describe the behavior as € — 0 of the covariance function of
the processes {I} }r>0 and {I(h5, 7)}r>0. In order to address this problem, we will
first introduce some notation that will help us to describe the covariance function of
the variables p¢ (E, — Es) and its chaotic components, which ultimately will lead to an

expresion for the covariance function of 5.

First we describe the inner product < Fogsin: Fogso t2>(ﬁd)®2 . From (2.1.4), we can
i Y ) R q

prove that for every 0 < s <t and 0 < 55 <1,

(21)“ain,)? 24—
fgs. afgs = (2QI7---72Qd)!—(8+(t1_Sl) ) 24
o Ffasin) o= B T
_d_ 2 2
X (64 (1r— 7)) q<ﬂ<§ljd,1(§zjz]>ﬁ®zq, (2.1.9)
(29)!

where (2q1,...,2q4)! denotes the multinomial coefficient (2¢1,...,2¢,)! = IR

2 2 - . . .
174 1% > ,, appearing in the previous expression, we will
HY4q

To compute the term< 510117 Lsao]

introduce the following notation. For every x,u;,u> > 0, define
1 1 1
0 (x, 1, 02) ::E[Bl(”) (chjuz— )E))] (2.1.10)

Define as well p(x,uy,uy), for x < 0, by p(x,uy,uy) := u(—x,up,u;). Using the prop-
erty of stationary increments of B, we can check that for every sy, s2,%1,f, > 0, such that

s1 <t; and 52 < 1, it holds

E [(B,(f) —B§P) (B,<;> _Bg)ﬂ = W(s2— S1,11 — 1,12 — 52). 2.1.11)
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As a consequence, by (2.1.2)) and (2.1.9)),

_ &y 2H 2H\—4
<f'fq,s1,r1vfzsq,sz,rz>(ﬁd)mq—W(EHH—SO )5 e+ (1 — s52) )5

2
X WU(s2— 1,81 — 81,00 —52)79,

where the constant ¢ is defined by

2g1)! - (2g4)!
=Y (2q1)!-- (240)" 2.1.12)
From here we can conclude that

O (q)
<f2£q7s1,t1’ffq,sz,t2>(ﬁd)®2q WG&sz—ﬁ (t1 —s1,t0 — 52), (2.1.13)

where G‘(g?))c(ul ,uy) is defined by

_d_ _d_
Ggg(ul,uz) = (8+M%H) 2 q(s—ku%H) 2 qu(x,ul,uz)zq. (2.1.14)

Now we describe the covariance Cov [pg (Er, — By ) De (B,2 )] Using the

chaos expansion (2.1.3) and (2.1.13), we obtain

Cov |:p€ <§t1 B > Pe (Btz S2>:| Z 2 d22 2 1 (tl _s17t2_S2)-
q=1 )
(2.1.15)

On the other hand, using once more the property of stationary increments of B, we can

prove that for every s1 < tq, and s, <1,

COV |:p8 (Etl _§S1> 7p8 <§l2 _§52>] - F87S2_Sl (tl _S17t2 _S2)7 (2-116)
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where the function Fg ,(u1,u2), for uy,up > 0, is defined by

Fe,x(”l;”Z) = COV [Ps(gul)aps <§x+u2 _§x>} 9 (2117)

in the case x > 0, and by F¢ ((u1,u2) := Fe _(up,u;) in the case x < 0. Proceeding as

in [23]], equations (13)-(14), we can prove that for every uj,u; > 0, x € R,

_d
Fex(ur,u2) = (2m) ¢ {((8 +ui) (e +u3") — p(xur,u2)?)
—(e+u%H)—‘z’(s+u§H)—‘z’], (2.1.18)
and consequently,
— _d _d
Fex(ur,uz) = 2m) (e +ui™) "2 (e +13") >
( )2 _%
Hix,uy,up
1— —1]. 2.1.19
( <s+u%H)(e+u%H)) 1)

From (2.1.13) and (2.1.16)) it follows that the functions Gé?))c(ul,uz) and Fg . (u1,u2)
appearing in (2.1.13)) and (2.1.19) are related in the following manner:

FS,x(UhMZ) = Z ﬁnge,))c(ulyl/lZ); (2.1.20)
q=1

where f3, is defined by

Oy

The functions Ggq)z (u1,u) and F 7x(u1 ,up) satisfy the following useful integrability con-

dition, which was proved in [23, Lemma 13], .
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Lemma 2.1.1. Let % < H< %, and g € N, g > 1 be fixed. Define Ggq)(ul,uz) by

X
2.1.14) and B, by @.1.21). Then,
ﬁq/3 Gng(ul,uz)dxdulduz < /3 Fi (w1, uz)dxduiduy < oo.
R R3

Proof. By (@.1.20), it follows that B,G\”)(u1,15) < Fy «(u1,u). The integrability of
the function Fj (uj,up) over x,uj,up > 0, written as in (2.1.18)), is proved in [23]

Lemma 13] (see equation (40) for notation reference). ]

With the notation previously introduced, we can compute the covariance functions
of the increments of the processes {/}.}7>0 and {lq(h5, ) }7>0 as follows. Define the

set 1, 1, by
= {(s,t) ERE | s<t, and Ty <t < Th}. (2.1.22)

By (2.1.1)) and (2.1.7)), for every 71 < T>, we can write

= =

15, — B[] — (15 —E[I£]) = /R Lo (5,1) (pg (B,— B, —E [pg (B, - ES)} ) dsdt,
and
Izq(hgq,Tz) - IZ(] (hgq,Tl) = /]R%_ ﬂij] T (S7 I)IZq (ffq,s,t)d‘gdt'
By (Z.1.16), we deduce the following identity for every T} < T and T; < T,

£ £ q€ £
Cov ITz _ITI ,ITZ —[fl} = ]1%112 (Sl,tl)]l%lfz (S27t2)F8,S2751 (l‘l —Sl,l‘z—SQ)dsldSZdtldtz.

(2.1.23)

4
R+
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Similarly, by (2.1.13),

E [(Izq(hgqu) - IZq(hgq,Tl ))(IZ‘I(h;qj‘z) o Izq(hqul ))

= Bq /R4 ]]'ji/T]-Tz (Sl,l1)ﬂ<)gff1f2 (S2,t2>Ggs)2_sl (l‘l — 51,0 —Sz)dsldSleldl‘z, (2.1.24)
4 ,

where f3, is defined by (2.1.21).

We end this section by introducing some notation, which will be used throughout the
paper to describe expectations of the form E | p, (B’,1 — Esl )Pe (E,z — ESZ)] . For every n-
dimensional non-negative definite matrix A, we will denote by ¢4 the density function
of a Gaussian vector with mean zero and covariance A. In addition, we will denote by
|A| the determinant of A, and by I, the identity matrix of dimension n.

Let X be the covariance matrix of the 2-dimensional random vector (Bt(ll) — B§1‘ ) , Bt(z1 )

Bgzl ) ). Then, the covariance matrix of the 2d-dimensional random vector (1§,1 — Esl ,Etz —

By,) can be written as
Cov(By, — By, By — B)) = L4 &%,

where in the previous identity @ denotes the Kronecker product of matrices. Consider
the 2d-dimensional Gaussian density ey, (x,y) = pe(x)pe(y), where x,y € R?, and

denote by * the convolution operation. Then we have that

E PS(EH _Eé'l)ps(gtz _B'Sz)} :/]RZ”’ ¢£12d(xvy)¢ld®2(_x> _y)dXdy

_1
= Peny * $1,02(0,0) = (27) |ehy + ;R X[ 2.
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From the previous equation it follows that
- . _d
E|pe(B, — B )pe(By, — Byy)| = (2m) Jeb+2] 2. (2.1.25)

The right-hand side of the previous identity can be rewritten as follows. Define the

function

Oc (x,u1, 1) = €2+ (! +157) + udu3H — (o, uy,up)?. (2.1.26)

Then, using (2.1.11)), we can easily show that
|812 —|—Z| = @g(SZ — 81,11 — 81, —S2),
which, by (2.1.25)), implies that

= = =

E pS(Bl‘l _le)pS(Btz _Esz)i| = (27[)_d®s(32—317t1 — 51,0 _S2>_ .

I

(2.1.27)
Therefore, we can write E [(1£)?], as

E [(15)?] = (27) ¢ /( W@)g(sz—sl,tl—sl,tz—sz)—‘z’dsldszdzldtz. (2.1.28)
T

Finally, we prove the following inequality, which estimates the function Fg (u1,u2),

defined in (2.1.17)), in terms of @¢ (x, u1,u;)

NI

d 2
Fex(ur,uz) < (2m) 4 (5 + 1) OO UL 12)" 6y i)Y (2.1.29)

2H,2H
up-u;
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Indeed, using relation (2.1.19), as well as the binomial theorem, we deduce that

41

_ _d_ _
Feox(ur,uz) =(2m) (e +ui™) 27 (e +u3™) 2w ur 1)

= (4! 1(x,uy,uz)? 7
XQZ’O(anI)!((ejLu%H)(e%—u%H)) ’

where a" denotes the n-th raising factorial of a. Hence, using the fact that

(DT (g (97 a4
T —<2+1) g

we deduce that

—afd _d _a o pxug,up)?
Fe x(uy, sznd—+1)1+2H21+2Hz e
o) < (2! (S (i) Sty d Hp el
i% ( w(xuy,1p)? )
= (e+uif)(e+ustl) )

which, by the binomial theorem, implies (2.1.29)).

Due to relations (2.1.24) and (2.1.27)), the integrals

/[0 TPG,(gq) (x,uy,up)dxdujduy;  and o1 Fe(x,uy,up)dxduiduy (2.1.30)

will frequently appear throughout the paper, and their asymptotic behavior as € — 0

will depend on the value Hurst parameter H. In order to simplify the study of such
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integrals, we introduce the following sets

A ={(xur,up) E]Ri | x+uz —uy > 0,u; —x >0},
S = {(x,u1,u2) €RY | ug —x —up >0},

Sy = {(x,ur,up) €RE | x—uy > 0}. (2.1.31)

The sets .77,.%, and .%3 satisfy Ri = U?:p%" and |.7;N.7;| =0 for i # j. In addition,
they satisfy the property that the integrals of Gf;’) and F; over [0,T]> N.; are consid-
erably simpler to handle than the integrals (2.1.30). This phenomenon arises from the

local nondeterminism property of the factional Brownian motion (see Lemma 2.4.1]).

2.2 Behavior of the covariances of the approximate self-

intersection local time and its chaotic components

In this section we describe the behavior as € — 0 of the covariance of I%l and I%z, as

well as the covariance of Iy (h5, 7,) and by(h5, 7,), for 0 < Ty < T5.

Theorem 2.2.1. Let Ty, T> > 0 be fixed. Then, if 5 < H < 3,
. _3
lim e HE [Izq(hgqj] )Izq(hgq@) = Gj(Tl AT),

£—0

where

o2 := 2B, /R , G\")(ur, uz)dxdurdus, 2.2.1)
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By is defined by 2.1.21) and Ggqi(ul ,up) by (2.1.14). Moreover, we have

Y o, =07 (2.2.2)
q=1

2

where G~ is a finite constant given by

o?:=2 / L Fic(un,u0)dxdudus, (2.2.3)
RJr

and Fy x(uy,uy) is defined in (2.1.17).

Proof. To prove the result, it suffices to show that for eacha <b < a < 3,

. _3
;g%gd 2H [, (12q<h§q7b) - IZq(hgq,a))(IZq(hgq,[}) - I2q(h§q,a>> = 07 (224)
and
. _3
lim e/ ME | (hy(h5, ) — hq(hs,4))| = 04 (b—a). (2.2.5)

First we prove (2.2.4)). Set
®F = | (g (15, 5) ~ by U5g.)) (g (S, ) — g (15, ))]

Define the set 277, 7, by (2.1.22)), and y:= O‘T*b > 0. We can easily check that for every

(s1,t1) € Hap, and (s2,12) € Ky g, it holds that either 5 — s > ¥, or 52 —s1 > ¥, and
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hence, by taking 71 = a, T, = b, Ti=a, b= B in (2.1.24), we get

]l(y )(l‘z—SQ)G( 9) (l‘1 —S1,l‘2—S2)dS1dS2dt1dl‘2

E€,52—51

*| < B, [
D% ¢ fo g

ﬁq /O B 7, )(Sz - Sl)Gg‘iIs)gfsl (tl — 81, — Sz)dsldS2dt1dtz. (2.2.6)

Changing the coordinates (s,52,¢1,f2) by (s :=§1,x:= 852 —s1,U) ‘=1 — S|,Up :=1) —
Sz) for so > 55, and by (S =8, X =81 — 8, Ul (=1 —S1,Up =1 —S2) for s <1, in
(2.2.6)), using the fact that Gg)_x(m JUp) = Ggf,)c(uz, u), and integrating the s; variable,

we can prove that

|CI)8| < ﬁqﬁ / Ml) + ]1(%00)(142) + 1(%00) (x)) Géf]))c(ul,uz)dxdulduz.

7[3]3 v
. . 1 1 1 .
Next, changing the coordinates (x,u;,u;) by (€~ 2 x, €™ 2Auy, € 2Auy), and using the

fact that G(Q)% (ezHul 82Hu2) =€ dG( )(ul,uz) we get
€,€2H x

34 L L L
|Df| <e2r“B,B /[0,82}‘1[3}3 (]l(y_‘m)(ngul) + 1(y,00) (€27 u2) +]l(%m)(ng1x))

X G( )(ul uz)ddet]duz

Since y > 0, the arguments in the previous integrals converge to zero pointwise, and are

dominated by the function 38,8 Gg(ul,ug), which is integrable by Lemma [2.1.1{ due

to the condition % <H< 43'1' Hence, by the dominated convergence theorem,

lim £~ 2 | @] = 0
e—0
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as required. Next we prove (2.2.5)). By taking 71 = Ti=a,and T = T» = b in (2.1.24),

we deduce that

E [(IZLI(hgq,b) _IZq(hSq,a))z] =2p, /[0 o L, <o L, (51,11) 1, , (52, 12)

« G\

€,50—581 (tl — 81, — Sz)dSldS2dt1dt2.

Changing the coordinates (s1,s2,71,%2) by (s1,x:= s —§1,u1 =1 — S1,Up ‘=1 — 52),

we get

E [ (h2q(5) — (50

= Zﬁq/[o b Ay (S151+Hu1) g, (s1+x,51 x4 1) G (11, up)dsy dxduy duy

(b—uy) 4 N(b—x—up) 4 @)
=28 / / ds1G¢h (uy,up)dxduydus.
[0,6]3 J(a— ’

u1+\/a xX— u2

(2.2.7)

. 1 1 ) ) .
Notice that G'9) , (e2Auy,e2muy) = S_dGLx(ul,uz). Therefore, integrating the vari-
£,€2H x
) ) | 1 i .
able s1, and changing the coordinates (x,u;,uy) by (€ 2Ax,€ 2 uy,€ 2 uy) in (2.2.7),

we conclude that

7

3
d=3nR (Izq(hiq,b)—lzq(hﬁqa _2[3/ 2Hb]3 ul,uz)
><[(b—sﬁu1)+/\(b—eﬁ(x+u2))+

—(a—€Muy) v (a— €M (x+ )4 | dxdu @i3.8)

The integrand in (2.2.8]) converges increasingly to 2(b — a)Ggi’i(ul ,up) as € — 0, which

is integrable by Lemma [2.1.1] Identity (2.2.5) then follows by applying the dominated

convergence theorem in (2.2.8)).
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Relation (2.2.2)) is obtained by integrating both sides of relation (2.1.20) over the
variables x,uy,up > 0, for € = 1, and then using the monotone convergence theorem.

The constant 67 is finite by Lemma The proof is now complete. [

In order to determine the behavior of the covariances of I; for the case H = %, we
will first prove that the second chaotic component I, (A5 ;) characterizes the asymptotic

behavior of I& — E[I£] as € — oo, for every H > 3.

We start by showing that, after a suitable rescaling, the sequence I (h5 ;) approx-
imates I£ — E [I£] in L?(Q) for H > 3. This result will be latter used in the proof of

Theorem 2.0.3]

Lemma 2.2.2. Let 431 < H <1 be fixed. Then,

. d_3 11 ¢ £ £ _
;%82 W |y = EIr] = L) 2(0) = 0

Proof. For T > 0 fixed, define the quantity

2
Qe := Iy —E[I7] = 1(I7) I 12(q) -
From the chaos decomposition (2.1.6)), we get

Qe =E [(I5)*] —E[1)* —E [h(1§)*]

= E[(15)"] —EUFI 2115 1 | {0,
2
(2.2.9)

=E [(1§)?] —E[I;]Z—zu/ 15 dsdt
T% ()2
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By (2.1.8) and (2.1.28)), the first two terms in the right-hand side of the previous identity

can be written as

E [([%)2] = (Zﬂ)d/( ’ @g(S2 — 51,01 — 81,02 —52)7%d51dS2dt1dt2, (2.2.10)
TZ#
and
E[£]? = (21) ¢ /( - GY) _, (11— 51,1 — s2)ds1dsrdndn, 2.2.11)
T b}

where Gé‘f))c(ul ,up) and Og (x, uy,uy) are given by (2.1.14) and (2.1.26), respectively. To

handle the third term in (2.2.9), recall that the constants o, are given by (2.1.12), and

notice that o} = 2d. Hence, from (2.1.13)), we deduce that

2 1 —d
(27) (1)
€
H/T%ﬁ”dsdt iy = —/(T’%)2 Gs,sg—sl(tl S, sz)a’s1ds2dt1dtz.

(2.2.12)

From equations (2.2.9)-(2.2.12), we conclude that

ol

Qe = (zﬂ)d/ » <®£(SZ — 81,11 —S1,tp —852)"

(T%

0 d
~GY) (=51, —s52) — §G§732_sl (t —s1,t0 — sz))dsldszdtldtz. (2.2.13)

The integrand appearing in the right-hand side is positive. Indeed, if we define

Pe(x,ur,ua) i= p(x,ur,u2)* (e +ui?) e+ w371,
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then, applying relations (2.1.14), (2.1.26)) we obtain

d
Oc (x, 1, 2) 3~ G 1, 102) = SGEUr,ur) = 2(22) (e + 1) 78 (e + 1) 72
_d d
X ((l—pg(x,ul,uz)) 2 —I—Epg(x,ul,uz)) (2.2.14)

and the right-hand side of the previous identity is positive by the binomial theorem.
As a consequence, by changing the coordinates (s1,s2,1,12) by (s1,x:= 52 — s1,u; :=

1 —s1,uy *= 1) — $7), and integrating the variable s; in (2.2.13), we get

”

Qe < 2(2n)—dT/

_d d
orp (@e(x,m,uz) 2 — Gsox(m,uz) — EGS))C(ul,uz))dxdulduz.

In addition, by the binomial theorem, we have that for every 0 <y < 1,

oo d oo (d\g+2
= (§)q+2

_d d
(1= =1=Zy=} (-1 yq:yzqzb(quZ)!

¥,

N
(]
)

where (x)7 denotes the raising factorial (x)7 := x(x+1)...(x+¢—1). Hence, by

(2.2.14),

Qe <202m) T | (e+uf!) 5 (e +")7

[0,7]

)& (912

X pe(x,ur,uz)® ) =2
q=0

(q_l_z)'pg(x,ul,uz)qudulduz. (2.2.15)

Since

(D7 GG +E+e+) _(d N\ (§)F
(g+2)!  q' (g+1)(g+2) §(2+1>
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then, by (2.2.15)),

_d
2

d 2
0220w 7 (1) [ (erid) Lo i) !
d )
2

x pe(x,ur,u2)* Y %pg(x,m,uz)qudmduz,
g=0 1

which, by the binomial theorem, implies that there exists a constant C > 0 only depend-

ing on 7" and d, such that

‘LL(X, ulau2)4

_d
Qe < C/[O.TP (8+M%H)2(8+M%H)2®g(x,u1,u2) 2dxduyduy. (2.2.16)

Hence, to prove the lemma it suffices to show that

lim gd—i+2 o7 W (x,u1,up)dxduyduy = 0, (2.2.17)
where
Py ) uruw)' g (%,u1,u2)~? (2.2.18)
X, Ui, Up) 1= Uy, . 2.
ST (e a2 (e g T

In order to prove (2.2.17)), we proceed as follows. First we decompose the domain of
integration of Z.2.17) as [0,T]> = 5/’7 U 5’; U 5’; , where

91/:: {(x,u1,up) € [O,T]3 | x+uy —uy > 0,u; —x >0},
%:: {(x,u1,up) € [O,T]3 | uy —x—uy >0},

F = {(x,u1,u2) €[0,T] | x—u; >0} (2.2.19)
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Then, it suffices to show that

lim g4~ 7 +2 /57\1'8 (x,uy,up)dxdudus = 0, (2.2.20)

£—0

fori=1,2,3.

: . : : : B U T
First prove (2.2.20) in the cases i = 1, 2. Changing the coordinates (x,u;,u;) by (€2 x, € 2Au;, € 2A uy),

. 1 1 1
and using the fact that W (€2 x, €2 uy, £ uy) = €~ (x,u,u;), we get

3 3
gd—ut? /i‘l‘g(x,ul,uz)dxdulduz < Sz_w/y W (x,uy,up)dxduydus,

where the sets .7; are defined by (2.1.31)). Therefore, using the inequality p(x,u;,u;)? <

(uyup)*, we obtain

L (x, up,up)?

_d
(1) O (x,uy,up)” 2dxduydu,.

3 3
gl t? /N‘Pg(x,m,uz)dxdulduz < 82211/
87 8%

(2.2.21)

The integral appearing in the right-hand side of the previous inequality is finite by

Lemma [2.4.3| (see equation (2.4.6) for p =2 and i = 1,2). Relation (2.2.20)) for i = 1,2

is then obtained by taking € — 0 in (2.2.21)).

It then remains to prove (2.2.20) for i = 3. Changing the coordinates (x,u,u) by

(a:=uy,b:=x—up,c:=up), we get

/N‘Pg(x,m,uz)dxdu]duz < / Ye(a+b,a,c)dadbdc. (2.2.22)
73 0.7
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We bound the right-hand side of the previous inequality as follows. First we write

atb,a,c) = 3 ((atbteP +12 — (b4 — (a+b))

=H(2H — l)ac/[ ]2(b—i-av1 +cvz)2H*2dv1dvz. (2.2.23)
0,1

Notice that if a > ¢, then b+avi +cvy > vi(b+a) > vi(b+5+5), and if ¢ > a, then
b+avi+cvy > va(b+c) > va(b+ 5+ 5). Therefore, since H > %, by (2.2.23) we

deduce that there exists a constant K > 0, such that
w(a+b,a,c) < Kacla+b+c)*12. (2.2.24)

On the other hand, if £ denotes the covariance matrix of (B,,Byip+c — Batp), We can
write

O¢(a+b,a,c) = 82+8(a2H+C2H) +|Z].

As a consequence, by part (3) of Lemma [2.4.1, we deduce that @ (a +b,a,c) > €+
8(ac)?! for some constant § € (0, 1). Hence, by (2.2.18)) and (2.2.24)), that there exists

a constant C > 0, such that
We(a+b,a,c) < Clac)* ™ (a+b+c)¥¥8(e2 + (ac)H) . (2.2.25)

Next we bound the right-hand side of (2.2.25]) by using Young’s inequality. Since H > %

and Hd > %, then

0< < <1. (2.2.26)
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Using the relation (2.2.26)), as well as the fact that % < H < 1, we deduce that there

exists a constant y > 0, such that

4H —4+44Hdy < 0, (2.2.27)
4H —3—4Hdy > 0, (2.2.28)
3—2H
1. 2.2.29
7d +y< ( )

By (2.2.29), the constant y := % + y belongs to (0, 1), and hence, by Young’s in-

equality, we have
(1—7)€2+y(ac)* > 207 (ac)?H7. (2.2.30)

In addition, by (2.2.27)), we have

(a+b+c)¥18 = (a4 b+ )44 (g 4 p 4 o) —4+4Hdy

< b4H7474de< )4H74+4de

a+t+c

< b4H_4_4de<2\/%)4H—4+4de’ (2231)

where the last inequality follows from the arithmetic mean-geometric mean inequality.

Hence, by (2.2.25)), (2.2.30) and (2.2.31)), we obtain

8d,?,+2/[ P‘I’g(aer,a,c) < gd-t2-di-1)¢ - H 4 4HAY (Y2~ 2H 4 2HAY-HAY g g
0,7]° 0.1

=ebc [ ]3b4H—4—4de(ac)—1+dedadbdc. (2.2.32)
0,7

The integral in the right-hand side is finite by (2.2.28)). Relation (2.2.20) for i = 3 then
follows from (2.2.22)) and (2.2.32)). U
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The next result extends Lemma to the case H = 3
Lemma 2.2.3. Let d > 3 be fixed. Then, if H =3,

d
7_1

———— |l —E[IF] = (I} =0. 2.2.33
e Tog(1/¢) 117 7] = Ja( T)HLZ(Q) ( )

Proof. For T > 0 fixed, define the quantity
2
=17 =E[U7] = L) 2@

As in the proof of equation (2.2.16) in Lemma [2.2.2] we can show that there exists a

constant C > 0 such that

QESC[ P‘I‘g(x,ul,uz)dxdulduz, (2.2.34)
0,7’
where
4
We(x,uy,up) = u(z’ul’uz) 3 ®g(x,u1,u2)*%. (2.2.35)
(e+u?)*(e+u3)?

Hence, by splitting the domain of integration in (2.2.34) as [0,7]> = UL, %, where
the sets % are defined by (2.2.19), we deduce that the relation (2.2.33) holds, provided

that

ed—2

lim —— dxduiduy =0, 2.2.36
eaolog 1/8 /N gxul,uz) rdindin ( )

for i = 1,2,3. To prove (2.2.36) for i = 1,2, we change the coordinates (x,u;,u;) by

2 2 2 2 2 2 .
(e 3x,e 3uy, € 3up) and use the fact that W, (e3x,€3u1,€5u0) = £ 9¥(x,u,up), in
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order to get

8d2

—log (1/e) / We (x,uy,uz)dxduyduy < T/ W (x,up,up)dxduyduy, (2.2.37)

where the sets .7; are defined by (2.1.31)). As a consequence, by applying the inequality

3
w(x,ur,up)? < (uyuz)?, we get

8d72

log(1/¢)

.U X Mhbtz
log( 1/8 (uyup)?

/ We (x,uy,up)dxduiduy < O (x,uy,up)” %dxdulduz.

(2.2.38)

The integral appearing the right-hand side of the previous inequality is finite for i = 1,2

by Lemma (see equation (2.4.6) for p = 2). Relation (2.2.36) for i = 1,2 is then
obtained by taking € — 0 in (2.2.38).

It then suffices to handle the case i = 3. Define the function K (x,u;,u;) by

L .u(xaulaMZ)Ar _d
K(x,uy,up) := WG)l(x,ul,uz) 2, (2.2.39)
Notice that
! W ( \dxduydiy < — K( \dxdurdus. (2.2.40)
e — x,up,up)dxduiduy < ———— x,uy,up)dxdurduy. (2.2
log(1 /) Jory - 17T = log(1 /) Ju T

Using the representation

Blatba,e) =HQH ~ac [ (bt + e 2dgan,
0,1
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we get

—_

platbae) <6 [ (bEn+agn-+egn) idgan =5 (at o).

[0,1]2 2
AS a COHSGqUCl’lCC,

34

;;

K(a+b,a,c) < —acla+b+c) @ (a+b,a,c)” 2.

. 3 3 . .
Notice that ®(a+ b,a,c) = 1 +a2 +c2 + |Z|, where X denotes the covariance matrix

of (BayBatb+c — Bats). Therefore, by part (3) of Lemma|2.4.1, we deduce that

N\w

Oi(a+b,a,c) > 1+a2 +02—|—5(ac)

for some constant 6 € (0,1). From here, it follows that there exists a constant C > 0,

such that

U

2

K(a+b,a,c) < Cacla+b+c)~? (1—|—a% te? —i—a%c%)

From here it follows that there exists a constant C > 0 such that the following inequali-

ties hold

_d

K(a+b,a,c) <Cac™ (H— %—l— %c%> : if a<b<c,
d

K(a+b,a,c) <Ca lc < % %%> ? if c<b<a,

3 3 3 % .

K(a+b,a,c) <Cacb™ <1+(aVc)7+a707) if a,c<b,
d

K(a+b,a,c) <Cac™ <1+c2+a26%> ’ if b<a<c,
d

K(a+b,a,c) <Ca c(1+a2—|—a2 %> ’ if b<c<a.
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Using the previous inequalities, as well as the condition d > 3, we can easily check that
K(a-+b,a,c) is integrable in R3 , which in turn implies that K (x,u1,u>) is integrable in

#. Using this observation, as well as relations (2.2.37) and (2.2.40)), we obtain

Sd_2

Iim —— v dxduidu,; =0
8513)10g(1/8) = e(x,ur,up)dxduiduy =0,

as required. The proof is now complete. [

The next result provides a useful approximation for I (h5 ;).

Lemma 2.2.4. Assume that H = % and d > 3. Let h§ ; be defined as in (2.1.7) and

consider the following approximation of I (h5 ;)

() (J)
d _d 3 B B
" 21) "3 —4+1 d T foo 5 2 s
jE _sz / LA T VR PN
2 =170 Jo g3(14u2)2t! Veu?
(2.2.41)
Then we have that
41
1im82—H12(h8 | =o.
e—0 , /log(l/g) 2T T L2(Q)

Proof. Using (2.1.4), we can easily check that

d 3
(27[)_7 d T rT—u u2
12(h§,T) == ) Z / %
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Making the change of variables v := 8_%u, we get

d _d.2 2 3
2 —*8*74’@ d T € 3(T—S) b P
I( g.T):_—( m) Z/ vi —H, | dvds,
’ 2 i=iJo Jo (14v2)2*! VEvi
and hence,
() (J)
d _d.2 3 B B
. 27T *js—j-"g d T foo 3 2 s
J%—Iz(hgT):—LZ/ ) %Hz W”—3 duds.
’ 2 =1Jo Je3(r-s) (14v2)2 1] Veus
(2.2.42)
Set
d>€:ed_2’f§—12(h§T) e
2(Q)

Using (2.2.42)), as well as the fact that

() () () (/)
B — By Bs v — By -
H (L}{l) H (%)] =2(viva) " u(sy —s1,v1,m)%,

Vi 16)

E

(2.2.43)

for all s1,s7,v1,v2 > 0, we can easily check that

d(2m)~
CI>8:—( ) / / ]l[Tw)(sl+£%u1)]1[Tw)(S2+8%u2)Vssrsl(Ml,uz)dulduzdsldsz,
2 [0,T]2 Ri ’ ) i
where

_8 2 2
Vex(ui,up) :==¢€3 l//(ul,uz),l.t(x,83u1,£3u2)2,
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and

3

3.4 2. _d
v, u) = (1+uf) 27" (14+u3) 2L (2.2.44)
Hence, using the fact that p(x,vy,v2) = p(—x,v2,v), we can write

_ T rs 2 2
Pe :d(Zﬂ?) d/() /0 - H[T,oo)(sl +€3u1)]l[T7w)(S2+83u2)Vg732_sl (ul,uz)dulduzdsldSQ.
+

(2.2.45)

Changing the coordinates (sy,s2,u1,u) by (s := s1,Xx 1= 53 — s1,u1,u2) in the expres-

sion (2.2.45), and then integrating the variable s, we obtain

d T 2 2

@F| = d(27)" / (T~ (T = &3u1) 4 V(T —x— €3u2) . Vet ) durduusd,
0o JR
and consequently, there exists a constant C > 0 such that
T
| < C / / F o (Ve (1, u2)duy dusd, (2.2.46)
0 JRZ €3 ’

where rg(u;) ;=T — (T — duy)+. Making the change of variable v := £ 3xin (2.2.46)

and using the fact that V. » (uy,uy) = 8’%G§13(u17u2), we get

£,€3v

€ 3T
|| <C/ /Rz rE% u G1 (uy,up)durduydv.

I\)

310gN

Therefore, defining N := €73, so that log(1/¢€) = , we obtain

|D?| NT
log(1/¢e) — 310gN/ /Rz r1 ()G u17u2)dulduzdx
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To bound the right-hand side of the previous relation we split the domain of integration

as follows. Define the sets .7}, for i = 1,2,3, by (2.1.31). Then

|©°]

lim sup < limsup

NT
duiduydx (2.2.47
e—so log(l/e) — N%w 310gN/ /]R (1) (”1 uy)duiduzdx  ( )

2C NT (1)
< ?l;h[l;,nj:p lOgN/() /]REL ]].(%(X,Ml,uz)r% (Ml)Gl’x(m,uz)dulduzdx.

By relations (2.1.20) and (2.1.29), there exists a constant C > 0, such that

;;

12 (x, ulauz)

Ggl))c(ul,ug) S C
’ ()3

@1()6 ul,uz) 2. (2.2.48)

Hence, by Lemma [2.4.3] the terms with i = 1 and i = 2 in the sum in the right-hand
side of (2.2.4°7) converge to zero. From this observation, we conclude that there exists

a constant C > 0, such that

|2

(I/tl )GSB(M 5 uz)dulduzdx.

NT
limsu < limsu / 1o (x,uy,up)r
€_>0p10g(1/8) - NﬁwplogN 0o Jr2 75 (%, 1) N

(2.2.49)

Using Lemma [2.4.2] we can easily show that there exists a constant C > 0, such for

every (x,uy,up) € .3, the following inequality holds
1 .
Gg;(ul,uz) = l//(ul,uz),u(x,ul,uz)z < Cy(up,up)(x+up +up) 1(u1u2)2, (2.2.50)

where y(uy,uy) is defined in (2.2.44). From (2.2.49)) and (2.2.50), it follows that

Nl

NT
li = <y -1 2 duydurdx.
l?jgplog(l/s) - 12“:’2" logN/() /R%_ r%(ul)@”l*@) (urez) "y (uy, up)durduydx
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In addition, we have that

1
lill;’njgp logN/O /]R2+ ’% (ul)(x+u1 +uz)fl(uluz)zw(ul,uz)dulduzdx

1
< limsu // w4+ )" Nugun)? uy,up)duyduy; =0,
msup N Jo Ri( 1tup)” (un) Y (uy, up)duyduy

and consequently,

|$°] /NT / 2
limsu msu ri(up)x u1u2 uy,up)duyduydx.
e—>0p10g( 1/e) — N%oop logN R ¥ s )

For 6 > 0 fixed, let M > 1 be such that

/ ) / w(ulug)zy/(ul,uz)duzdul <. (2.2.51)
M JO

Using (2.2.51)), as well as the fact that r; (u) is increasing on u, we obtain
N

NT log(T)
dujdurdx < 6| 1
logN/ / / uluz Y, uw)dmdindx < ( + logN )’

and
NT )
limsup / / / uluz yluy,uy dulduzdx
msup N )7y (ur,uz)
1
<limsup | 1 + —= og(T) / r1(M)(uluz)zl//(ul,uz)dulduz:0.
N—oo logN
As a consequence,
|$°]
limsup ———— < C6.

e—0 log(l/e) —
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Hence, taking 6 — 0, we get

s

lim ——— =0
£ log(1/e) 7
as required. 0

Finally, we describe the behavior of the covariance function of I, (45 ;) for the case

_3
H=3.

Theorem 2.2.5. Let Ty, T> > 0 be fixed. Then, ifd >3 and H = 3,

d—2
1' —]E I € I € _ 2 T T

where p is a finite constant defined by

pi= v3d o0
. 2#7‘[% 0

(1+u?)" 2 "iPdu. (2.2.52)

Proof. Consider the approximation J% of I (K5 ), introduced in (2.2.41). By Lemma

2.2.4
d—2 _ 2
I —’JE—I He 0.
i et e) VT ~ 22| o
Therefore, it suffices to show that
gl % 7% 2
lim——E [J J }: TIAT). 22.53
El—rg)log(l/g) e, P ( 1 2) ( )

As in Lemma to prove (2.2.53)), it suffices to show that foreacha < b < o < f3,

d—2

im——E|(JE—JE) (e —T8)] = 2.54
gl—r{(l)log(l/E)E [(Jb Ja)(‘]ﬁ JOC) 07 (2 5 )
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and

im & g [(ﬁ‘ —fﬁ)z] — p*(b—a) (2.2.55)
e—0log(1/¢) b ta . o

First we prove (2.2.54)). Set
®* = &' | (5 - J5) (T ~ &)

Using (2.2.43) and (2.2.41)), we can easily check that

d(2m)=d (B b
@8:% / / / Ve.s,—s, (i1, u2)durdusds, ds, (2.2.56)
o Ja Ri

where

_8 2 2
Ve x(ur,up) :=¢€73 l//(ul,uz)u(x,swl,emz)z,

and y(uy,uy) is defined by (2.2.39). Changing the coordinates (sy,s2,u;,uz) by (s :=

S1,X =2 — S1,uU;,up) in (2.2.56)), and then integrating the variable s, we can show that

B
%] < d(27) "B / /R Vealur,m)durdurd, (2.2.57)
Y T

where the constant y is defined by ¥ := o — b. Making the change of variable v := € ix

and using the fact that

V » (ul,uz):g_%Ggl)(ul,uz),

£,€3v 4
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we get

2
e 3B
| < d(2m) B |, /Rz G\ (1, uy)duy duydv.
e 3y JRZ 7

2 3logN

Therefore, defining N := €73, so that log(1/€) = ==, we obtain

| _2d@m) g
log(1/e) = 3logN Jny Jr2

Ggg(ul,uz)dulduzdx.

To bound the right-hand side of the previous relation we split the domain of integration
as follows. Define the sets .7}, for i = 1,2, 3, by (2.1.31)). Then, there exists a constant

C > 0, such that

limsu [©°] < limsu c_ v G(l)(u up)duydupdx
e0 10g(1/€) = Now logN Juy Ry bve DO
o NP (1)
< thsup ﬂﬁ(x,ul,uz)GLx(ul,uz)dulduzdx.

= Now l0gN /vy JRZ

(2.2.58)

Taking into account (2.2.48)), by Lemma[2.4.3] the terms with i = 1 and i = 2 in the sum
in the right-hand side of (2.2.58) converge to zero. From this observation, we conclude
that

|7 c NP

limsu < limsu
ers0 10g(1/€) = Now' 10gN Jny Jr2

1
Lo, (x,ur, uz)Gg;(ul ,up)duyduydx.

(2.2.59)
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By Lemma [2.4.2] there exists a constant C > 0, such for every (x,u;,uz) € .73, the

following inequality holds
Ggg(ul,uz) = I//(u1,u2)u(x,u1,u2)2 < CI//(u1,u2)x*1(u1u2)2. (2.2.60)

From (2.2.59) and (2.2.60)), we obtain

oM log(NB) —log(N
limsupL < Climsup 0g(NB) —log( Y)/ W(ul,uz)(uluz)zdulduz,
e—0 log(l/€) N—soo logN R2

. 3,_d . .
for some constant C > 0. The function (1 +u2)~2~'4? is integrable for u in R, due to

the condition d > 3, and hence, from the previous inequality we conclude that

lim el 0 (2.2.61)
msup ———— = U. L.
£—>Op IOg(l/‘g)

Relation (2.2.54)) then follows from (2.2.61).

Next we prove (2.2.55). By taking o = a and 8 = b in relation (2.2.56)), we obtain
~ o~ b rso
e °E [(‘]If —Jae)z} = d(27’£)d/ / /]1@2 Vesy—s (ul,uz)dulduzdsldsz.
a a T

) ) _2
Changing the coordinates (sy,52,¢1,22) by (s1,x: =€ 3(s0 —51),u1 ‘=1 —S|,Up :=1r —

(ur,up) = 8‘%G§1)(u1,uz),

X

s7), integrating the variable s; and using the fact that V 2.
£,€3%

we deduce that

e’k [(flf —J:f)z} = d(27r)d/ (uy,up)durduydx

2
0 £,€3x

¢ 3 (b—a) ) 0
/ (b—€3x—a)Gy [(u1,uz)duiduydx.
R

1,x

— d(2m)~ /

0
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2

Therefore, defining N := €73, so that log(1/¢) = 3logN

8d—2
log(1/¢)

2d 2m)~ X
N 310gN / /Rz (b—- N _“)Ggg(ulauz)dulduzdx

2d(2m)d & N-a) ; .
B 310gN - 1/ /Rz N ]ly ('x Ml;Mz)GLx(ul,uz)dmduzdx.

E |~ TV

(2.2.62)

By inequality (2.2.48) and Lemma [2.4.3| the terms with i = 1 and i = 2 in the sum in

the right-hand side of (2.2.62) converge to zero. From this observation, it follows that

d-2

lim o7 VE Y]
_1\}—»0 26;5):1\] / o= /]1%2 b———a )1, (x, ul,uz)G( )(ul,uz)dulduzdx
—N_m zilf)jng Mo ]RZ (b—a)l g, (x,ur, uz)G( )(ul up)duiduydx
Nﬂ% A Vo) ” 1o, (x,u1, uz)xG( )(ul up)duyduydx,

(2.2.63)

provided that the limits in the right-hand side exist. By (2.2.60), there exists a constant

C > 0 such that

N(b—a 0
NlogN/O w2 L (x,u1,u2)xGy (1, u2)durdurdx

N(b—a) )
< NlogN/O /R%r ll/(ulaMZ)(Mluz) dujdurdx

C(b—a)

s 2
- up,u)\uru duiduy.
logN /R2+ v (ur,u2) (uiuz)“duyduy
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Since d > 3, the integral in the right-hand side is finite, and hence

1o, (x,u1,uz)ngg(ul,uz)dulduzdx =0.

lim
N—e NlogN Jo R2

Therefore, by (2.2.63),

Sd_2

lim— [ FE_JE ]
N et /e) ™ Ve ~a)
2d(2 N(b—a)
:éﬂﬁ RZ (b—a) 1, (x,u1,u2) G} ) (ur, up)durdundx.  (2.2.64)

Applying L’ Hopital’s rule in (2.2.64), we get

d-2

lim ———FE JE
e log(1/¢) 5757
. 2d(2m) " > (1)
_]\}I_IEOT R%_N(b_a) ILyS(N(b—a),ul,uz)GLN(bfa)(ul,uz)dulduzdx.

(2.2.65)

By (2.2.60), the integrand in the right-hand side is bounded by the function

Cy(ur,ur) (uyuz)*

for some constant C > (. On the other hand, using (1.2.6)), we can easily check that

[ (x, vy, m)| = ‘<1[0,v1}71[x,x+v2}>5‘

=H(2H — l)vlvz/ " |x + vowy —v1w1|2H—2dW1dw2
1

. 3V1V2

_1
5 Jor |x +vowy —viwi| 2 dwidwy,
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so that

: 3% (uyuz)?
— — 2 —_ - 7
A}l_t&N(b a)u(N(b—a),uy,uy) %
and hence,
lim N(b—a) 1., (N(b () > 2
Nl_rgoN( —a)l g (N( —a),ul,uz)Gl’N(bfa)(ul,uz)—gl//(ul,uz)(uluz) :

Therefore, by applying the dominated convergence theorem to (2.2.65]), we get

ed—2 o 34 . 2
lim ——E|(JE —J5)?| = (b—a)—— / 143 51,2 ‘
el—r>l(l)log(l/£) [(Jb Ja) } (b a)2d+57rd ( R+( —|—u2) 2 udu
O

Relation (2.2.53)) follows from the previous inequality. The proof is now complete.

2.3 Proof of Theorems 2.0.2,2.0.3 and 2.0.4]

In the sequel, W = {W, },>o will denote a standard one-dimensional Brownian motion
independent of B, and 2™/ = {3&”/ }i>0 will denote the second order Hermite process

introduced in Section

Proof of Theorem 2.0.2]

We start with the proof of Theorem [2.0.2] which will be done in two steps.
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Step 1. First we prove the convergence of the finite dimensional distributions, namely,

we will show that for every r € N, and 77, ..., 7, > 0 fixed, it holds

d_ 3 L
4 aw

€2 ((1;1,...,1%)—E[(I;],...,Ig)}) = o(Wr,...,Wr), (2.3.1)

as € — 0, where o is the finite constant defined by (2.2.3). To this end, define the kernels
h3, 7, by (2.1.7), and the constants qu by (2.2.1)), for ¢ € N. Notice that the constants

o2

; are well defined due to the condition % < H<K %. Define as well the matrices

Co=1{C;/ | 1<i,j<r}and C={C |1<i,j<r}, by Cj/ :=c2(T;AT;), and
ChJ = o*(T; A T;). Since I%_ has chaos decomposition (2.1.6), by Theorem , we
deduce that in order to prove the convergence (2.3.1)), it suffices to show the following

properties:

(1) Forevery fixedg > 1,and 1 <i,j <r, we have

3
gd= (2¢)! <h§q,Tmh§q,T,->(ﬁd)®2q — qu(Ti/\ T;), as €—0.

(i) The constants (73 satisfy } /" qu = ¢2. In particular, C"/ = limg e 23:1 Cf]’j ,

(iii) Forallg > 1 and i =1,...,r, the random variables 8%’%124(@ 0T ) converge in

law to a centered Gaussian distribution as € — 0,

£ — P —
2.T; =0, foreveryi=1,...,r.

(iv) limgeoSUPec(0,1) €7 2 Yo o(29)! ’ h ’(ﬁd)mq

Part (i) follows from Theorem [2.2.1 Condition (ii) follows from equation (2.2.2)). In
[23, Theorem 2], it was proved that for 7 > 0 fixed, 8%_%12(](115 q T) converges in law

to a centered Gaussian random variable when € — 0, and

2

3 oo
lim sup €% 2q !‘ 5 H =
0= ge(0,1) qZ:Q( P20 | g

Y
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which proves conditions (iii) and (iv). This finishes the proof of (2.3.1)).

Step 2. We are going to show the tightness of the sequence of processes {8%_% (157 —
E[7%])}r>0. To this end, we will prove that there exists a sufficiently small p > 2,

depending only on d and H, such that for every 0 < 71 < T, it holds

sup B [[ef (if, ~E[15] - (15, —E[15)))| | <cim-1lf, @32

€€(0,1)

for some constant C > 0 only depending on d, p and H. The tightness property for
{8%_%(I§ — E[I5])}r>0 then follows from the Billingsley criterion (see [4, Theo-

rem 12.3]).

In order to prove (2.3.2)) we proceed as follows. Define, for 0 < 77 < T; fixed, the

random variable Z, = Z¢(T},T>), by
Ze:=13 —E[If,] — (I —E[I}]) . (2.3.3)

From the chaos decomposition (2.1.6)), we can easily check that Jo(L~'Z¢) = J; (L™'Z;) =

0, which in turn implies that
E[DL'Z] = Jo(DL™'Zs) = DJy(L™'Z:) = 0.
Hence, by (I.2.3), there exists a constant ¢, > 0 such that

1Zell @) < cp |D*L'Z, (2.3.4)

ler(:oaye) -
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The right-hand side of the previous inequality can be estimated as follows. From

(1.2.5)), we can easily check that
DLz, = / / D?Py[pe(B; — By)|dsdtd6, (2.3.5)
0 4%/7"1 N

where 7, 1, is defined by (2.1.22). Let Bbean independent copy of B. Using Mehler’s

formula (1.2.4) and the semigroup property of the heat kernel, we obtain

Polpe(B; —By)] = E|pe(e (B —By) 1—e*29(B,—ES))] (2.3.6)

- -

= paosn(e (B, —By)),
where the function Ae = A¢(6,s,7) is defined by
Ae(0,5,1) =+ (1 —e 20) (1 —s)*. (2.3.7)
This implies that for every multi-index i = (iy,i), with 1 <ij,i, < d, we have

D*Py[pe(By — By)|(i,x1,32) = ¢ 2015 (x1) L ) (x2)

- -

X Ae(0,5,1) " pr(o.50) (€O (Bt = By))gine(0.50) (¢ ° (Bi —By)), (23.8)
where the function g for A > 0, is defined by

1.2 e
A )Cil—l 1f11—12
giJL(xl?"'vxd) = |
A XX, if i # .
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From (2.3.5)) and (2.3.8]), we deduce that

_ 2 _20—
HDZL 1Zg|| ez = e 20 Zﬁu(sz—sl,tl—sl,tz—sz)z
() R% Jo?
+ Tl’TZ

X (Ae(8,51,11)Ae(B,52.12)) ™' Pag(0.51.) (€ ° (By —Byy))

X Pao(Bossir)(€ P (B, —By,)) Zgi,zg(e,s. ) (e—e(gn — By, ))

X 8i e (Bsia) (e—ﬁ (B, — ESZ)) ds,dtydsydd6dp, (2.3.9)

where the sum runs over all the possible muti-indices i = (iy,i), with 1 <ij,i, <d.

Using Minkowski inequality, as well as (2.3.4) and (2.3.9)), we deduce that

HZEHIZJ(Q) <¢p HDZL?IZSHZ(Q

72972 2
<C// Puisy—s1,t1—s1,10—52)
R2 Jo?

.1

[($H4)%2) = C%y H HDzLilzeHiﬁd)@

k)

X (lg(G,Sl,tl)lg(ﬁ,Sz,[z))il leg(e,sl,t1)<e79(§ll _ESI>)
X ple(ﬁﬂm)(eiﬁ (Elz _Esz Zgi Ae(0,51,01) <eie(§fl _Esl )>
X 820 (¢ P (B~ Boy) ) | g ds1dndsadnd6dp.  (23.10)
Next we bound the L2 (Q)-norm in the right-hand side of the previous inequality. Let
€ (0,1) be fixed. We can easily check that there exists a constant C > 0 only depend-

ing on y, such that for every A;,A; > 0 and n,& € RY, and every multi-index i = (i1, i»),

with 1 <iy,ip <d,

—1 2 —1 2
g, (Mg, ()] < T+ A7 P (1 + A5 |E]?) < Ce3Pr ImIT+271E15),
(2.3.11)
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From (2.3.10) and (2.3.11)), it follows that there exists a constant C > 0, not depending

on &,T1,T>, such that

2
1Zel|Zr (@)

—20-2 2
SC/z/ , € Pu(sy—si,t1 —s1,6—s1)
R2 J %,

Tl A,Tz

x (Ae(0,51,t1)Ae(B,52,12)) !

—

_9 — _ =g
P 2e(8.51.1) (e (Bn - BSl ))pleﬂf,sm) (e & (Btz _B52))
-y

I—y

X dsidt1dsydt,dOdp.

(©Q)

P
2

(2.3.12)

Proceeding as in the proof of (2.1.25)), we can easily check that

(S}

-2 [ Ae(O A R Y
:(271')(‘”2)( 8( 7517t1) 8(B7S2?t2)> _ded(9+ﬁ)

0,8 3 - B,3 3
E [pls(?ﬂm (e (Btl _le))zpls(lfvszwfz) (e ﬁ(Blz _BS2)> }
—y =

(1—-y)? p
xE Pw(én N B)Sl)pﬂs(ﬁvszvtz)ezﬁ (Etz - Esz)]
p(1-y) IO
Ldpid
_ (zﬂ)_% (18(67517”))’8(B7S27t2)> ‘2 z_ed(e-FB)
(1—-y)? p?
-4
2 Ae(0,51,11)e?® 0
o=y Tt
p(1=y) 0 Xe(B,s52,12)e?P

where ¥ = {X; ;}1<; j<2, denotes the covariance matrix of (Bt(ll) — Bg),Bt(zl) - Bg)),
whose components are given by Xy | = (¢; — s1)%H, Lio=Xo1=U(s2—51,t1 — 81,10 —

52),and Xp o = (t — 52)2H. Therefore, there exists a constant C > 0 only depending on
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p and d, such that

P

0,8 3 W2 B,3 B W.
E pl(Lil,'tl)(e 6<Bt1 _le))zpl(ﬁ-fz-fz) (e ﬁ(Blz_Bsz))2

1—-y 1-y
d

< C(Ae(8,51,10)Ae (Brs2,12)) " F+8

(S

0+p) 2 A«‘:‘(075‘171‘1)629 0

+X
p(1=y) 0 Xe(B,s2,12)e?P

x el

Choosing y < 1 — %, so that @Z > ¥ we deduce that there exists a constant C > 0

only depending on p,y and d, such that

0/ = N _ N
E pfls(97~‘1vl1)(e G(Bfl _le))zple(ﬁ«,‘vzvtz) (e ﬁ(Btz_Bsz))z

1—-y 1—-y
_dp_d
< C(Ae(0,51,11)Ae (B s52,22)) "+ 72
-4
L AO4B) Ae(8,51,11)e + (1 — 1) p(s2—s1,0 — 52,0 — 52)
e
w(sa—si,ti—s2,0—s2)  Ae(Bs2,02)e?P + (1 — 52)?H
Hence, by the multilinearity of the determinant function,
—0/3 7 W2 B/ B W2
E p/ls(?,ﬂan)(e G(Bll _le))zpls(lfvszwfz) (e ﬁ(Btz_B&))z
-y -y
_dpd
< C(Ae(8,51,11)Ae(B52,12)) " 472
_d
°(23.13)

lg(@,sl,ﬁ) +€_29(t1 —S1)2H e_zﬁ,u(Sz — 51,0 —Sz,tz—Sz)

e Pu(sy—s1,t1 —s2,b—52) Ae(B,52,12) +e 2P (tp —s2)*H

68



By relation (2.3.7), we have that A¢(0,s,¢) +e 20 (t —5)?H = & + (t — 5)*H for every

0,s,t > 0. As a consequence, relation (2.3.13)) can be written as

[hS]

E |:p)'5951’1)(e_9(§t1 _E )) PeB.spn) (e_ﬁ(gtz_gsz))

Ty

< C(Ae(8,51,1)Ae(B,52,12)) " 4 78

I

/_\

tl - Sl + (tz - SQ)ZH) + (l‘l - Sl)ZH(tz - S2)2H — 62B29u2>

QU

d d
< C(Ae(0, Sl7tl)le(ﬁaSZJZ))iijLj@e(sz —S1,t —S1,l2—52) 2,

(2.3.14)
where O¢ (x,u1,u;) is defined by (2.1.26). From (2.3.7), (2.3.12) and (2.3.14)), it follows

that

HZSHLP <C/1R<2 /y2 e 20 2BH(Sz—Sl 11 —Sl,lz—S2)2

LRL)

SIEY

X ((e+(1—e720) (1 — 1)) e+ (1— e ) (1 o)) ' HF

X @p(s2 — 51,11 — 51,12 — 82) " P ds1dtydsrdird6d. (2.3.15)

Changing the coordinates (sy,t;,52,12) by (s1,x :=

in (2.3.13), we get

(T—uy) N —x—up) +
2l <2¢ [, [ ] ds
2

—uy)4+V(T1 —x—up)+

§ — 81Uy 1= 1 —S1,U 1=t — 52)

< an2((e 4 (1= e ) e+ (12 )u)) 7575

% @ (x, u1, 1)~ dxduydurdd.
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20

Integrating the variable s;, and making the change of variables 1 :=1—e “7, and

E=1- e 2P , we deduce that there exists a constant C > 0, such that

_d
HZSH%P(Q) <C(hh- Tl)/[o B H(x,ul,uz)z@e(x,ul,uz) g
s 42

x/[ }2((£+nu%H)(e+§M%H))_l_g+7’dnd§dxdu1du2. (2.3.16)
0,1

. : 1 1 1 : .
Changing the coordinates (x,u;,uy) by (€ 2Ax,€ 27 uy, € 2 uy) in (2.3.16), and using

1 1 1
the fact that @¢ (£~ 2 x, €~ M uy, £ M uy) = €20 (x,u,up), we get

d 2

d_ 3
€273 7,

d
SC(Tz—Tl)/ w(x,ur,u2)* @1 (x,u1,u2) "
Q R3

) 3

X/{ }2((1+77”%H)(1+5M%H))_l_g+7’dnd5dxdulduz-
0,1

Integrating the variables 1) and &, we obtain

|

d

2 2
iz, d_dyggy [ Bl

d
< O (x,ur,up) »
Lr(Q) 2 p R3 u%Hu%H Y

(1= (1421 55 5) (1 — (1 +ud) ™5 dxduy duy.

Hence, choosing p > 2, we deduce that there exists a constant C only depending on

H,d and p, such that

d_3 |2 u X, up,uz)? _d
€2 Y C(h—T) ———— 01 (x,uyg, rdxdurduy. (2.3.17
‘ e U(Q »—Th) O 1(x,ur,up) Pdxduydus. ( )

Since Hd > %, we can choose p so that 2 < p < %. For this choice of p, the integral
in the right-hand side of (2.3.17) is finite by Lemma Therefore, from (2.3.17),

it follows that there exists a constant C > 0, independent of 77,7, and &€, such that
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2
d 3
8 27 4H ZS

|

< C(T» — T1), which in turn implies that

Lr(Q)
|

Relation (2.3.2) then follows from (2.3.18)). This finishes the proof of Theorem[2.0.2]

[STS]

d_ 3 p
eI Z, ]gC(Tz—Tl) . (2.3.18)

Proof of Theorem 2.0.3
Now we proceed with the proof of Theorem [2.0.3] in which we will prove (2.0.3) and

(2:0-7) in the case H > 3. In order to prove (2.0.5), it suffices to show that for every

T >0,
2
S I (I _ R[] — (1) "o, (2.3.19)
and
a_3 Q) & e
e m I L(I15) =" —AY 27, (2.3.20)
j=1

as € — 0. Relation (2.3.19) follows from Lemma[2.2.2] In order to prove the conver-
gence (2.3.20) we proceed as follows. Using (2.1.4), we can easily check that

4 . .
271) 2 d T rT—u B(J) _Bgl)
JZ(I;):—( ) Z/ / (8—|—u2H)_%_1u2HH2 <H”—H dsdu.
=iJo Jo u

2
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Making the change of variable v := e_ﬁu, we get

€T (Tey 2H Y41 2H 1- B(:-)gz}ﬁl -8
S 1%
Z/ / (1)1 i H, NV dv

d
2

g2t (I8) =

% e T 1
Z/ (124020 (057 | Ydu, (2321)

Jj,T—€2Huy

1
where the kernel @**"* | is defined by (T.2.7). From (2.3.21)), it follows that for every

Jj,T—€2Hu

e,n>0,

E [8%_%_112(@)17%_%_112(1}7)}
sfﬁT n*ﬁT

(a2 (1) 4

1 (2.3.22)
1 1
X (”1“2)2 <‘PEZHM1 1 ,(Pn2Hu21 > duyduy.

(g)d)@Z

j7T_£ﬁul jvT_nﬁul

By (1.2.8)),

1 1
lim <<p£”’“u Lo > = H*(2H —1)? / s =52 dsyds
(H9) [0,T]

€20\ jT—e2uy  jT-n2Hu

_ H?(2H — D) pan—

A0 3 (2.3.23)

On the other hand, by (1.2.9), there exists a constant Cy 7 > 0, only depending on H

and 7', such that

1 1
0< <§0£2HM] 1 7(Pn2Hu21 > <Chk.
(H4)

J,T—€2Huy  j,T—m2Hu,
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Hence, using the pointwise convergence (2.3.23)), we can apply the dominated conver-

gence theorem to (2.3.22)), in order to obtain

] d(2m)~4A’H?*(2H — 1)T*H 2

1]E22H1JI£22H1JIn

g,v—0

where the constant A is defined by (2.0.6). From the previous identity, it follows that

d_ 3 ~
g2 1], (I£) converges to some hr € (H9)%2, as € — 0.

Recall that the element 71'; € (H9)%4, is defined as the limit in ($9)%?, as € — 0, of
(pﬁ - and is characterized by relation (1.2.10). In order to prove (2.3.20), it suffices to

show that ﬁT = AZ?:1 n% or equivalently, that

U

<%T7f1 ®f2>(_‘5(1)®2 =—A Z <7‘L'%,f1 ®f2>(_‘5¢1)®2 ,

J=1

for vectors of step functions with compact support f; = ( fi(l), ceey fi(d)) ent i=1,2.

By 2.3.21),

¢ 1

» 27T) "2 e 2HT
lim <hT,f1®f2> :lim—( ) 2/ (1+u2H)_02{u2< e 7f1®f2> du.
e—0 ( 0

HE2 £0 2 JT €20 (94)®2

(2.3.24)

Proceeding as in the proof of (2.3.23)), we can easily check that

1
I B — _H’H—1)? / / 212 () () ands.
813%< JT s f1®f2> iy Z 11—112 ls—n] Y (n)dnds
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Moreover, by (1.2.9),

1
€2H u
<
O ®2 [ fillga 1 22llge < Crr [l fillga [ 2]l 5 5

]7T78

'<‘P?m”2}ﬂ,f1®f2>

:

(H)=2 (H9)

for some constant Cyy v > 0 only depending on 7" and H. Therefore, applying the

dominated convergence theorem in (2.3.24), we get

~ d T T .
tim (i frf2) o= -ACH=0?Y [FTT [ s P2 0 s,
J:

®2
i=1.2

(2.3.25)

and from the characterization (1.2.10)), we conclude that ZT =—A 2?21 n% as required.

This finishes the proof of (2.3.20), which, by (2.3.19), implies that the convergence
(2.0.5).

It only remains to prove (2.0.7). By (2.0.3), it suffices to show the tightness property

for g2~ 3 +1 (If — E[I£]), which, as in the proof of (2.0.2), can be reduced to proving

that there exists p > 2, such that forevery 0 <71 < T, <K,

E|

where Z is defined by (2.3.3)), and C is some constant only depending on d,H, K and

[STS]

e%—%“zg)p} <C(h-T)5, (2.3.26)

p. Changing the coordinates (x,u;,u;) by (x,e_ﬁm,s_ﬁuz) in (2.3.16), and using
the fact that

@Ax,eﬁul,sﬁuz) = £’ (S_ix,ul,uz),
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we can easily check that

|

2
d_ 3
g2"mtlz,

Lr(Q

)
SC(Tz—TI)/ / £ 7 (x, £ uy, €2 uy)?
Q) R2 Jo

<On(e ) P [ (a1 +88M) T b andgdndudu,

and hence, if p > 2, we obtain

d_3 2 2 e 1 _
gh-amtly, SC(TZ—Tl)/ / £ 1 (o, €2 uy € 1) (g un) 2
Lr(Q) R% JO

% @, (8~ M x,u1,u2)~ # dxduyduy. (2.3.27)

By Lemma [2.4.4} if T1,T> € [0,K], for some K > 0, the integral in the right-hand side
of the previous inequality is bounded by a constant only depending on H,d, p and K.
Relation (2.3.26) then follows from (2.3.27). This finishes the proof of the tightness

property for e’ 2H+1( —E[[£]) in the case H > 3.

Proof of Theorem [2,0.4]
Finally we prove Theorem [2.0.4] First we show the convergence of the finite dimen-

sional distributions, namely, that for every r € N and Ty, ..., T, > 0 fixed, it holds

d
g27!

Tioatire i) Bl 11))) (W, W), (2328)

where p is defined by (2.2.52). Consider the random variable J% introduced in (Z.2.4T).
By Lemma|2.2.3] we have

=0, (2.3.29)

d
€2~
log 1/8 HIT IT] 1) hZT ”Lz
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and by Lemma

d
E2

L(hS ;) —J& =0. (2.3.30
\/log 1/8 ” 2r) = L(Q) )
Consequently,
4! .
m ——— |IE —E[I&] - J& =0,
ey R S
and hence, relation (2.3.28) is equivalent to
4
(e TR ) P (W W) (2.3.31)
log(1/¢€) o e ' o

By the Peccati-Tudor criterion, the convergence (2.3.31)) holds provided that JE satisfies

the following conditions:

(i) Forevery 1 <i,j<r,

d—2
Fes ~ ~
) [JS.J’S.] — pX(T;AT;), e — 0.
10g(1/8) T; TJ p ( 4 j) as
d_ | -
(i) Foralli=1,...,r, the random variables LJ% converge in law to a centered
log(1/e) i

Gaussian distribution as € — 0.

Relation (i) follows from relation (2.3.30)), as well as Theorem [2.2.5] Hence, it suffices

to check (ii). To this end, consider the following Riemann sum approximation for fi

(0 ()
B —B
e3—9 m2M d k)3 2 s
RSy = — e~ / Z P | e 23
’ M =1 (1 +uk)? VeEu(k)s
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(S 1%

where ¢joq 1= % and u(k) := 5, fork =2,.... M2 We will prove that

d
g2~!

W(R%M_JZS")

converges to zero uniformly in € € (0,1/e), and %R‘; v e r (0,p%) as
og ’

€ — 0 for some constant p3, satisfying p3, — p> as M — co. The result will then

follow by a standard approximation argument. We will separate the argument in the

following steps.

Step 1
d -
We prove that ﬁ(R‘%M —J%) — 0in L?(Q) as M — oo uniformly in € € (0,1/e),
og ’
namely,

-1

S/

& ~.

lim sup ——o ’ RE,, —JE —0. (23.33)

Moo ee 0,176 /log(17e) 11 Tiie
For & € (0,1/e) fixed, we decompose the term J% as

Ji =T+ I (2.3.34)
where
o d 3 B(j)g _ B
JA;’[IVI = _CZOggi_z/ / Z —— _stelu 3 duds
' 0 J2M = (14-u2)2t! VEus
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and

From (2.3.34), we deduce that the relation (2.3.33) is equivalent to

d
gl
lim RS ., — =0, (2.3.35)
M%‘x’ee 0 l/e log 1/8 T7M Tl Q)
provided that
-
lim ‘ JEM —0. (2.3.36)
M—>°°5601/e /log(1/¢€)

To prove (2.3.36) we proceed as follows. First we use the relation (2.2.43)) to write

2 2dclog
Loo- ,
12(Q) log 1/€) /OT /[08 ir zHg (0,2 M)U(MpO)(”l)

2
X W(ul,u2)€_8/3u(sz — S1,8§u1,8§u1)2dS1dS2du1du2,

d—2
T ‘ Jri
log(1/¢)

where y(uy,u;) is defined by (2.2.39). Changing the coordinates (s1,s2,u1,uz) by (s:=
2 2
$1,X = € 3(s3 —81),u1,up) when s; < sp, and by (s := sp,x:= € 3 (51 — 52),u1,up)
. . . . . . 2 2 2
when s; > s,, integrating the variable s, and using the identity wu(e3x,e3u;,€3u2)? =

€21 (x,uy,up), we get

Ed_2
log(1/¢) ‘

2 ATdcs 1
T2 Og/ Fa | IL(O,Z*“)u(Mpo)(ui)Gg;Z(ulaMZ)dXdulduL
’ 0,6 3 T]3 i:1,2 ?

< 75
12(Q) ~ log(1/€) Jj
(2.3.37)
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51)2 (u1,up) is defined by (2.1.14)). Define the regions .#; by (2.1.37)).

Splitting the domain of integration of the right-hand side of (2.3.37) into [0,7] =
U?:l([O,s_%TP N.7;), we obtain

where the function G

-2 ATdcj,, 3
€ ~.M||? log /
7 S L o(x,ur,u
log(1/¢) ‘ T2 ll2@) ~ log(1/€) & Jioe 317 7w, u2)
X H IL(0,2’M)U(M,oo)(1/‘1')(;52(141,ltz)dxa'ula'uz,
i=12
and hence, dropping the normalization term m in the regions .1, .%, we obtain
-2 2 ATdc?
€ 7€M log /
- > < 1
log(l/e)‘ L2 ll2Q) ~ log(1/€) Jo.e 3P 7% u1,12)

x I1 ﬂ(o,rM)u(M,oo)(ui)Ggg(ul,uz)dxdulduz
i=1,2

2
+4Tdc? / 1o(x,up,u
logi_z1 [078_%T}3 5”1( 1 2)

X H H(O,Z*M)U(M,oo) (u,)Ggg (u1 s uz)dxdulduz.
i=12

The integrands corresponding to i = 1,2 converge pointwise to zero as M — oo, and are
bounded by the functions 1 yi(x,ul,uz)Gg(ul,uz), which, by relations (2.1.20) and
(2.1.29), are in turn bounded by

2
X, Uq, U _
%@ﬂx, ui,un)" 2, (2.3.38)

S/

1. (x,u1,u2)C
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for some constant C > 0. In addition, by Lemma [2.4.3| the function (2.3.38)) is inte-

grable for i = 1,2, and hence, by the dominated convergence theorem,

; ; 4Tdc,20g Lo )
imsup sup H H <limsup sup / B o (x,up,up
M- £€(0,1/e) log 1/8 Q) T Moo ec(01/e) 10g(1/€) Jog 3mp 7

(2.3.39)

x H ]1(0727M)u<M,oo>(ui)Gfi(ul,uz)dxdulduz.
=12

On the other hand, by equation (2.4.5) in Lemma [2.4.2] we deduce that there exists a

constant C > 0, such that for every (x,u;,uy) € .3,
Gy ur,u2) < Clat s +u2) ™ (uguz) Py (ur, ). (2.3.40)

Therefore, from (2.3.39) we deduce that

d-2
€ ~=.M||?
limsup sup

M—seo ge(0,1/e) log(l/“?)‘ 1.2

<ii 4Cdclo e 3T ()
imsup sup / / MY (M o) (Ui
M—e £c(0,1/e) log 1/8 R+, 1,2 02 JUM )

L(Q)

-1 2
X (x4up+uy)” (upun) w(uy,up)duydusdx,
so that there exists a constant C > 0O such that

d-2
€ ~=.M||?
limsup sup

M—oo £€(0,1/e) log(l/e)‘ 1.2

<limsup sup CT /
R

L(Q)

H Lg2-my ( DY (ur,uz)

M- g€(0,1/e) 1is12
1 3T —1
5 og(e7 3T +uy +uy) —log(uy +uy) (uyun)2duurduty = O,
log(1/€)
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where the last equality easily follows from the dominated convergence theorem. This

finishes the proof of (2.3.36).
=1k

To prove (2.3.35) we proceed as follows. Define the intervals i := (%7, 517]- Then,

we can write R, and JM,, as

u(k)
//RZHI" (1+ u(k)

MM s
Ry =— Z Clog€?

(ST

H;

)2+l VEu(k)i

[\S[O8) [\S][0%)

and

m2M 3
k)2 3
j«‘:llk’: - Z Cloggg_g/ Z 1 (u a )3 i S 3 duds
k=2 Ry j=1 1+M(k)7)7+l Veus
Notice that by (2.2.43)),
B ety B B e, B 3 2
E|Hy | 52— | Hy [ 52— | | =2(viva) (e 3 (s2—s1),v1,02)%,
Vevt VEvS
and hence,
d—2 2 2dc?
£ ~M e log / /
— ||\ = — 1y, (u1)1y, (u
log(l/e)‘ TMll2Q) ~ log(1/€) Jiop2 R g, kz 5 t (1)1, (12)

2 M _2
X € 3Ak1’k2(8 3(s2—sl),ul,uz)dsldszdulduz,
where the function Ay! | (x,u1,uz) is defined by

A (e ug) = (G (ur,0) — G (k) )

= G|, u(ka)) + Gi Uk, u(ka)) ).
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. ) _2 )
Changing the coordinates (s1,s2,u1,us) by (s:=s1,x:=€ 3(sp —s1),uy,u;) in the case

2 . . .
sp > sp and by (s :=sp,x:= € 3(s; —s2),u,u;) in the case s; > 57, and integrating the

variable s, we deduce that there exists a constant C > 0, such that

8d72

M pe
log(1/¢€) ’ B

2 £ %T MM
1 1
L2(Q )_ log( 1/8 / /+k1 - Ikl(ul) I, (u2)

x |AY 4, (6 ur,u2) | duy dundx. (2.3.41)

In order to bound the term ’A% ko (x,up, uz)‘ we proceed as follows. Consider the func-

tion

Di/[(ul,uz) = l//(ul — 27M,u2 — Z’M),u(x,u] + 27M)2

—w(uy +27M uy 27 M) (o, ug — 27M)2,
where W (uy,uy) is defined by (2.2.44)). By relation , we have that

3 Uy X+uyp 1
WU(x,up,up) = g/ / [vi —va| 2dvidv,
0 X

_3u1u2
8 Joap

X vaus — viuy| "2 dvidva, (2.3.42)

and consequently, u(x,uy,up) < p(x,vy,v2) for every u; < vy and up < v,. Using this
observation, we can easily show that for every v; € [u; — 27M oy 427M | and v, €

[up — 27 up +27M], the following inequality holds

d
2

(g +27M uy + 27T (x,uy —27M)?

gi(vl,vz) < wy(up— 27M oy, —2_M)_%u(x,u1 +2_M)2.
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Hence, for every u; € Iy, and uj € I,
A 4, (ur,u2) | < 2DY (uy,u). (2.3.43)

Using relations (2.3.41)) and (2.3.43), as well as the fact that

MM
Z llkl (ul)ﬂ]kz (up) = ]].[2—M7M]2(M1,M2),
ki,kr=2
we obtain
d-2 2 e 3T
€ &M CcT / u
1/e) — Ry, = fog(1/2) 1 D duydusdyx.
10g(1/8)‘ 12@) ~ log(1/€) Re M 2(ur,u2) Dy (ur, uz)durdusdx

(2.3.44)

To bound the integral in the right-hand side we proceed as follows. Define N := g3

so that log(1/€) = XY, Then, applying L’'Hopital’s rule in (2:3.44), we deduce that

there is a constant C > 0, such that

gd—2
limsu ‘ M _Re
Hoplog(l/e) rr M2 )
NT o
< limsup / Lio-m gy (w1, up) Dy (uy,up)duydupdx
i 10 N 2 [ » } ) X )
Ny TOBNVJ0 JRY (2.3.45)

:limsupCT/Rz 11[2_M7M]z(u1,uz)NTD%T(ul,uz)dulduz.
+

N—soo

On the other hand, using (2.3.42)) and equation (2.4.5) in Lemma[2.4.2] we get that for

every (x,uj,up) € /3,

. 32utu3
lim xp (x,uy,up)? = —1-2

lim 56 (2.3.46)
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and

X (x,ur,u2)? < x(x+up +up) " (wiun)? < (uyup)?
Hence, by applying the dominated convergence theorem in (2.3.45), we deduce that

there is a constant C > 0, such that

d—-2 2

limsu —(F’M—Rg
£—>0p10g(1/8> L.l M

<CT /RZ ﬂ[szyM]z(ul,uz) (l]/(ul — 27M,M2 — Z*M)((ul —l—Z*M)(ul +2*M))2
=

L(Q)

— vy 277wy +27M) (g — 27 (g — 2—’”))2) duyduy. (2.3.47)

Let My € N and 6 > 0 be fixed. Using the fact that integrands in are decreasing
on M and

My2Mo

Z Ly, (xl)ﬂlkz (x2) = Lm0 pgy) (xl)]l[Z*MmMO] (x2) <1,
ki kp=2

we can easily check from the definition of the convergence (2.3.47), that there exists

Y = v(My, §) > 0 such that for every M > M, the following inequality holds

sup e ’JAE M _ Re
£<(0,y) log(1/¢) II"T! )
< 5+CT/2 (l[/(ul —27Mo gy — 27Mo) (g 427 M0) (g 4-27Mo))?
R+

—y(uy 270y 427 M0 (g — 27 M0 (g — 2—M0))2) . (2.3.48)
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gd=2

To handle the term supgc(y,1/e) Tog(1/2)

2
‘fEM R%MHLZ(Q)’ we use (2.3.44)) to get

Sd 2

‘AEAI Re
se(yl/e log(l/S)

2 Yy 3T
M
M e = CT/O /Ri 1yt g2 (ur,1u2) DY (1, 1) duy dudx.

(2.3.49)

From (2.3.48) and (2.3.49)), we conclude that there exists a constant C > 0, only de-

pending on 7', such that for every M > M,

8d—2
7€M £
sup

J77 —R
£€(0,1/e) log(l/s) ‘ w

12(Q)

Mo2Mo
<O+CT / (W(m —27M0 uy = 27M0) ((uy +27M0) (g +27M0))?
+ k1 k2 2
—w(ug +27M0 uy 4 27M0) (g — 27 M0) (g — 2—M0))2) (2.3.50)

Yy 3T
+CT/0 /Rz ]1[2*M,M]2(”1a”2)0§4(u1,uz)dulduzdx,
+

Taking first the limit as M — o and then as My — < in (2.3.50), and applying the

dominated convergence theorem, we get

8d—2 2

< 4.

limsup sup —’JA;ZIW— M
M—eo ec(o,1) log(1/€) 1'% ’

L(Q)

Relation (2.3.35) is then obtained by taking 0 — 0 in the previous inequality.

Step 11

Next we prove that

8d—2

. £ 2 — ~2
S e (1) /E)E[(RT,MH TPi; (2.3.51)
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where py; is given by

_ V3d M2 e
Pv=—5—7— Y, (1+u(k)?) 2 u(k)?, (2.3.52)
27 ga2M [ =

and u(k) = ZLM Notice that in particular, pz, satisfies
lim py; = p*
M*)OOPM p )

where p? is defined by (2.2.52). To prove (2.3.52) we proceed as follows. Recall that

d
the constant ¢, is defined by ¢;,, = (272 2, Then, from the definition of R% y (see

equation (2.3.32))), it easily follows that

gd=2 R 2dcj,, wmreo, o
oo E [RE] = oo e /[O’Tpklgzg G0, (k) utk))dsids:

Changing the coordinates (s1,s2) by (s1,x := s —s1), and then integrating the variable

s1, we get
d=2 4dc? M2M
_ € lo, ~2 (1) 2 2
E Rs 2 —g/ T 8 3G e3ulk ,€3l/lk dx
log(1/) [(Re)) = log(1/€)22M Jo =, - kz Lo 3 Eulk), EFulkz))
4dclog TooM2M ) ) .
S k.- N— X €3G e3u(ky), e3u(ky))dx.
o178 Jy ¥, X & G, 1, [tk eulie)

3

Using relation (2.2.60) as well as the Cauchy-Schwarz inequality p(x,uy,uz) < (ujuz)%,
we can easily deduce that there exists a constant C > 0, depending on uy, ..., u,»m, but

not on x or €&, such that
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and hence,

MM

) 1 T 2
hm—/ X e 3G u(ky),u(ky))dx =0,
e—0log(1/€) Jo klg_z 1,3*%;6( (k1),u(k2))

which implies that

el 2 S 4dcl, T T M2
lim -——— =B [(R7y)7] = lim -———"s57 3G, ki), u(ka))d
i gty (Rra)™] = T s ey ), kl% 3, () ulko))dx
4d%gT /83T m2M

=lim —————+ G ky))dx,
e—0log(1/€)2*M k]%: (k) u(k))

where the last equality follows by making the change of variables x := £ 3x. Hence,

writing N := €73, so that log(1/€) = 2103gN, and using L’ Hopital’s rule, we get

. gd=2 E(RE 2] — Tim 8dc7, T (NT M2 50 i
sg%log(l/s) [(RE)] = N—>o<>310gN22M klkzz" lx u(ke))

8dc? T M2
log" Y, NTG{\p(ulki), ulks))dx = Py,
ky,kp=2

= Mmoo

(2.3.53)

where the last identity follows from (2.1.14) and (2.3.46). This finishes the proof of
(2.3.51).

Step 111

d

0g(l/ )

with variance p2. From Steps I and II, it suffices to show that

Next we prove the convergence in law of JT to a Gaussian random variable

RE ™ ¥ (0,P), ase—0, (2.3.54)
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In order to prove (2.3.54)) we proceed as follows. Define the random vector

D (Ds)k 2
where
(/) (J)
3 B —B
. Clogu(k)? & 1 r sreduk)
Dy = Iy ER Z T H 3 ds,
2M(1+u(k)?) 5+ S el \/log(1/e) 1o Veu(k)?
2m) 9
and cl,,g:( %) 2 Notice that
4-1 m2M
£2
—_— = D¢
log(€) TM Z ke

We will prove that D converges to a centered Gaussian vector. By the Peccati-Tudor
criterion (see [47]]), it suffices to prove that the components of the vector Df converge
to a Gaussian distribution, and the covariance matrix of D? is convergent. To prove the
former statement, define

B(]) J _ B(J)

P (e):=E /THZ sedutin) /H Psetun ds
e 0 Veuk)? Veulk)?

Proceeding as in the proof of (2.3.53), we can show that for 2 < ky,k, < M2M,

2(u(ky )u(ky)) 2 B :
o' e3log(1/€) /[O,T]Zu( 2= s1,e3ulky), e3uka)) ds dsy

_ S(M(kl)Lt(kz))_% f'«'_%T T g%x ,

~ 3log(e %) /o /0 p(x u(ky), u(ka)) dsdx
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As in the proof of (2.3.53), we can use L’Hopital’s rule, (2.3.46) and the previous

identity, to get

3 2
- S8(u(k ) u(ky)) 2T € 3T 3
lim W/ — fim Sk ulke)) 2 / w(x,u(ky), u(k))2dsdx = —T /u(k)u(j)
£—0 £e—0 3log(e~3) 0 23
From here, it follows that
3dT

Jim I D, Di,] =i = W‘I/(u(kl),M(kz))(u(kl)u(kz))za

namely, the covariance matrix of D® converges to the matrix X = (X4 ;)o<4 j<pom- In
addition, by [11, Equation(1.4)] , for 2 < k < M2M fixed, the sequence of random
variables Df, converges to a Gaussian random variable as € — 0. Therefore, by the
Peccati-tudor criterion, the random vector D converges to a jointly Gaussian vector

M . . .
Z = (Zk)ﬁ’fz , with mean zero and covariance X. In particular, we have

g1 MM m2M
Riy=Y Di=¥ (0, ) %, as €—0.
k=2

V/log(€) =
Relation (2.3.54)) easily follows from the previous identity.

Since (2.3.28) holds, in order to finish the proof of Theorem it suffices to prove
tightness. As before, we define, for 77 < T, belonging to a compact interval [0, K] the
random variable Z, by the formula (2.3.3). Then, by the Billingsley criterion, it suffices

to prove that there exist constants C > 0 and p > 2, only depending on K, such that

p

41
E[—ﬁi——a <C(h,-T)". (2.3.55)

log(1/¢)
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Using relation (2.3.27) with H = 43'1’ we can easily check that

d—2 T
€ 2 C( 2 —2H
og(1/2) ”ZSHLP(Q) < ——— 1/8 /]1%2 / e 3/4 X 83u1 83u2) (ujua)™

X G)l(e_?x,ul,uz)_ﬁdxdulduz (2.3.56)

C(T —T n
< sup L/ / € 3# 83”1;83142)2(”1“2) —2H
c(0,1/e) log(1/€) Jr2

X ®1(8_3x, ul,uz)fﬁdxdulduz.

The right-hand side in the previous identity is finite for p > 2 sufficiently small by

Lemma [2.4.5] and hence, there exists a constant p > 2 such that

gd—2
log(1/€)

)4
2

E[|Ze|’] <C(Ta —Th)>.

d

This finishes the proof of the tightness property for ——— 0]

———— (I -E [I%] ). The proof

of Theorem [2.0.4|is now complete.

2.4 Technical lemmas

In this section we prove some technical lemmas, which where used in the proof of

Theorems[2.0.2] 2.0.3]and [2.0.4]

Lemma 2.4.1. Let sy,s52,t1,tp € Ry be such that s1 < s, and s; < t; for i = 1,2. Denote
(1)

1 .
o~ B‘gz) ). Then, there exists a constants

by ¥ the covariance matrix of (Bt(1]) — Bg),B

0 < 0 < 1 andk > 0, such that the following inequalities hold
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1. Ifs1 <sp <t <ty

2| > 8((a+b)* P 4 (b+c)*Pa®), (2.4.1)

wherea =5, —s,b:=t1 —syand c:=1, —1,.

2. IfS1<S2<t2<l1,

2| > 8% (a*H + ), (2.4.2)

where a =5y — 51, b:=th —sy and ¢ ==t — 1.

3. Ifs1 <t <s0 <ty

2| > §a?H (2.4.3)

where a == t1 — sy and ¢ := t) — 5».

Proof. Relations (2.4.1)-(2.4.3) follow from Lemma B.1. in [29]. The inequalities
(2.4.1)) and (2.4.3]) where also proved in [23, Lemma 9], but the lower bound given in

this lemma for the case s; < 57 < tp < t 18 not correct. ]

Lemma 2.4.2. There exists a constant k > 0, such that for every s| <t} < 5o < 1y,
u(a+b,a,c) < kb* 2qc, (2.4.4)
where a =1t —s1, b := sy —t) and ¢ .=t — s3. In addition, if H > %,

/.L(x, ui, uz) < k(x+ up + u2)2H72u1u2, (2.4.5)
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where x .= sy — 51, U1 ;=1 — 81 and up :=1t) — s3.

Proof. We can easily check that
1
ula+ba,c)=((a+b+e) ™+ = (b+0)™ = (a+b)™),
and hence,

w(a+b,a,c) =H((2H — 1)ac/ ) b4 avy +cva|* 2 dvydv,,
[0,1]

Relation (2.4.4)) follows by dropping the term av; 4 cv; in the previous integral, while

(2.4.5) follows from the following computation, which is valid for every H > 5,

Blatbae) =HEH—ae | [b+an +enf*2dndv,
1
1
H(2H — l)ac/ l(aVbV e 2ay
0
= Hac|aVvbV |72 <H&"2q¢)2a+ b+ 172

= 42H72H(X +u; + uz)ZH*Zuluz.

]

Lemma 2.4.3. Define the functions i and 1 by (2.1.10) and ([2.1.26) respectively. Let

23_d <H<l,and 0 < p< % be fixed. Then, the following integral is convergent

T OH 2H
uy-u;

/ X, 0) ®l(x,u1,u2)_%dxdu1du2 < oo, (2.4.6)
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fori=1,2, where the sets ./; are defined by (2.1.31)). Moreover, if H < 43_1’ then

2 d
ML) g (i s dvdindy < oo (2.4.7)

3

Proof. Denote the integrand in (2.4.7) and (2.4.6) by ¥ (x,u;,u>), namely,
2 —2H -4
W(x,up,up) = W(x,up,up) (ujup) =" Op(x,up,up) 7. (2.4.8)

We can decompose the domain of integration of (2.4.7), as R3 = . U.% U.%3, where
A, 5,3 are defined by (2.1.31). Then, it suffices to show that

/ W (x,uy,up)dxduduy < oo, (2.4.9)
57

for i = 1,2 provided that 0 < p < %, and for i = 3, provided that 0 < p < ‘% and

H < %. First consider the case i = 1. Changing the coordinates (x,uj,uy) by (a :=
x,b:=uy—x,c:=x+uy—uy)in 2.4.9) fori = 1, we get
W (x, 1, un )dxdur dity — / W(a,a+b,b+ c)dadbdc.

IR+

A

To bound the integral in the right-hand side we proceed as follows. First we notice that

the term p(a,a+b,b+ c) is given by

1
u(a,a+b,b+c)= E((a+b+c)2H+b2H—c2H—aZH).
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By the Cauchy-Schwarz inequality,

u(a,a+b,b+c)| < (a+b)" (b+c)!. In addition,
by (2.4.1)) there exists a constant § > 0 such that

(a+b)* 2 (b+c)* —pu(a,a+b,b+c)* > 8((a+b)* 1 + (b+c)*a®). (2.4.10)
Asa consequence,

_d

Y(a,a+b,b+c) < (1+(a+b)* +(b+c)* +8((a+b)**H + (b+c)* a?)) 7

Hence, we deduce that there exists a constant K > 0 such that the following inequalities

hold

d

Y(a,a+b,b+c) §K(l—|—02H+02Hb2H) p if a<b<ec,
d

¥(a,a+b,b+c) <K(1+ 2HaZH) z if b<a<c,
d

¥(a,a+b,b+c) <K (1+b* +AHp*) 7 if a<c<b,
_d

Y(a,a+b,b+c) K(1+b2H—|—b2Ha2H) P if ¢c<a<hb,
_d

Y(a,a+b,b+c) K(1+a 2Ha2H) P if b<c<a,
_d

¥(a,a+b,b+c) <K(1+a* +pHa?) 7 if c<b<a.

Using the condition p < =3= 4Hd , as well as the previous inequalities, we can easily check
that ¥ (a,a + b, b+ ¢) is integrable in R3 , which in turn implies that ¥ (x, uy,uy) is in-

tegrable in .7, as required.

Next we consider the case i = 2. Changing the coordinates (x,u,uy) by (a :=x,b :=
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upy,c:=uj —x—up) in (2.4.9) for i = 2, we get
/ W(x,uy,up)dxduiduy = / Y(a,a+b+c,b)dadbdc.
52 R3

To bound the integral in the right-hand side we proceed as follows. First notice that the

term U(a,a+b+c,b) is given by
1
u(a,a+b+c,b) = E((b+c)2b’+ (a+b)*H — 20 _ g2H), (2.4.11)

By the Cauchy-Schwarz inequality,

w(a,a+b+c,b)| <b(a+b+c)". In addition,
by (2.4.2), there exists a constant 6 > 0 such that

P (a+b+c) —u(a,a+b+c,b)* > v (a1 + ).
As a consequence,
_d
¥(a,a+b+c,b) < (1+0* +(a+b+c)* + b (a4 ) 7

From here it follows that there exists a constant K > 0 such that the following inequal-

ities hold
Y(a,a+b+c,b) <K (1+H +p )" ’ if a<b<ec,
Y(a,a+b+c,b) <K (1+b" 4+ p* H) v if a<c<b,
Y(a,a+b+c,b) <K(1+b* + szazH)_% if c<a<b,
P(a,a+b+c,b) <K(1 +a2H+b2Ha2H)_% if c<b<a  (24.12)
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Using the condition p < %, as well as the previous inequalities, we can easily check

that ¥(a,a+ b+ c,b) is integrable in the region {(a,b,c) € R} | b >aAc}.

Next we check the integrability of ¥(a,a+b+c,b) in {(a,b,c) €R3 | b <aAc}.
Applying the mean value theorem in (2.4.11]), we can easily check that

p(a,a+b+c,b) = %(2H(a+§1)2H_1b+2H(c+52)2H_1b), (2.4.13)
for some &1, &, between 0 and b. Therefore, if H < %, we obtain
w(a,a+b+c,b) SH(azﬂ_]—l—cZH_l)b, (2.4.14)
which in turn implies that

‘P(a,a—{—b—l—c,b) SHZ(GZH_l+C2H_1)2b2_2H(a+b+C>_2H
_d
p

(L+b* + (a+b+c)*H + 56 (a* + M) (2.4.15)
For the case H > 3, we use (2.4.13), in order to obtain
w(a,a+b+c,b) <H((a+b)>" "+ (c+b)*" )b,

which in turn implies that

‘P(a,a+b+c,b) SHZ((a_Fb)ZHfl_|_(c+b)2H71)2b272H(a+b+c)72H

_d
(1+6 - (atb+e)?H 48 (- 2H)) 7. (2.4.16)
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From (2.4.15]), we deduce that, if H < % there exists a constant K > 0 such that
_d
p

Y(a,a+b+c,b) < Ka*H—2p?>—2H =20 (1 +c2H +b2H02H) if b<a<ec,
d
Y(a,a+b+c,b) < KM —2p2—2H =20 (1 +a*H +b2Ha2H) P if b<c<a.
2.4.17)

. . 1 .
In turn, from (2.4.16), it follows that if H > 3 there exists a constant K > 0, such that

_d
¥(a,a+b+c,b) <K 222 (14 4 p2HH) v if b<a<e,
_d
¥(a,a+b+c,b) <Ka™ 2> (1+a® +p*Ha?) 7 if b<c<a
(2.4.18)

Using the conditions H < % and p < %, we can easily check that 2H < %f, which, by

[2-4.17) and (2:4.18)), implies that ¥ (a,a+b+c,b) is integrable in { (a,b,c) € R | b <
aAc}. From here it follows that ¥(a,a + b -+ c,b) is integrable in R3, and hence

W(x,uy,uy) is integrable in .¥, as required.

Finally we consider the case i = 3 for H < %. Changing the coordinates (x,up,u;)
by (a:=uy,b:=x—uj,c:=uy) in (2.4.9) for i = 3, we get
W(x,uy,up)dxduiduy :/3‘I’(a+b,a,c)dadbdc.

R

%)

To bound the integral in the right-hand side we proceed as follows. First we notice that

the term p(a+ b,a,c) is given by

u(a+b,a,c)= %((a+b+c)2H+b2H —(b+c) — (a+b)*). (2.4.19)
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By the Cauchy-Schwarz inequality, t(a+b,a,c) < a'’cf. In addition, by ([2.4.3)), there

exist constants k, 0 > 0 such that

1P y(a+b,a,c)* > §a*H (2.4.20)

and

w(a+b,a,c) < kb*2ac. (2.4.21)

From (2.4.20)-(2.4.21]), we deduce the following bounds for ¥

d
P

¥(a+b,a,c) < (1+a + A +5a* M) 7, (2.4.22)
_d
p

¥(a+b,a,c) <2Hb*™ *Hac) 2 (1 +a® + M 4 §a*H ) (2.4.23)

Using (2.4.22), as well as the condition p < %, we can easily check that W(a+b,a,c)

is integrable in the region {(a,b,c) € R3 | b <aAc}.

Next we check the integrability of ¥(a + b,a,c) in the region {(a,b,c) € R3 | b >

aVc}. Since H < %, from (2.4.23) it follows that there exists a constant C > 0 such that

_d
P

/ W(a+b,a,c)db < Clac) 2 +2(av c)*3 (1+ a2y aZchH)
(ave)

_d
gC(ac)% (1+a2H+CZH+a2H02H) b

The integrability of ¥(a + b, a, c) in the region {(a,b,c) € R3 | b >aV c} then follows

from condition the p < @.
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Finally, we prove the integrability of ¥(a+b, a, c) in the regions {(a,b,c) €R3 |a <
b<c}and {(a,b,c) €R} | c<b<a}.Leta,b,c>0besuchthata <b <c. Applying

the mean value theorem to (2.4.19)), we can easily show that

1 _
wla+b,a,c) = 5 (& a— g1 a),

for some &; between ¢+ b and a+ b+ ¢, and &, between b and a + b. Hence, if H < 1,

it follows that

u(a+bac)l <& at & a)

((C+b)2H 1 —|—b2H 1 )

l\.)l»—kl\-)l'—‘

From here it follows that there exists a constant C > 0, only depending on H such that
\w(a+b,a,c)| <cr*la. (2.4.24)

Using inequalities (2.4.20) and (2.4.24), we deduce that there exists a constant K > 0

such that
W(a+b,a,c) < Kb 222721 (1 4 21 4 21 4 2 czH)
From here, it follows that
W(a+b,a,c) < Kb 2272 72 (1 L g1 4 2 —i—aZchH) . (2.4.25)

Using the condition H § , we can easily show that 2H — 284 < % — 2Hd < 0. Hence,

p
from (2.4.25)), we deduce that ¥(a+ b, a, c) is integrable in {(a,b,c) € Ri la<b<c}.
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The integrability of ¥(a + b,a,c) over the region {(a,b,c) € R3 | ¢ < b < a} in the
case H < %, follows from a similar argument. To handle the case H > %, we proceed as

follows. From (2.4.19), we can easily show that for every a,b,c > 0 such thata < b <,

Blatba.e) =HEH —ac [ (b+aE+en) Zdgan
0,1

<H(2H — 1)ac/01(cn)2H_2dn,
and hence
w(a+b,a,c) <Hac*!.
From here it follows that

d
Y(a+b,a,c) <a> HAH2(1 42 4 A 4 21

Using the condition p < %, we deduce that ¥(a + b,a, c) is integrable in {(a,b,c) €

R3 | a < b < c}. The integrability of ¥(a+ b, a,c) over the region {(a,b,c) €R3 | c <
b < a} in the case H > % follows from a similar argument. From the previous analysis
it follows that ¥(a + b, a,c) is integrable in R3 , and hence W (x,u1,u,) is integrable in

73, as required. The proof is now complete.

]

Following similar arguments to those presented in the proof of Lemma [2.4.3] we

can prove the following result
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Lemma 2.4.4. Let the functions | and O be defined by (2.1.10) and (2.1.26) respec-

tively. Then, for every 4 <H<land0<p<=3%% 4Hd

2H 2H

2
/ / _x 82H ui, 821‘1142) @1(8_ﬁx7u17u2)7%dxduldu2 < o0, (2426)
ee( O 1) RY “2

Proof. Denote by K¢ (x,u;,uy) the function

E

Ke (X, up,up) = 8_%,u(x,eﬁul,Sﬁuz)z(uluz)_m@l(s_ﬁx,ul,uz)fi.

To prove (2.4.26)), it suffices to show that

sup /2 / 1.o(x, 82Hu1 eziiuz)lcg(x uy,up)dxduyduy < oo, (2.4.27)
e€(0,1)/R

for i =1,2,3. To prove in the case i = 1,2, we make the change of variable

~ S U
X := € 2Hx, in order to get

T 1 1
/]R?/O Ilyi(x,8ﬁu1,£ﬁu2)1<g(x,ul,uz)dxdulduz
+
3 o € 2HT
—g W /1@2/0 1o (X, uy, un)W (X, uy, un)dxdu dus,
+

where W is defined by (2.4.8)). Hence,

T
/2/ ]L;ﬂi(x,82}1141,82}’1u2)K8(X,M1,u2)dxdu1du2S/ W (x,uy,up)dxduidus.
R4 JO

i

(2.4.28)

In Lemma 2.4.3] we proved that [ % W(x,uy,up)dxduiduy < oo, provided that p < *5¢ 4Hd

To handle the case i = 2, we change the coordinates (x,u;,uy) by (a:=x,b:=up,c :=
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u; —x—up), in order to get
/ W(x,uy,up)dxduiduy = / Y(a,a+b+c,b)dadbdc.
) R3

By 2.4.12), ¥(a,a+b+c,b) is integrable in {(a,b,c) € R} | b > aAc}. In addition,
since 2H — § < 3 < Hd, by @418), ¥(a,a+b+c,b) is integrable in {(a,b,c) €
Ri | b <aAc}, and hence, W(x,u;,uy) is integrable in .%, as required. It then remains
to prove in the case i = 3. Using (1.2.6)), we can easily check that for every

(x,v1,n2) € .73,

’,Lt(x, V1, VZ)’ = ‘<1[0,v1}7 1[x,x+v2}>y)d

)

=H(2H — l)vlvz/[ . |x 4+ vows _V1W1|2H_2dw1dw2
0,1

<H(2H — l)vlvz/ 2 |X_xw1|2H_2dw1dw2,
0,1

)

and hence, there exists a constant C > 0 only depending on H, such that for every

(xathZ) € y&
| (x,vi,m)| < Cvyvax*ti—2. (2.4.29)

1 1 . 1
On the other hand, for every (x, €27 u;, €20 uy) € .73, it holds (€~ 2 x,uy,uy) € .3, and

hence, by (2.4.20),

@1 (e 2x,ur,u) > St 12H (2.4.30)
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By (2.4.29) and (2.4.30), we obtain

Ke (20, 11, 12) < Cluyun)> 2HxM =4 (1 13 137 31030~ P, (2.4.31)

for some constant C > 0, and hence,

T 1 1
/]RZ /0 Ily3(x,8ﬁu1,Sﬁuz)Kg(x,ul,uz)dxdulduz
+

T
3/2/ ()21 21 20 4 2H 25 xduy dus.
R2 Jo

Since H > %, then 3 —2H < % < Hd, and hence, the integral in the right-hand side of
the previous identity is finite, which implies that holds for i = 3, as required.

The proof is now complete. U

Lemma 2.4.5. Let d > 3, and T > 0 be fixed. Let the functions | and O be defined
by (2.1.10) and (2.1.26)) respectively and and assume that H = %. Then, for every

0<p<d,

e8/3 83 e3ur)2 d

/ / 'u ikt uz) 0, (ngx,ul,uz)_ﬁdxdulduz < oo,
(Ol/e log 1/8 R u1u2

Proof. Denote by K¢ (x,u;,uy) the function

e—8/3
log(l/ e

2 2 _3 _2 _
(x,£3u1,£3u2)2(u1u2) 20 (& 3x,up,up)

SIEY

Ke(x,up,up) :=
As in Lemma|[2.4.4] it suffices to show that

/2 / (x 83u1,83u2)1<g(x up,up)dxduyduy < oo, (2.4.32)
ec( 0 /R
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for i = 1,2,3, where the regions .#; are defined by (2.1.31). The cases i = 1,2 are
handled similarly to Lemma [2.4.4] so it suffices to prove in the case i = 3.

Suppose (x, E%Lt] , e up) € #3. Then, by Lemma|2.4.2| there exists a constant C > 0,

such that

2 2 4/3 2 2 _1
U(x,€3u1,€3up)| < Ce™°(x+€3u1 +€3up) Zujuy

2 1
=Ce(e 3x+u +uy) 2ujuy

3 3 2 3
we have that uiu3 — (€ 3x,u1,u2)? > 8(uyuz)?2, for

In addition, by Lemma [2.4.1

some 0 > 0. Therefore, we conclude that there exists a constant C > 0, such that

2.

e 3C 2 1 3 3 3 3 > 7%
Kg(x,ul,uz)gm(s Sx+ur+un)” uruo (1 +ug +us +ujus — p(xur,u)

< E%CZ‘S_Z(e—g g +un) g (Lt u? +ul +utul E
—— (& 3 x+u;+u uu u u U .

Consequently, there exists a constant C > 0, such that

T
/2/ Lo (x,u1,uz) Ke (x,u1,u2)dxduyduy
0

SIEW

ce b
//]Rz e x+u1+u2) Vutuy | 1+ui +us +ujus

log log(1/€)
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. . ~ 2 .
Hence, making the change of variable x := £~ 3x, we obtain

T
/2/ 1o (x,u1,uz) Ke (x,u1,u2)dxduydu
r2 Jo

c e i 1 b pdad)
< — X4uy+u) Jurup | 1+u; +u;s +uju dxduidu
log(l/e)/Rg/o (X 4ur +u2)” 2( [y 4ug 2) 1duy
_d
P

¢ ! 303 33
= og(1/¢) /]12{2 /0 (x+uy +uz) " uruz (l—i-uf +u; —|—u12u§) dxduyduy
=

&.

C S_%T 1 1 % % % % 7Edd d
+—/ / X+u +u _\/uu<+u +u +uu> xduduy.

(2.4.33)

Applying the inequalities (x+uj +uz) ™' < (ug +up) ™! < %(uluz)’% forx € [0, 1], and
(x4u;+ uz)_l < x~! for x > 1, in the first and second terms in the right-hand side of

(2.4.33), and then integrating the variable x, we can show that

(11u2)~2 + 2log(1/€) + log(T)
log(1/2)

T
/ / ﬂyi(x,ul,uz)Kg(x,ul,uz)dxdulduz§C/
R2 JO R

3 3 3 3 P
X A/uius (1+u12+u§+u12u§) dxduiduy,
and consequently, for every € < 1/e,

T
/2/ Lo, (x, 1, up) Ke (X, 11, up)dxduyduy
R2 Jo

I

3 3 3 3
= C/z ((uluz)_% —Hog(T)) Vv Uuiu2 (1 +uj +u; +u12M22) : dxduydu;.
R+

The right-hand side of the previous inequality is finite due to the condition 0 < p < d.

This finishes the proof of (2.4.32). O
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Chapter 3

Derivative self-intersection local time for the fractional

Brownian motion

Let B = {B;};>0 be a one-dimensional fractional Brownian motion of Hurst parameter

H € (0,1). Fix T > 0. The self-intersection local time of B, formally defined by

I(y) := /OT /Ot5(Bt — By — y)dsdt,

was first studied by Rosen in [49] in the planar case and it was further investigated
using techniques from Malliavin calculus by Hu and Nualart in [23]. In particular, in
[23] it is proved that for a d-dimensional fractional Brownian motion, I(0) exists in L?

whenever the Hurst parameter H satisfies H < é.

Motivated by spatial integrals with respect to local time, developed by Rogers
and Walsh in [48]], Rosen introduced in [50] a formal derivative of I(y), in the one-

dimensional Brownian case, denoted by

aly) = j—i(y) — —/OT /Ot 5'(B; — B, — y)dsdr.
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The random variable o := (0) is called the derivative of the self-intersection local

time at zero, and is equal to the limit in L? of

T ot
O = / / Pl(B; — By)dsd, (3.0.1)
0 JO

2
where pe(x) := (27178)_%(%. This random variable was subsequently used by Hu
and Nualart [24], to study the asymptotic properties of the third spacial moment of the
Brownian local time. In [34]], Markowsky gave an alternative proof of the existence of

such limit by using Wiener chaos expansion.

Jung and Markowsky extended this result in [29] to the case 0 < H < % and con-
jectured that for the case H > %, e " H g converges in law to a Gaussian distribu-
tion for some suitable constant y(H) > 0, and at the critical point H = %, the variable

log(1/€)~Ya, converges in law to a Gaussian distribution for some y > 0.

Let .4 (0,0?) denote a centered Gaussian random variable with variance 2. The
primary goal of this paper is to analyze the behavior of the law of e as € — 0, when

% < H < 1. We will prove that when % <H<1,

[\S1[S8]
|-

e o™ #(0,6%), when &—0,

for some constant 62 that will be specified later (see Theorem [3.3.1). Moreover, we
will prove that for every ¢ > 2 and % <H< %, limg_,0J, [0te] exists in L%, where Jq
denotes the projection on the g-th Wiener chaos (see Theorem [3.3.2)), while in the case

2<H< 32—:2, the chaotic components J,; [0 of ¢t satisfy

1= ], [ot] Lﬂvc/V(O,Gg), when € — 0,
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for some constant qu that will be specified later (see Theorem . The proof of the
central limit theorem for €2~ # o follows easily from estimations of the L?>-norm of the
chaotic components of ¢, while the proof of the central limit theorem for elfﬁjq (]
relies on the multivariate version of the fourth moment theorem (see [44.147]]), as well as
on a continuous version of the Breuer-Major theorem ([7]) proved in [[11]]. The behavior

2

of o in the critical case H = %, and the behavior of J,[a] in the critical cases H =

Wl

H= % and H = Z% seems more involved and will not be discussed in this paper.

It is surprising to remark that the limit behavior of the chaotic components of o
is different from that of the whole sequence. This phenomenon was observed, for
instance, in the central limit theorem for the second spatial moment of Brownian local
time increments (see [[12]). However, in this case the limit of the whole sequence is a
mixture of Gaussian distributions, whereas in the present paper the normalization of o
converges to a Gaussian law. In our case, the projection on the first chaos of o is the

leading term and is responsible for the Gaussian limit of the whole sequence.

The chapter is organized as follows. In Section [3.1] we present some preliminary
results on the fractional Brownian motion and the chaotic decomposition of ¢. In
Section [2.2| we compute the asymptotic behavior of the variances of the normalizations
of the chaotic components of ¢ as € — 0. The asymptotic behavior of the law of o,
and its chaotic components is presented in section Finally, some technical lemmas

are proved in Section 5.
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3.1 Chaos decomposition for the approcimate deriva-

tive self-intersection local time

Proceeding as in [29] (also see [23]), we can determine the chaos decomposition of the

random variable o defined in (3.0.1) as follows. First we write

T rt
O = / / Ole s 1dlsdlt, (3.1.1)
0 JO

where 0 5, := pi(B; — Bs). We know that

o)

a£7s7[ = ZIZL]—I (qu—l,s,s,t); (3.1.2)
q=1
where
]2q—1
Prg-tesa@sesxag1) 1= (1) By (e + (1= )*) 702 T] L), (3:1.3)
j=1
and
By = 1 (3.1.4)
" g-nvE -

As a consequence, the random variable o has the chaos decomposition

O = ZIZq—l(qu—178)7 (3.1.5)
qg=1

where

fag—1,e(X15- 5 X2g-1) ::/%qul,e,s,t(xla---aXZql)detv (3.1.6)
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and

B = {(s,t) €ER% | s <t < T}. (3.1.7)

LetT,e > 0, % < H < 1, and g € N be fixed. Our first goal is to find the behavior as

€ — 0 of the variances of @, and I, ( f2q—1,8)- Before addressing this problem, we

will introduce some notation. First notice that

E [IZq—l (f2q—1,£)2} =(2¢g—1)! Hqu—l,sH;@(zq—l)

=(2g—1)! </@f2q—1,e,s1,zldsldt17/%f2q—1,s,sz,z2d82dt2>

= 2<2q - 1) ! /y <f2q—l,£,51711af2q—l,£,sz,l‘2>y)®(2q—]) dsldSZdtldt27

$H®(2q-1)

(3.1.8)
where the set .7 is defined by
L= {(S],Sz,l‘hl‘z) S [0,T]4 | s1<t, sp<tp, and 51 < Sz}. (3.1.9)
We can write the set . as the union of the sets .7],.%%,.73 defined by
A= {(Sl,SZ,l‘hlz) S [0,T]4 | s1<sm << l‘z}, (3.1.10)
S = {(s1,50,t1,0) € [0,T]* | 51 <52 <t <1}, (3.1.11)
S = {(s1,50,t1,0) € [0,T]* | s1 <t1 <52 <t} (3.1.12)
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Then, by (3.1.1),

2
(/ OC&stsdl‘) ]
K

= Z/yE [Otg’sl’;l a&Ssz] dsds,dt;drr

= V(&) + Va(€) + V3(e), (3.1.13)
where
Vi(e) =2 /xE (e, 1 Oeyn] dsidsadrydn,  i=1,2,3. (3.1.14)
Similarly, from (3.1.6) and (3.1.8)), taking ¢ = 1, we get

E[n (.00’ =vV(e)+ v () + v (e), (3.1.15)

Vi(l)(s) = 2/5# <f1,£,s17t17f1,8,sz~,lz>5§ dsldSZdtldtL i=1,2,3. (3.1.16)

As a consequence of (3.1.13)) and (3.1.13)), to determine the behavior of the variances

of a and I (f1¢) as € — 0, it suffices to determine the behavior of V;(¢) and Vi(l)(e)

respectively, fori = 1,2, 3.

In order to describe the terms < f2g-1.e5 1 fzq_1’£7sZ7,2> Fo2q-1)» W will introduce

the following notation. For every x,uy,u; > 0 define

wCx,ur,u2) = E[By, (Byru, — Bx)]. (3.1.17)
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We can easily prove that for every s1,s52,#1,2 > 0, such that s; <1, 55 <t and 51 < 52,
E[(Bi, —Bs,)(Bt, — Bs,)] = U(s2 — 51,11 — 51,12 — 52). (3.1.18)

Using (3.1.3) and (3.1.18), for every 0 < 51 <t1, 0 <52 <1, such that s; < sp, we can

write

1 1
<f2q—1,8,s1,t17f2q—1,£,s2,l2>5§®(2q—1):Bclz(8+(tl_sl)2H) 2 q(8+(t2_52)2H) 2
®(2q—1) ;®(29—1)
X<I]_[slvt1} " s2.)] >5§®(2ql)
1 1
=Br(e+ (1 —s1)") 27 (e+ (n—s52)*) 271
><.u(Sz—S1,t1—Slatz—sz)zq_l~

Therefore,

(frg-1.es0 7f2¢]—1,8732712>5§®(2471) = quGﬁ‘,’s)z_sl (t1 — 51,02 —52), (3.1.19)

where Gg))c(ul ,up) is defined by

_1_ _1
Gg@(ul,uz) = (S—f-M%H) 2 q(8+u%H) 2 qu(x,ul,uz)zq_l. (3.1.20)

(9)

Next we present some useful properties of the functions p(x,u1,uz) and Gg i (u1,uz).

Taking into account that H > %, we can write the covariance of B as

t S
E[B,Bs]:H(ZH—l)// v —vo |2 72 dvydvs. (3.1.21)
0 J0
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In particular, this leads to
e pxi 2H-2
W (x,uy,up) :H(2H—1)/ / [va — 1] dvidvy, (3.1.22)
0 X
which implies
G (uy,u) >0 forevery &> 0. (3.1.23)

Using the chaos decomposition (3.1.2)), as well as (3.1.19)) and (3.1.23)), we can check
that for i = 1,2, 3, the terms V;(¢), V") (¢), defined by (3.1.14), (3.1.16), satisfy

0< v (e) < vi(e). (3.1.24)

(9)

Further properties for the function G, (uy,u2) are described in the following lemma.

Lemma 3.1.1. Let G\?

1.x

(uy,up) be defined by (3.1.20). There exists a constant K > 0,
depending on H and q, such that for all x > 0, and 0 < vi < wy, 0 < vy < wy satisfying

vi—wi| <1,
GgiI)Z(Vl,Vz) < KGS?))C(WI,WQ).

Proof. From (3.1.22)) it follows that

‘U(X,Vl,VZ) < “<X7W17W2)‘
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Asa consequence,

1 1
G\ (v1,v2) = (1) (113 A v ) 2!
< (143727914 037) 72 (w20

1
(1+W%H)(1+W§H)>"+2
(1+v3) (1 +37)

G1mma)

Using condition |v; —w;| < 1,i= 1,2, we get

(1+(V1+1)2H)(1+(V2+1)2H>)q+5- (3.1.25)

Gi%)(v1,v2) < G\) (w1, w2) ( (1427 (1437

The second factor in the right-hand side of (3.1.25]) is uniformly bounded for vy, v, > 0,

which implies the desired result. 0

3.2 Behavior of the variances of the approximate deriva-
tive self-intersection local time and its chaotic com-

ponents

The behavior of the variance of ¢ is described in the following lemma.

Lemma 3.2.1. Let T > 0 and % < H < 1 be fixed. Then,

lim 3 A E [a?] = 62, (3.2.1)
e—0
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where 67 is defined by

> T2 (2H —1) (l 3H -2

2
iin i )B(2,2H—1), (3.2.2)

and B(-,-) denotes the Beta function.

Proof. From (3.1.13]) we have

where V) (€), Va(€) and Vi(€) are defined by (3.1.14). By Lemmas [3.4.3| and [3.4.4]

we have limg_,g 83’%%(8) =0 and 83’%V2(8) = 0, respectively. In addition, from
Lemma we have lim,_,q 83_%V3(8) — 02, where o2 is defined by (3.2.2). This

completes the proof of equation (3.2.1). O

The behavior of the variance of the first chaotic component of ¢ is described by

the following lemma.

Lemma 3.2.2. Let T > 0 be fixed. Define f ¢ as in equation (3.1.6). Then, for every

%<H< 1, we have
lim 37K [11 ( flf)z] — o2, (3.2.3)
e—0

where o is given by (3.2.2).

Proof. From (3.1.15)) we have

e AR [1(f1e)?] =& 7V &)+ v (e) + 3 vV (e),
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where Vl(l)(e), Vz(l)(s) and V3(l)(8) are defined by (3.1.16). By Lemmas

3.4.3

and

we have lim,_, -7V, (¢) =0and 83’%%(8) = 0, respectively. Consequently,

by B1.24) we get limg 3~V (g) = 0 and lime_,&3~7V,") (&) = 0. In addition,

from Lemma [3.4.7, the term Vg,(l)(e) satisfies limg_yq 83—%V3(1)(£) = 02, where 62 is

given by (3.2.2)). This completes the proof of equation (3.2.3).

O

The behavior of the variance of the chaotic components of ¢ of order greater than

or equal to two and is described by the following lemma.

Lemma 3.2.3. Let T, > 0, % <H <1land qeN, q>2 be fixed. Define By, fr4—1,,

and Gg?;(ul ,up) by (3.1.4), (3.1.6) and (3.1.20) respectively. Then,

1§ <H<353,

. _3
glg(l)g HE [hy-1(fag-16)°] = 0,

where qu is a finite constant given by

G‘? =2(2q— 1)![3q2T/RS Ggﬁ(ul,uz)dxdulduz.
+

2. In the case % <H< %,

imE [L,_ 1) =32
gl_r% [26] 1(f2q 1,8)] qQ’

where 327 4 IS a finite constant given by

Eé,d = 2(2q — 1)!ﬁqz /5/ 66?327“ (ll — 81, — Sz)dsldSthldlz,

and . is defined by (3.1.9).
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Proof. First we prove (3.2.4)) in the case % <H< ig—:g. By (3.1.8) and (3.1.19),
3 3
2 WE [hy1(frg-1)?] =2(2g—1)1B2e> /y GY) . (0 — 51,12 — 52)ds dsydry di,

where .7 is defined by (3.1.9). Therefore, changing the coordinates (s1,s2,1,%2) by
(8_ﬁs1,x = S_ﬁ(sz —81),uUp = s_ﬁ(tl —81),uUp = e_ﬁ(tz —57)), and using the

1 1
fact that G L (Sﬁul,Eﬁuz) = 8_2G1.x(u1,u2), we get
€,62H x ’

I

-3 2] _ _1\VIR2em
e R by 1(fag-1.)°] =2(2g—1)!B e " 1(076_% )(Sl +uy)
(q)
X 1(0,87ﬁT)(SI —|—x—|—uz)GLx(m,uz)dsldxdulduz.
Integrating with respect to the variable s; we get
-5 21 _ _ 2 e
€2 HE [y 1(fog_1)?] =2(2g— 1)1 /Ri(T £ (v (x+))1  y ()
(9)
X 1(0,£7ﬁT) (Sl +x—l—uz)GLx(ul,ug)dxdulduz. (3.2.8)

From (3.1.23) we deduce that the integrand in the right-hand side of (3.2.8) is positive
and increasing as € decreases to zero. Therefore, applying the monotone convergence

theorem in relation (3.2.8)) we obtain (3.2.4). The constant G‘? is finite by Lemmam

To prove relation (3.2.6)), notice that equations (3.1.8)) and (3.1.19) imply that
E [hy-1(fg-1)?] =2(2g—1)!B2 /y GY) . (1 — 51,12 —52)ds1dsrdrydiy. (3.2.9)

Relation (3.2.6) follows by applying the monotone convergence theorem to (3.2.9). To

prove that G, is finite we change the coordinates (s1,52,11,%2) by (s1,x 1= 52 —s1,u1 1=
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| — §1,Up =t — 53) in the integral of the right-hand side of (3.2.7), to get

/y G(()i]s)rﬁ (t; — 51, — 57)dsdspdrdey < /[0.T]4 Gé@(ul,uz)dsldxdulduz

(q)
=T Gy (uy,up)dxduidu,.
0,7]3 one(tr, ) ey

The latter integral is finite by Lemmam Therefore, the constant 52 is finite. O

3.3 Limit behavior of the approximate derivative self-
intersection local time and its chaotic components

The next result is a central limit theorem for & in case % <H<1.

Theorem 3.3.1. Let T,& > 0 and 5 < H < 1 be fixed. Then

o 4 (0,6%),  when € —0, (3.3.1)

-

3
e2

where 62 is defined by (3.2.2).

Proof. Let f>,_1 ¢ be defined by (3.1.6). By equation (3.1.5)),

1 31 31w
Hoeg =€2 H]j (fie)+€2°H leq_l(fzq—ue)-

1

3 .
27 HI; (f1,¢) converges to 02, where 62 is defined

By Lemma [3.2.2} the variance of €

by (3.2.2)). In addition, combining Lemmas [3.2.1]and [3.2.2] it follows that the term

oo

ZIZq 1 (frg-1e)

q=2

31
€2

118



converges to zero in L?. Then (3.3.1) follows from the fact that ei-ul (fi1,e) is Gaus-

sian and its variance converges to G2. [

In the next result we describe the asymptotic behavior of the chaotic components of

Ol inthecase%<H< 1.

Theorem 3.3.2. Let T,e >0 and g € N, g > 2 be fixed. Define fry_1¢ by (3.1.6). If

% <H< %, then bg_1(f2q—1,¢) converges in L?* when € — 0.
Proof. Define fr4—1¢; by (3.1.3). For every £, > 0 we have

E [(Izq—l(fzq—l,s) _IZq—l(qu—l,n))z} =E [bg-1(frg-1,6)*] +E [by—1(frg—1.1)7]

—2FE [lzqq(fzqfl,e)Iqul(qu*LTl)] :

Define % and . by (3.1.7) and (3.1.9), respectively. Then we have

E [hg-1 (fog-1.6) g—1 (frg-1.1)]

= (2g— 1)1 {fog-1,6:Frg-1.1 >57)®(2q71)

:2—1!/ _ dsdt,/ 1 dsdr 3
(2g—1) < %qu Lest %fzq 17,58 >5®(2q1> (3.3.2)

=2(2¢—1)! /y (frg—1es1n 7f2q—1,17,s2,t2>5:)®(2471) dsidsydridr,.

Substituting (3.1.19) into (3.3.2)), yields

E [Izq—l(qu—l,e)IZq—l(f2q—17n)]
_1_ _1_
=22 1167 [ (e+ (1 —50)2) E 90 + (1= s2)) 0
= (3.3.3)
X ‘LL(SQ — 51,01 — 81,0 —Sz)zq*ldsldSZdtldtz,
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The integrand in the right-hand side is nonnegative, decreasing on the variables € and

1N, and converges pointwise to G(()qu(ul,uz) as €, — 0, where G(()q)z(ul ,up) is defined

by (3.1.23). Hence, by the monotone convergence theorem, as €, — 0, the terms

E [Lg-1(fog-1,6)g-1(Frg-1)]. E [bg—1(frg-1,6)*] and E [y 1 (fog—1.n)?] converge

to

229— 112 [ GY) . (11 —s1,1—s52)ds1dsrdridra. (3.3.4)
R w2 1

The previous quantity is finite thanks to Lemma [3.2.3] From the previous analysis
we conclude that the sequence {Izq_l ( fzq_hgn)}neN is Cauchy in L2, for any sequence

{€1}nen C [0, 1] such that g, — 0 as n — oo, which implies the desired result. O

The next result is a central limit theorem for I, 1( J2q— 1,¢) in the case % < H<

Theorem 3.3.3. Let T, > 0 and g €N, q > 2 be fixed. Define fr,_1 ¢ by (3.1.6). Then,

for every % <H< j{g—:; we have
€' Wby 1(frg-16) % N (0,62),  when €0, (3.3.5)

where qu is the finite constant defined by (3.2.5)).

Proof. Define frg—1,¢,:, for 0 <s <t, by (3.1.3) and Z by (3.1.7). By (3.1.6),

8]_%125171(](2617178) _ (_l)qgl—% /%Bq(8+ (l—S)ZH)_%_qIZq—I (]1([?’&]2‘1_1)> dsdr.
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Then, using the self-similarity of the fractional Brownian motion we get

_ 3
e My 1(frg-1.e)

o et [ e oot (v, )T )
ol 2q—1 £ 2H [s] .

Therefore, changing the coordinates (s,) by (e’is, e’ﬁt) we get

3
e' 4Hl2q—1(qu—178)

_1_ _
Law )%m/ 3y B (=) 0y (15507 dsas
H (3.3.6)

/112c1 1 (f2g—1,1,5) dsdr.

2H

Changing the coordinates (s,?) by (s,u :=t—s) in (3.3.6)), and defining N := 8*ﬁ, we

obtain
Law NT [ NT—s
4H12q 1(f24 1 e = \/_/ / IZq 1 qu 1,1 ss—i—u) duds. (337)
From (3 it follows that the convergence (3 is equivalent to
NT [ NT—s . )
ﬁ/o /0 bg—1 (fzq—l,l,&s—‘,-u) duds = A(0, Gq), as N —o. (3.3.8)

The proof of (3.3.8)) will be done in several steps.

Step 1

Define the random variable

1 NT oo
Yy = ﬁ/() /NTSIZq—l (f2q—1717s7s+u) duds.
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First we show that Yy converges to zero in L? as N — co. Notice that

2 NT ,NT (oo oo
E[r2] = = / / / / 1 3.3.9
[¥] NJo Jo Inros Inrs T2 ( )

X E [Dg-1 (frg—1,1,5051 1w ) g—1 (F2g—1,150.50+u, ) | durdundsidsy

2(2g—1)! [NT [NT poo oo
DT
0 0 NT*SZ NT*S]

X ( frg—1,151,514+11 af2q—1717s2,sz+u2>5:J®(2q—1) dujdupds;ds,. (3.3.10)

Define the function G( )(vl,vz) x,v1,v2 > 0, as in (3.1.20). Substituting equation

(3.1.19) in (3.3.10), and changing the order of integration, we get

2q—1 )'B;
E [YZ%] / / / / L5 <s,
O\/ NT— Mz 0\/ NT— M])

<« G\

1,50—s1

(ul,uz)dsldszdulduz. (3.3.11)

Changing the coordinates (sy,s2,u1,uz) by (s1,X:=s2 —s1,u;,u3) in the right hand side

of (3.3.11)), we get
2(2g —1)!B2
E[Y]\ZI] C] [5 / / u1 uz)dsldxdulduz,
R3 JOV(NT —uy)

and then integrating the s variable,

E[Yy] <2(2q-1)!B; /RS (T - W) G\ (uy,up)dvduy iz, (3.3.12)
+

The integrand in (3.3.12) converges to zero pointwise, and is dominated by the function

2(2g — 1)1B2T G\ (uy,u2).
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(@)

1,x

By condition H < ig—:; and Lemma 3.4.8] the function G|/ (u1,u2) is integrable in Ri.

Hence, applying the dominated convergence theorem to (3:3.12), we obtain E [Y3] — 0,

as N — oo as required.

Step 11
Since Yy — 0 in L as N — oo, to prove the convergence (3.3.8)) it suffices to show that

the random variable

| NT foo
Jog—1N = ﬁ/o /0 bg—1 (f2g—1,1,5,5+u) duds,

converges in law to a Gaussian distribution with variance qu as N = oo. For M € N,

M > 1 fixed, consider the following Riemann sum approximation for Jo;, 1 n

_ 1 M2Y o NT
Jo, = — — b, _ ds,
2g—1.M N 2M];2 VN Jo 2q 1(f2q 1,1,37S+M(k))

where u(k) := 2LM, for k =2,...,M2M. We will prove that Jqu—l,M,N — Jog—1n in L?
as M — oo uniformly in N > 1, and qu_lejN — (0, 557M) as N — oo for some con-
stant G, satisfying G, — O as M — oo. The result will then follow by a standard

approximation argument. We will separate the argument in the following steps.

Step 111

Next we prove that qu_17M7N — Jog—1n 1IN L% as M — oo uniformly in N > 1, namely,

=0. (3.3.13)

lim sup HJQq,LN —J2g- 1 MN

M%ooN>1 L2
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For M € N fixed, we decompose the term Jp, 1y as

Pt =I5 I (3.3.14)
where
W | (NT M
Sog N = ﬁ/o /2_M byt (f261*1,1,s,3+u) duds
and

1

@ N
Jqul,M,N = _N/() /0 1(0’27M)U(M700)(u)12q,1 (f2q71717s7s+u) duds.

From (3.3.14) we deduce that relation (3.3.13) is equivalent to

: (1) T _
A}lg;;lg ‘qu—l,M,N_hq—l,M,N L =0, (3.3.15)
provided that
lim sup HJ(Z) —0. (3.3.16)
Mooy [ P20 1M N | 2

To prove (3.3.16) we proceed as follows. First we write

2 2(2g—1)!
2 N /Ri /[0 NTP2 L0240 ) (1) L (0,230 00 (42)

(2)
‘ ‘J 2g—1.MN

X L, <5 (f2g-1,1s1.51 4 7f2q—1,1,s2,sz+u2>yj®(2q—l) dsydsadudus.

(3.3.17)
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Let G( )(vl,vz) x,v1,v2 € Ry be defined by (3.1.20). Applying identity (3.1.19) in

(3.3.17), and then changing the coordinates (s, s2,u1,u2) by (s1,x:= s —s1,u1,u2) in

(3.3.17), we get

2 2(2q—1)1B2 NT
12 < T/Ri/o l(O,Z*M)U(M,oo)(”l)

X 10,21y 501 00y (12) G\ (101, 42)dsy dxdey iy (3.3.18)

H‘]2q—1,M7N

Integrating the variable sy in (3.3.18) we obtain

) 2
H‘Iéq)—l,M,NHLz <2T(2g—1)!B; /R3 L0 2-my (b 00 (112)
+

X 10 2-#y(.ee) (12) G\ (101, 02 coxdey ey (3.3.19)

The integrand is dominated by the function 2(2g — 1)! ﬁZTG )(ul,uz) which is inte-

2g—3
49-2>

convergence theorem to (3.3.19), we get (3.3.16).

To prove (3.3.15) we proceed as follows. For k = 2,...,M2M define the interval

grable by the condition H < and Lemma [3.4.8, Hence, applying the dominated

I .= (kle, 2M} Notice that J§ q) LMN and qu 1,M,N can be written, respectively, as

M2M
2N v Z Ly 1 (f ) 1y, () duds (3.3.20)
2¢—1.MN — \/— R, 2g—1 \J2g—1,1,ss+u) L \U , .

and

MM

NT
J2q I,MN — \/—/ /]R Z Izq 1 fzq 1,1,s,5+u(k )) ]llk(u)duds. (3.3.21)
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Applying (3.1.19), we can prove that

2 2q—1 )7 M2M
©n /1&2 /0 NTP b do= ﬂlkl (m)lllkz(uz)

(1) T
H‘]2q—1,M,N_J2Q*1,M7N

x 1 {Slgsz}(a,(g?kz (52— 51,1, 12)dsydsydurduy,  (3.3.22)
where the function G),(f)k2 is defined by

— G\ (uy,u(k2)) + Gi?;(u(kl),u(kz))> .

Changing the coordinates (s1,s2,u1,u2) by (s1,Xx:= 2 —s1,u1,u2), and then integrating

the s; variable in (3.3.22)), we obtain

(n i 2 N M2
szq—1,M,N_J2q—1,M,NH ,=2(29-1)!B, /11{2/ lll,q (1) Ly, (u2)
ky o=

X (T - %) ®/(<??k2 (x,uy,up)dxdu;dus;.

Asa consequence,

MzM

2
‘ <2(2q-1) ‘BzT/ ﬂlkl (u1) 1z, (u2)
+k1,k2

H‘]2q 1,M.N J2q LM.N

X G),(fl[?kz (x,uy,up)dxdu;dus.

By the continuity of Gy (uy,uy), the term

MM @
Z ﬂlkl (ul)ﬂlkz (”2)(")/:11,1{2 (-xvulvu2)
ki kp=2
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converges to zero as M — oo. Next we prove that this term is dominated by an inte-

grable function. Let u; € Iy, ,us € Iy, be fixed. Notice that u;, u(k;) < u; 42 M <yt 1

for i = 1,2. Hence, applying Lemma [3.1.1, we deduce that the terms Ggﬁ(ul,uz),

G\ (u(ky),u2), G\ (ur,u(k2)) and G\*) (u(ky ), u(k2)) are bounded by KG\")(u; + 1, uz +

1.x X 1,x

1), for some constant K > 0 only depending on H and q. As a consequence,

MM
Y, 1y (un)ly, (1)@, (x.ur,u2) < AKG\)(uy + 1,up +1),
ki,kr=2

for some constant K only depending on H and g. Therefore, the right-hand side of the

previous identity is integrable over x,u1,u; > 0 due to Lemma 3.4.8] since

/R3 chg(ul + 1,up + 1)dxdu;duy = /[1 o I Ggf])z(ul,uz)dxdulduz
+ ,>0 +

< /R Gy w)dadudiy <o, (3.3.23)
3
This finishes the proof of (3.3.15).

Step IV

Next we prove that

lim E [@Q%M’N] — &2y, (3.3.24)

N—oo

where 62

M is the finite constant defined by

MM e
G2y = (2q—1)1p2" M1} /0 G\ (u(kr), u(k2))dx. (3.3.25)
ki kp=2
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In addition, we will prove that 55  satisfies

Jlim 67, =0, (3.3.26)

where qu is defined by (3.2.5). In order to prove (3.3.24) and (3.3.26)) we proceed as
follows. From (3.3.21])), we can prove that

E [fZqul,M,N} :/112{3 QM,N(xaMI:MZ)dJCdulduz,
+

where
) MM x
Ou N (x,u1,u2) :=2(2¢ = 1) Lo vy (¥)B; Y. (T - JV>
ki kr=2
1,52
x GV (k) u(ka) Ly (1) Ly (2).
Notice that Qs y satisfies
A}E}LQM,N(X,M,M) = Oum(x,ur,uz), (3.3.27)
where Qyy is defined by
) mM @
Om(x,u1,up) :=2(2g— 1), T Z Gl?x(u(kl),u(kz))]llk1 (1)1, (u2).
ki kp=2

In turn, Oy, satisfies

lim QO (x,uy,up) = Q(x,up,uz), (3.3.28)

M—yo0
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where Q is defined by
O(x,u1,u2) :=2(2g — 1)\ BTG (uy, ).

Let x > 0 and 2 < kj,ky < M2M be fixed, and take u; € I, i = 1,2. Since u(k;) <
ui+2M <u;+1, by Lemma there exists a constant K > 0, only depending on ¢

and H, such that
Gg?c(u(kl)?u(kz)) < KG@(M +1,up+1),
As a consequence, there exists a constant K only depending on ¢, H and T such that
Ou v (x,ur,u2) < KGY(uy + 1up +1), (3.3.29)
and, hence,
Ou(x,u1,u2) < KGY(ur + 1up + 1). (3.3.30)

The function Gng(ul + 1,uy + 1) is integrable with respect to the variables x, u;,up > 0

thanks to (3.3.23). Hence, taking into account (3.3.27) and (3.3.2§), as well as the es-

timates (3.3.29) and (3.3.30), we can apply the dominated convergence theorem twice,

to obtain

A,lllgloo Al,‘gioE [Jqul,M,N} = A/]Ilgloo R O (x, uy, up )dxduy duy
:/3 O (x,uy, ) dxduey duty. (3.3.31)
R+
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Equations (3.3.24)) and (3.3.26) then follow from (3.3.31)).

Step V
Next we prove the convergence in law of J>, | y to a Gaussian random variable with

variance qu, which we will denote by .47(0, qu). Let y € R be fixed. Notice that

[Pllag—1n <y]=P[A (0,07) <)]| < sup
>

P[Jhg-1n <y]—P [fzq—l,M,N < y} ‘

+ ‘]P) [ijq—l,M,N < )’} —P[4(0, 637M) <y] ‘

+|P[A(0,674) <y —P[4(0,07) <y]|.

(3.3.32)
Therefore, if we prove that for M > 0 fixed
Dgoiun S N (0,62))  as N—oo, (33.33)

then from (3.3.32) we get

limsup [P[J2g 1.5 < y] —P[A(0,07) <y < sup |P[Jog—1n <y] —P [-qul,M,N < y] ’

+[P[A(0,670) <y] =P [4(0,07) <»]],

(3.3.34)
and hence, from relations ((3.3.13)), (3.3.26) and (3.3.34)), we conclude that
limsup [P[J3,_ y <] —P[A(0,0;) <)]| =0, (3.3.35)
N—soo
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and the proof will then be complete. Therefore, it suffices to show (3.3.33)) for M fixed.

To prove this first we show that the random vector

MM

MM 1 NT
7(N) _ (Z,EN)> = <ﬁ A by (fqu,l,s,s+u(k))ds)

k=2

converges to a multivariate Gaussian distribution. By the Peccati-Tudor criterion (see

[477]]), it suffices to prove that the components of the vector Z (N)

converge to a Gaussian
distribution, and the covariance matrix of ZW) is convergent.

(V)

In order to prove that the covariance matrix of Z\"/ is convergent we proceed as

follows. First, for 2 < j, k < M2M, we write

N) (N 1
E [Z;E )ZJ(~ )] =N [o,NT]ZE [bg—1 (qufl,l,sl,sl+u(k))Iqul (f2q71.,1.,32,s2+u(j))} dsids;.

Then, using (3.1.19) we get

2
™), _ (24— 1B (@) :
E|7"Z"] - N Jo s Gl () s (3.3.36)

where in the last equality we used the notation Gy _,(v1,v2) := G1 y(v2,v1), for y,vi,vo >
0. Changing the coordinates (s1,s2) by (s1,x := sp —s1) in relation (3.3.36) and inte-

grating the s, yields

NT
E [ZIEN)Z]('N)] = (29— 1)1B; / o (T - |;—|) G\ (u(k),u(j))dx. (3.3.37)

Finally, applying the monotone convergence theorem in (3.3.37), we get

tim 5 [2020%] = = 18T [ Gt uti)a,

N—soo
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which is clearly finite. Thus, we have proved that the covariance matrix of Z (V) con-

verges to the matrix £ = (X4 ;)o< j<pom, Where

Y= T(2q— 1)zﬁ;AG§?3(u<k),u(j))M.

Next, for 2 < k < M2M fixed, we prove the convergence of Z,EN) to a Gaussian law. By
(.1.3),
w) _ Gk N7 ®(2-1)
Zk = _N 0 12q—l (1[s,s—|—uk} )ds,

where Cy i = (—1)B,(1 + uzt! )’%’q . Hence, by the self-similarity of the fractional

Brownian motion we can write

C NT ®(2g—1)
Z/EN) Léw%\l; 0 Iqu((”kHNH]l[zfuka,ﬁz'vl) ds. (3.3.38)

Making the change of variables r := NLuk in the right hand side of (3.3.38)), we get

T
(N) Law H2q-1)+1_ 5 [ H ®(29-1)
Z = Copaty ! N /O IZq—1(<N ﬂ[r,r%]) dr

T
_ T /0 “ Hyy_ i (NH<Br o —B,)) dr. (3.3.39)

where Hy, | denotes the Hermite polynomial of degree 2¢g — 1. The convergence in
law of the right-hand side of (3.3.39)) to a centered Gaussian distribution as N — oo is
proven in [11], equation (1.3). As a consequence, the components of zZMN) converge to

a Gaussian random variable as N — oo. Therefore, by the Peccati-Tudor criterion, ZW)
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converges in law to a centered Gaussian distribution with covariance X. Hence,

1 M2Y ) Law 1 M2
Dg1mn = 20 Z Z =N 0, 523 Y as N —oo.  (3.3.40)
J.k=2

The convergence (3.3.33) follows from (3.3.40) by using the fact that

1 MM B
22M Y L =T(2q-1) 'Bzz 'y /Glx u(j))dx = Ggm
k,j=2 J.k=2
The proof is now complete. 0

3.4 Technical lemmas

In this section we prove several technical results that were used to determine the asymp-
totic behavior of the variance of I, ( fzq_hg) and . In Lemma we provide
an alternative expression for the terms V;(¢€), i = 1,2,3 defined in (3.1.14). In Lemma

we prove some useful bounds that we will use later to estimate the covariance of

pe(Bi, — By, ) and pe(B;, — By,), s1 <11, 52 <ty and 571 < s5. In Lemmas|3.4.3|and 3.4.4]

we estimate the order of V;(€) and V,(€) when € is small, while in Lemmas and

3.4.7|we determine the exact behavior of V() and V3( D (g) as € — 0. Finally, we prove

Lemmas [3.4.9] and [3.4.8] which were used in Lemma [3.2.3] to determine the behavior

of the variance of I, ( fzq_lﬁ) for g > 2.

In what follows, I will denote the identity matrix of dimension 2. In addition, for

every square matrix A of dimension 2, we will denote by |A| its determinant.
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Lemma 3.4.1. Let € > 0 be fixed. Define .71, .5, -3 by (3.1.10), (3.1.11)), (3.1.12)

respectively, and Vi (€), Vo(€), V3(€) by B.1.14). Then, fori =1,2,3, we have
1
V,(E) = %/ ‘SI—I—ZF%Z]gdS]dSzdtldtz, (3.4.1)
i

where ¥ = (%; ;)i j—1,2 is the covariance matrix of (B, — By, ,B;, — By,).

Proof. Let (X,Y) be ajointly Gaussian vector with mean zero, covariance X = (X; ;)i j—1,2,

and density fy(x,y). First we prove that for every 6 > 0,
3
E[XYpo(X)pe(Y)] = (2m) 162|601 +Z| 2% 5. (3.4.2)
To prove this, notice that

EIXYpo(X)po(Y)] = [ xp0(x)po(y)fi(x.y)dvdy
— (27r)_29_1 |E|_% /szyexp{—%(x,y) (9_1I+Z_1) (x,y)T}dxdy

_1
— 27) "oz 2|0 I+ 2 z/szyfi(x,y)dxdy, (3.4.3)

where ¥ := (6~ '1+ Z_l) ~and f5(x,y) denotes the density of a Gaussian vector with
mean zero and covariance X. Clearly, 0 !|£| 72|01/ +X~1|~2 = |01+ X| 2. Then,
substituting this identity in (3.4.3)), we get

E[XYpo(X)po(V)] = ()~ 107+5] 7 [ ayfi(y)dudy

= (2m) 01+ 2y,
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Taking into account that 2172 is given by
Tio=0%01+%| '8,
we conclude that
E[XYpo(X)po(¥)] = (27) 07 |01 +X[ 2 £, 2,
as required. From (3.4.2)), we can write

VZ(S) = Z/y]E [pé(B,l —le)pé(Btz —332)] dsids,dr drr
2
= g/yE [(Btl _BS1)(BI2 _Bsz)pe(Btl _BS1)p8(Bt2 _BSZ)] dsidspdrde,

1
- —/ €1+ |2 £y odsydsadrdry.
7 ),

This finishes the proof of (3.4.1)). O

Lemma 3.4.2. Let sy,s2,t1,tp € Ry be such that s1 < s, and s; < t; for i = 1,2. Denote
by X the covariance matrix of (B;, — By, ,B:, — By,). Then, there exists a constant 0 <

0 < 1, such that the following inequalities hold

1. Ifs1 <sp <t <ty
2| > 8((a+ b)) + (b+ ) o), (3.4.4)

where a == sy — 81, b:=1t] — 82, and ¢ ==t — 1.
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2. If sy <sp <ty <ty,

2| > 8% (a*H + ), (3.4.5)

wherea =5, — 51, b: =1t — sy, and c .=t — .

3. IfS1<l‘1<S2<l2,

|Z| > 5(11 — S1)2H(l‘2 — S2)2H. (3.4.6)

Proof. The result follows from Lemma B. 1. in [29]. The inequalities (3.4.4) and (3.4.6)

where also proved in Lemma 9 in [23]], but the lower bound given in this lemma for the

case 51 < §2 < tp < 1 1S not correct. ]

Lemma 3.4.3. Let € > 0 and define V| (€) by (3.1.14)). Then, for every % <H<1we

have

lim &3~ 7V, (€) = 0. (3.4.7)

£e—0

Proof. Changing the coordinates (s1,52,t1,) by (s1,a:= sy —s1,b: =1t —sp,¢:=1) —

f1) in (3.4.1), we get

i
Vi(e) < — / el + £ 73 %, »ds dadbde, (3.4.8)
7 Jorps
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where ¥ denotes the covariance matrix of (B,.yp, Byipic — Ba), namely,

L1 = (a+b)*", (3.4.9)

Yo = (c+b)*H, (3.4.10)
1

Lip= 5((a+b+c)2H—|-bZH — g, (3.4.11)

Integrating the s; variable in (3.4.8]) we obtain

T :
Vi(e) < — / el + %72 %, ,dadbde, (3.4.12)
7 Jo.rp

Next we bound the right-hand side of (3.4.12). Applying (3.4.4), (3.4.9), (3.4.10) and
(3.4.11), we get

el +X| = (e+Z11)(€+Xp0) —Xi, = €7+ €51 + €0, + |2

>8(e*+e(a+b) +e(b+c) +(a+b)* P 4 (b+c)*a®), (3.4.13)

for some & > 0 only depending on H. Using the inequality £ » < (a+b)# (b +¢)?, as
well as (3.4.12) and (3.4.13)), we deduce that there exists a constant K only depending

on T, H such that

(a+b)"(b+c)"

dadbdc, (3.4.14)

where the function ©¢ is defined by

Oc(a,b,c) :=e*+e(a+b)* +e(b+c)* +- 2 (a+b)* +-a* (b+ ). (3.4.15)
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By the arithmetic mean-geometric mean inequality, we have

L@+ 4 (b)) > (a+b)" (b + ),

and
(M (a+b)" +a* (b+¢)*™) > (a+b)" (b+¢)" (ac)”

2

Consequently,

@ > 2(a+b)? (b+c)" (e + (ac)?).

Therefore, by (3.4.14)) there exists a constant K > 0 only depending on 7" and H such

that

SIS

(@+b)"2(b+c) 7 (e+ (ac)”) 3 dadbde

i1( ) = [ ’ }3

b~ (g + (ac)) 2 dadbdc.

<K
[0,7]3

Let0<y< % — 1 be fixed, and define y := 32—21 +1- % By the weighted arithmetic
mean-geometric mean inequality, we have

ve + (1—7)(ac) > € (ac)!"MH.

Hence, by (3.4.16)), we get
2% / be(ac)*%(FV)Hdadbdc
0,7
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This implies that (3.4.7) holds and the proof of the lemma is complete. O

Lemma 3.4.4. Let € > 0 be fixed. Define V5(€) by (3.1.14). Then, for every % <H<I,

lim €3~ 7 V3 (e) = 0. (3.4.17)

e—0

Proof. Changing the coordinates (sy,s2,t1,t2) by (s1,a:=s2—s1,b:=1t) —sp,c: =1 —

fp) in (3.4.1) for i = 2, and integrating 51, we obtain, as before

T
Va(e) < —/ lel +%| 2 % »dadbde, (3.4.18)
7 Jorp

where the matrix X is given by

Y1 =(at+b+c)*f, (3.4.19)

Yoo =0, (3.4.20)
1

Yip= 5((a+b)2”+ (b+c)?H — 20— 1), (3.4.21)

Using relation (3.4.5]) in Lemma [3.4.2] as well as (3.4.19) and (3.4.20), we get

el +X| = (e+Z11)(€+200) —Ef, = €2 +&(Z1,1 +200) + T

> 2 te((at+b+o)? +0°1) + 521 (P + ). (3.4.22)

From (3.4.18)) and (3.4.22) we deduce that there exists a constant K > 0, only depending

on 7 and H, such that

Y12 d
_dadbdc. (3.4.23)

Va(e) <K
0.7 (e2 4+ (b + (a+b+c)*) + b2H (a?H + 2H))2
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The term X 5 can be written as

1
Ti2 =5 ((a+6)"+ b+ =o' =)

1
= Hb/ ((a+bv)* 1+ (c+bv)* 1) dv,
0
which implies
Y12 <2Hb(a+b+c)*H 1. (3.4.24)

From (3.4.23) and (3.4.24), we deduce that there exists a constant K > 0 only depending

on T and H, such that

Vo(e) < K /[ | elab,c)dadbde. (3.4.25)
0.1

where the function ®; : Ri — R is defined by

b(a+b+c)*1
(e2+e(b?H + (a+b+c)?H) +b2H (a2H 4+ 2H))2

D (a,b,c) :=

We split the domain of integration in the right hand side of (3.4.23) as [0, T]* = 6} U%5,

where the sets 4] and %, are defined by

6 :={(a,b,c) €[0,T] | b<aVc},

6 :={(a,b,c) €[0,TP | b>aVc}.

Then, to prove that lim,_,o V2(€) = 0, it suffices to show that

£—0

lim / ®; (a,b,c)dadbde = 0, (3.4.26)
%
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for i = 1,2. First we prove (3.4.26) in the case i = 1. Notice that for every (a,b,c) € 6},

it holds that a + b+ ¢ < 3(a V ¢), which, in addition to
82+8(b2H—|—(a+b+C)2H)+b2H(02H—|—C2H) Z 8((1\/C>2H—|—b2H(a\/C)2H,

leads to

32H71b(a\/c)fH71
(e+p2H):

CI)S (a7 b7 C) S
Therefore, by (3.4.25)), we deduce that there exists a constant K > 0 such that

r 3
Vi () gK(/[O T]Z(aVc)_(HJrl)dadc) (/0 b(8+b2H)—zdb). (3.4.27)

The term (a V c)’(H 1) s clearly integrable over the region 0 < a,c < T. To bound the
integral over [0, 7] of b(e + b*" )_% we proceed as follows. Define y := % — & Notice
that 0 <y < 1 due to the condition % < H < 1. Therefore, by the weighted arithmetic

mean-geometric mean inequality, we have
ye+ (1 —y)b?H > gp?H(1-y), (3.4.28)

From (3.4.27) and (3.4.28)), it follows that there exists a constant K > 0, only depending

on H and T, such that

T
Vs (e) §K83f2132)/ p' 3 gp

0
3.1 (T su ,
= Ke4 2H/ bz 7=db. (3.4.29)
0
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The integral in the right-hand side of (3.4.29) is finite thanks to the condition H > %.
Relation (3.4.26)), for i = 1, follows by taking limit as € — 0 in (3.4.29). To prove
(3.4.26) for i =2 we proceed as follows. Notice that for every (a,b,c) € %3, it holds

a—+ b+ c <3b, which, in addition to
2+ (b 4 (a+b+c)2H) 1 bPH(PH 1 PH) > ep 1 p*H (g )
leads to
®e(a,b,c) < 3H1p~H (g 4 (ave)H) 3,
Therefore, by (3.4.25)), we deduce that there exists a constant K > 0 such that

Va(e) <K [ ]3b—”(e+(avC)2H)—3dadbdc
0,7
KT!-H SH 3
= ~3dade. 4.
= H [07T]2(8+(a\/c) )" 2dadc (3.4.30)

To bound the integral over [0,T]? of (¢ + (aV ¢)*/ )_% we proceed as follows. Define

yi= % — % Notice that 0 < y < 1 due to the condition % < H < 1. Therefore, by the

weighted arithmetic mean-geometric mean inequality, we have
ye+(1—y)(aVve) > e (av ), (3.4.31)

From (3.4.30) and (3.4.31)), it follows that there exists a constant K > 0, only depending

on H and T, such that
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Hence, changing the coordinates (a,c) by (w:=aAc,z:=aVc), we get

T
V() < 2Ke3_£1_32"/ 3 gz
0
3o (T sm_,
=2Ke+ / 72 “dz. (3.4.32)
0
The integral in the right-hand side of (3.4.32)) is finite thanks to the condition H > %
Relation (3.4.26)), for i = 2, follows by taking limit as € — 0 in (3.4.32)). The proof is

now complete. [

Lemma 3.4.5. Let ¢, B, a and y be real numbers such that ¢, B >0, o« > —1 and

1+ a-+vB <0. Then we have

oo a+1+p
/ a(c+dPVda=pB "¢ 7 B <O‘;1,— ! “;;“ 7'[3) , (3.4.33)
0

where B (-,-) denotes the Beta function.
Proof. Making the change of variables x = aP in the left-hand side of (3.4.33)) we obtain

o+1-p

/wa“(c~|—aﬁ)yda = B! /oox B (c+x)"dx. (3.4.34)
0 0

Hence, making the change of variables a = % in the right hand side of (3.4.34) we get

©  a+l-B

oo o+1+p
/ a*(c+dPYda=p""c P y/ a P (1+4a)'da. (3.4.35)
0 0

Finally, the change of variables x = 1%~ in the right hand side of (3.4.35)) leads to

o | LBy I ay1-B _BritotyB
/a“(c+aﬁ)7da:ﬁc B /x F(1-x)" B dx (3.4.36)
0 0
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which implies the desired result. O

Lemma 3.4.6. Let €,T > 0, and define V3(€) by (3-1.14). Then, for every 3 < H < 1

we have

lim &3~ #Vj(¢) = 62, (3.4.37)

e—0

where 67 is given by (3.2.2).

Proof. Changing the coordinates (x,u;,uz) by (a:=u1,b :=x—uy,c:=up) in (3.4.1)

for i = 3, we obtain

1 3
V3(8):E/[OTP11(07T)(a+b+c)(T—(a+b+c))]81—1—2] 3% odadbde,  (3.4.38)

where the matrix X is given by

2H
Yip=a",

2H
Yoo =c"",

)

1
Ti2=5((a+b+0) +67 = (b+)* —(a+b)™").
We can easily check, as before, that

el +X| = (e+X11)(e+2p2) — 27, = €2 +€(X1,1 +Xp2) + 2]

=2 te(@® +M)+d”1P! —pu(a+b,a,c)?, (3.4.39)
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where U is defined by (3.1.17). Changing the coordinates (a,b,c) by (e‘ﬁa,b, S_ﬁc)
in (3.4.38)) and using (3.4.39)), we obtain

1
£ FV3(e) = / 1io.7)(€7 (a+c) +b)Pe (a, b, c)dadbdc, (3.4.40)
R

3
TJRY

where

(T—b— sﬁ(a+c))£‘%u(£ia+b,£ﬁa,8ic)

Ye(a,b,c) =

[SI[O8}

(1 + a2t 4 ¢2H 4 g2H c2H —8_211(8%61—#17,8%61,8%@2)

The term u(x+y,x,z) can be written as

w(x+yx,z) =H((2H — l)xz/

o (y+xv; —}—zvz)ZH_zdvldvz, (3.4.41)

which implies

H(2H —1)(T —b)acbh*1—?
(14 a2H + c2H 4 g2H (2H )3

= HQH —1)(T - )b 2ac(1+a®) 1(1+ A2, (3.4.42)

lim We(a,b,c) =
e—=0

Therefore, provided we show that 1 7) (eﬁ (a+c)+b)¥¢(a,b,c) is dominated by a
function integrable in R3_, we obtain the following identity by applying the dominated

convergence theorem in (3.4.40)

H(2H —1
lim €3~ V;(e) = HRH-1)

£ T oy Lo ()T =b)p Pac((1+a*) (14 ))~2dadbde.
T

Making the change of variables x = %, and using Lemma we obtain (3.4.37). Next

we show that 1o 1) (sﬁ (a+c)+b)¥¢(a,b,c) is dominated by a function integrable in
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Ri. Using (3.4.41)), we deduce that there exists a constant K > 0 only depending on T

and H such that

aCbZHfZ

Ye(a,b,c) <K 2
(1+a2H+02H+a2H02H)§

= Kb 20¢(1 + a3 (14 )3,

The right-hand side in the previous relation is integrable in Ri thanks to condition

H > % The proof is now complete. 0

Lemma 3.4.7. Let T,€ > 0 be fixed. Define V3(1)(8) by (3.1.16). Then, for every % <
H < 1it holds

lim e v (e) = o2, (3.4.43)

where 67 is given by (3.2.2).

Proof. By (3.1.16)) and (3.1.19),
Vi (e) = (2 1)1 /y GY) (1 —s1,— ), (3.4.44)
3

where .73 is defined by (3.1.12)). Changing the coordinates (sy,s2,t,%) by (a:=1 —
s1,b:=sy—1t1,c:=1ty)—s7) in (3.4.44), and using ((3.1.20), we obtain

1 T—(a+b+c) _3 _3
V3(1)(e) = E/ﬂ@/o Lory(a+b+e) (e+a) * (e+) 2
+

x(a+b,a,c)ds;dadbdc. (3.4.45)
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Then, changing the coordinates (a,b,c) by (e_ﬁa,b,e_ﬁc), and integrating s; in
equation (3.4.43)), we get
£H

-3
m e
() = /Rsz b—e(at )L 4o (a+e)

3 _3
X (1+a2H) : (1+c2H) 2,u(sﬁa-|—b,8%a,eﬁc)dadbdc.
Next, using the identity

U(x+y,x,z) =H(Q2H — l)xz/[ 1]2(y +xv; +zvz)2H_2dv1dvz,

)

we get

3-2 (1) _H(ZH—I)/T/ / 1 o
eTHY, (8)_—7r 0 Je [071]2ﬂ(o,g*ﬁ(rfb))(ach)(T b—e¢e(a+c))

x (1+ aZH)_% (1+ CZH)_%ac(b tem (avi +cv2))*~2dv dvydadedb.

(3.4.46)

Notice that the argument of the integral in the right-hand side of (3.4.46)) is dominated

by the function

TH(2H —1)

O(a,b,c,vi,v7) = (1+a2H)_%(1+c2H)_%acb2H_2.

The integral [y fR’i Jjo, 112 ©(a;b,¢,v1,v2)dvidvodadedb is finite thanks to condition H >
%. Therefore, applying the dominated convergence theorem to (3.4.46), we get

HQH-1) [T _
lim e 7" (e) = %/ /2 (T —b)(1+ )3 (1 + ) 2ach*™ 2dadedb
o Jr2

e—0
2

- w </OT(T—b)b2H2db> </Oooa(1—|—a2H)%da) .
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Making the change of variables x = %, and using Lemma we obtain (3.4.43). [

Lemma 3.4.8. Let T > 0and g € N, g > 2 be fixed. Define Gg‘f)(ul,uz) by (3.1.20).

X

Then, for every % < H< ig—:;, it holds that
/R G\ (w1, up)dxduy duy < . (3.4.47)
+
Proof. Let T >0, and g € N be fixed, and define the sets

A ={(x,ur,up) GRi |uy —x >0, x+uy—u; >0},

T = {(x,u1,u3) ER | ug —x—uy >0},

Ta = {(x,u1,up) € Ri | x—u; > 0}.
Since Ri = 71U % U Z3, it suffices to prove that Gg(ul ,up) is integrable in .7}, for
i=1,2.3
(q)

1y (1,u2) in 71 we change the coordinates (x,uq,u>)

To prove the integrability of G

by (a:=x,b:=u; —x,c:=x+up —uj). Then,
/y1 G 1y, u2) dxduey duty = /R -i G\ (a+b,b+c)dadbde. (3.4.48)
Next we prove that the right hand of (3.4.48)) is finite. Notice that
G\ (a+bb+c)=(1+(a+b)*) 2791+ (b+c)*) 2 9u(a,a+b,b+c) ",

,a

By the Cauchy-Schwarz inequality, we get

p(a,a+bb+c) < (a+b) (b+ ) </ (1+(a+bPH)(1+(b+cPM),
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and consequently,
G (a+b,b+c) < (1+(a+b)*) 11+ (b+c)) .

. . .. 2.1 2.1
Hence, using the inequalities %a + %b >a3b3 and %c + %b > ¢3b3, we deduce that there

exists a constant K only depending on T and H such that the following bounds hold

4H

G\(a+b,b+c) < K(abe) if abe>1,
G(a+b,b+c) < K(1+b™) 71 (142H)! if a<1,
G(a+b,b+c) <K(1+6M) (1 +aH)! if c<l,
G\(a+b,b+c) < K(1+a) 1 (142H)! it b<1.

Using the previous bounds, as well as condition H > %, we deduce that Ggqu (a+b,b+c)

is integrable in the variables a,b,c > 0.

(9)

1x

To prove the integrability of G/ (u;,u;) in 7 we change the coordinates (x,u,u)

by (a:=x,b:=up,c:=u; —x—uy). Then,
/ Ggqi(ubuZ)dXdulduZ :/ Ggqi(a+b+c,b)dadbdc.
T R}

Next we prove that Ggqc)l (a+b+c,b) is integrable in the variables a,b,c > 0. Notice

that

G\ (a+b+c,b) = (1+(a+b+c))279(1 + 6?2 "Ip(a,a+b+c,b)~".
(3.4.49)
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Using inequality

paatbteb) < (atb+o)o! < \/(1+(atb+e))(1+b2),  (3.450)
as well as the condition ¢ > 2, we obtain

w(a,a+b+c,b) " = p(a,a+b+c,b)’u(a,a+b+c,b)* 42

<pla,a+b+c,b)’ (14 (a+b+c)) 2 (14+p7)172,
which, by (3.4.49), leads to

G{)(a+b+c,b) < (1+(a+b+0)) 2 (1+62) 3 pu(a,a+b+c,b)?

<(1vavbve)H(vb) ™ u(a,a+b+c,b)®.  (3.451)
Similarly, by (3.4.50),
w(a,a+b+c,b) ' < (14 (a+b+c) ) 1(14+p2H) 1,
which, by (3.4.49), leads to

G\(a+b+e,b) < (1+(a+b+c)) (146!

<(1Vavbve)H(1vb)—H, (3.4.52)
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In addition, using the representation

1
ula,a+b+teb) =2 ((a+b)™ +(b+o)* —a =)

1
= Hb/ ((a—i—bu)ZH*1 + (c—l—bu)ZH*l) du,
0
we deduce that there exist constants K, K’ only depending on H such that

t(a,a+b+c,b)1igane)(b) < KLigane)(b)b((a+b)* """+ (c+ b))
< K/]l(O,a/\c) (b)b(a \% C)zH_l

<K'(1vb)(1Vavc) L. (3.4.53)

Combining the inequalities (3.4.57)) and (3.4.53)), we deduce that there exists a constant

K > 0 such that

G (a+b+¢,b)1 (g ane) () < Kl g ape) (b)(1VavhVe) SH(1ve)HH3(1vav )3

<K(1VaVve)3(1vp)—HH3,

(9)

Using the previous inequality, as well as the condition H > %, we deduce that G’ (a+
b+ c,b) is integrable in {(a,b,c) € R | b < aAc}. In addition, from (3.4.52) we

obtain
G\(a+b+¢,b)1 g ey (@) < (1VB) 2 (1v bV )2,

Therefore, using condition H > %, we deduce that Ggq)l (a4 Db+ c,b) is integrable in

{(a,b,c) €R3 | a <bAc}. By symmetry Gg?i(a—f—b—kc,b) is integrable in {(a,b,c) €
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(9)

1 (u1,up) is integrable

Ri | ¢ <aAb}. From the previous analysis we conclude that G
in 9.

(9)

1,x

To prove the integrability of Gy, (u1,u;) in 73, we change the coordinates (x, u1,u)

by (a:=uy,b:=x—uj,c:=uy). Then,

/ G\ (1, uz)dxduy duuy = / G\, (a,c)dadbde.
T3 R3S

To bound Ggqc)l p(a,c) we proceed as follows. We first notice that
G\, p(a,c) = (14+a) 727914+ )37 (a+ b,a,c) "

Hence, using inequality it(a+b,a,c) < aflcf < /(1 +a*1)(1+ ), we deduce that
(a,c) < (1+a) " (1+2) " < (v (1ve) . (3454

As a consequence, Ggqc)l 1pla,c) is integrable in {(a,b,c) € R3 | b <aAc}. In addition,

from relation

w(x—+y,xz) =HQ2H—1)xz / Ly + 2) 2 2 dvdvs, (3.4.55)
0,1]

we can prove that

w(x+y,x,z) < HQ2H —1)xzy*1 2. (3.4.56)
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Using (3.4.56), we deduce that there exists a constant K > 0, only depending on H and

g, such that

G(‘I)

Lap(a,e) <K ((1 +a*) (1 +c2H))_%_q (ac) 2~ p2(2a-D(H-1)

< K((l \/a) (1 \/C))_H_qu"‘z‘l_l b2(2q71)(H71).
Taking into account that H < iq]—:;, we get 2(2g — 1)(H — 1) < —1, and hence

/ Ggqc)z+b(aac)db <K((1Va)(1ve)) H20T2471 (1 gy )220 DH-D+1
lvave 7’

<K(1va) i (1ve) 2t (3.4.57)
where in the last inequality we used the relation

(1vav e2CDH=D+ < (1 g)2a-DH-D+2 (1 y ) 2a-DE-1+3,

Using relation (3.4.57) as well as condition H > %, we conclude that Ggqi +b(a,c) is

integrable in {(a,b,c) € R3 | 1VaVc < b}. In addition, from (3.4.53) we obtain

p(x+y,x,z) <H(2H — 1)xz/[ ]z(xvl +z2v2)* 2 dv dvy
0,1
1
<H(2H — l)xz/ ((xVz)w)* A 2dw
0

= Hxz(x V2?12 = H(xAz)(x V)21
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Hence, there exist constants K ,IA(: > 0 such that

Ggi]c)htb (aa C) 1 (anc,aVe) (b)
1
_ ((1 +azH) (1 +02H)) 2 q,u(a—i—b,a,c)zqfl
<K((1va)(1ve) " (apc)~!(ave) 2D
(3.4.58)
<K((1va)(l \/C))fH%qH (1v (a/\c))Zq—l(l \/a\/c)(Zq—l)(2H—1)

ZK(I Vi (a/\c))—H(Zq—i-l)—i-Zq—l(l \/avc)—3H—2q+2qH+l'

(9)

Using relation (3.4.58)) as well as condition H > %, we obtain that G",, , (a,c) is inte-
grable in the region {(a,b,c) € R} |aAc < b <aVc}. From the previous analysis we

conclude that G(q) (a,c) is integrable in the variables a, b, c > 0, which in turn implies

1,a+b

that Ggqi(ul ,uy) is integrable in .73 as required. O

Lemma 3.4.9. Let T >0 and g € N, g > 2 be fixed, and define G\Y) (1, u,) by (3.1.20).

Then, for every % <H< 43_1’ we have
/&) TP Gg,l))c(ul ) MZ)dXdulduz < oo,

Proof. LetT >0, and g € N, and define the sets

T ={(xu,up) € [O,T]3 | uy —x >0, x+uy —u; >0},
Ty = {(x,u1,u) € [0,T]® | uy —x —ur > 0},

Ty = {(x,u1,u2) € [0,T] | x —uy > 0}.

Since [0,T]® = 91/ U % U :7; it suffices to check the integrability of G(()q)z(ul,uz) in

T, fori=1,2,3. To prove integrability in T change the coordinates (x,u;,u;) by
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(a:=x,b:=u; —x,c:=x+up —uy). Then,

/~Géq,2(u1,uz)dxdu1duz§ / G\ (a+b,b + c)dadbdc.
7 !

0.7

By the inequality p(a,a+b,b+c) < (a+b)(b+c)H, we can write
foi(a +b,b+c) < (a+b) 2 (b+c) 2. (3.4.59)

. 21 2.1
Therefore, using 23—” + é—’ > a3b3 and % + %7 > ¢3b3, as well as (3.4.59), we deduce that

there exists a universal constant K such that

4H

G(()qc)l(a—kb,b—i—c) < K(abc)™ 3.

The right hand side in the previous inequality is integrable in [0,7]3 thanks to the con-
dition H < %. Therefore, Gé‘f;(ul,uz) is integrable in ,f?? .

(@)

To prove the integrability of G (u1,u2) in % we change the coordinates (x,u,u)

by (a:=x,b:=uy,c:=u; —x—up). Then,

/L?G(()‘,’)Z(ul,uz)dxdulduzg / G (a+b+c,b)dadbdc.
2

0.7

In order to bound the term G(()qc)l(a + b+ ¢,b) we proceed as follows. Applying the

inequality it (a,a+b+c,b) < (a+b+ )b, as well as the condition g > 2, we obtain

G)a+b+c,b) = (a+b+¢) b~ u(a,a+b+e,b)’

u(b,a+b+c,b)\*4?
bH(a+b+b)H

<(a+b+c) b y(a,a+b+c,b)’. (3.4.60)
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On the other hand, by the relation

1
waa+bteb) =2 ((a+b) +(b+e) —a =)

1
= Hb/ ((a+bw)* 1 4 (c+bw)* 1) dw,
0
we deduce that there exists a constant K > 0 such that

1
.u(aaa_f’b"i_C?b)]l(Oﬂ/\c)(b) < ]l(Oa/\c)(b)Hb/ ((a—f—bw)ZHil —I—(C—l—bW)ZHil)dW
’ 0

= Kb(aVv )1, (3.4.61)

Using (3.4.60) and (3.4.61)) we get

G (a+b+e,b)L(ganey(b) < Kb atbtc) 5 (av )0

< Kb H 3 (v c)H—3, (3.4.62)

From (3.4.62)) as well as the condition H < 43'1’ we deduce that G(()qﬁ)t(a—i-b +¢,b) is
integrable in {(a,b,c) € [0,T])? | b < aAc}. In addition, using the relation y(a,a+b+

¢,b) < (a+b+c) b, we can prove that
G(()qg (a+b+c,b) < p2H 2H

Therefore, by the condition H < %, we deduce that Géqc)l(a + b+ c,b) is integrable in

{(a,b,c) €[0,T]® | a < bAc}. Similarly, we can prove that

Gé?;(a +b+c,b) < b_ZHa_ZH,
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and hence, since H < 3 we conclude that G(()?g(a +Db+c,b) is integrable in {(a,b,c) €
[0,T)? | ¢ < bAa}. From the analysis we conclude that Géqi(a +b+c,b) is integrable
in [0,773.

To prove the integrability of G(({]i (up,up) in % we change the coordinates (x,uy,u;)

by (a:=uy,b:=x—uy,c:=up) to get

Gy (a,c)dadbdc.

/gG(()i])Z(ulvl/tZ)dXdulduz < / b
T

[0,7]

(9)

0.a+b(@>¢) we proceed as follows. From relation

In order to bound the term G,

w(x+yx,z)=H(Q2H — 1)xz/[ ]2(y+xv1 +zv2) 22 dv vy, (3.4.63)
0,1

we can deduce that
w(x+y,x,z) < H(2H — 1)xzy*1 72,

Hence, since

G\ ~H-2qH .~H—2qH

Otb p(a+b,ac)* 1, (3.4.64)

(a,c)=a
we deduce that there exists a constant K > 0 only depending on H such that

G(‘I)

) (0,6 Lavery(b) < a~H-20H+2071 c=H=24H+24-1,200-1)(H-1)
7a ) 9 -

(ave,T) (b)
(3.4.65)

Since ¢ > 2, we have that H < 3 < % < %. As a consequence, from we

q
deduce that G\ (a,c) is integrable in {(a,b,c) € R3 | b > a,c}. In addition, by

0,a+b
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(3.4.63) we get

w(x+y,x,2) <HQ2H— 1)xz /[ P((xv@wl)z’f—zdwldwz
0,1

= Hxz(xV2)*I 2 =H(xNz)(x V)21

Therefore,

G(()C,Ic)htb (a’ C) 1 (aNc,ave) (b)

<(an c)_H(2qu1 )+2¢-1 (aV ) 3H—2a2qH+1 (3.4.66)

(aNc,aVe) (b)

From (3.4:66), and H < 3 < £ < %‘éq, it follows that Gé?c)l 1pla,c) is integrable in
{(a,b,c) €[0,T]* | aAc < b <aVc}. Finally, by inequalities u < a’c!’ and (3.4.64),

we get

G(()L,]c)z-i-b(a’ )L (g.ancy(b) <a 22, (3.4.67)

Using (3.4.67) as well as condition H < %, we deduce that G((fc)l +b(a, ¢) is integrable in
{(a,b,c) €[0,T]? | b < aAc}. From the previous analysis it follows that Géqz(ul,uz)

is integrable in T as required. ]
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Chapter 4

Symmetric stochastic integrals with respect to a class of

self-similar Gaussian processes.

Consider a centered self-similar Gaussian process X := {X;};>¢ with self-similarity
exponent 8 € (0,1) defined on a probability space (Q,.%,IP). That is, X is a centered
Gaussian process such that {c $X,;},>¢ has the same law as X, for every ¢ > 0. We also
assume that Xy = 0. The covariance of X is characterized by the values of the function

¢ : [1,00) — R, defined by
o (x) = E[X1X]. 4.0.1)

Indeed, for 0 < s <t,

R(s,t) :==E[XX,] = sPo(t/s). (4.0.2)

The idea of describing a self-similar Guassian process in terms of the function ¢ was

first used by Harnett and Nualart in [[18]], and the concept was further developed in [20].
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The purpose of this paper is to study the behavior as n — oo of V-symmetric Riemann

sums with respect to X, defined by

] =1 .q
()= Y /0 2(X, + yAX)AX, v(dy), 403)
j:O n n n

where AX P = X it -X 8" R — R is a sufficiently smooth function and Vv is a sym-
metric probability measure on [0, 1], meaning that v(A) = v(1 — A) for any Borel set
A Cl0,1].

The best known self-similar centered Gaussian process is the fractional Brownian

motion (fBm) of Hurst parameter H € (0, 1), whose covariance is given by

R(s,1) = <t2H+s2H y —syZH) . (4.0.4)

1
2

The v-symmetric Riemann sums Sy (g,7) given in (4.0.3) were investigated in the sem-
inal paper by Gradinaru, Nourdin, Russo and Vallois [15], when X is a fBm with Hurst
parameter H. In this case, if g is a function of the form g = f’ with f € €*(V)*2(R)

and ¢ = £(v) > 1 denotes the largest integer such that

1 . 1
2j o .
ov(ido) = ——, f =1,...,/—1
/0 ( ) 2] 17 or j 5 3 ;

then, provided that H > ﬁ, there exists a random variable fé g(X;)d" X such that

t
S (g,1) / g(X,)d"X,  as n— oo
0
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The limit in the right-hand side is called the v-symmetric integral of g with respect to

X, and satisfies the chain rule

(X)) = +/ f(Xs)d" X;.

The results from [[15] provided a method for constructing Stratonovich-type integrals
in the rough-path case where H < 1/2. Some well-known examples of measures v and

their corresponding vV-symmetric Riemann sums are:
1. Trapezoidal rule (¢ =1): v =3(&+ &),
2. Simpson’s rule (¢ =2): v = ;(& +48; » + 01),
3. Milne’s rule (€ = 3): v = 55(78 4328 4 + 128 j + 32854 + 781),
where 8, is the Dirac function. For example, if v = 3(8& + &), then (4 is the sum

] -1g(X;) +g(Xjs1)
2

S,\:(g,l): AX%a

j=0
which is the standard Trapezoidal rule from elementary Calculus. If X is fBm with

Hurst parameter H > é, then the Trapezoidal rule sum converges in probability as n

tends to infinity (see [9, 15]), but in general the limit does not exist if H < %.

More generally, it is known that S} (g,7) does not necessarily converge in probabil-

ity if H < Nevertheless, in certain instances of the case H = ﬁ, it has been

4/+2
found that S) (g,#) converges in law to a random variable with a conditional Gaussian
distribution. Cases ¢ = 1 and ¢ = 2 were studied in [41] and [19]], respectively. More

recently, Binotto, Nourdin and Nualart have obtained the following general result for

_ 1 .
H_4€+2'
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Theorem 4.0.1 ([S]). Assume X is a fBm of Hurst parameter H = 4/++4. Consider a
function f € €203 (R) such that f and its derivatives up to the order 200 + 5 have

moderate growth (they are bounded by AeP W% with a < 2 ). Then,

SY(f',1) 5 £(X) — £(0) —cy /0 t FREDX)AW,  as n— oo, (4.0.5)

where ¢y is some positive constant, W is a Brownian motion independent of X and the

convergence holds in the topology of the Skorohod space D[0,).

The previous convergence can be written as the following change of variables for-

mula in law:
£(X,) = f(0)+ / [ F1(X,)d" X+ ¢y / l FRED (X)W
0 0

When extending these results to self-similar processes, surprisingly the critical
value is not the scaling parameter 3 but the increment exponent a which controls the

variance of the increments of X and is defined below.

Definition 4.0.1. We say that o is the increment exponent for X if forany 0 < € <T < oo

there are positive constants 0 < ¢y < ¢y and 8 > 0, such that
c15* <E[(Xgs — X)?] < c2s%, (4.0.6)

foreveryt € [€,T] and s € [0, 0).

The extension of stochastic integration to nonstationary Gaussian processes has
been studied in the papers [53,117,[18]. Each of these papers considered critical values
of a, for which particular v-symmetric Riemann sums S) (g,7) converge in distribu-

tion (but not necessarily in probability) to a limit which has a Gaussian distribution
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given the process X. For the fBm, o¢ = 2H and the critical value for & coincides with
H= ﬁ. Papers [53, 18] were both based on the Midpoint integral, and show that the
corresponding critical value is o = % Because of the structure of the measure v, the
Midpoint rule integral is not covered in our present paper. Harnett and Nualart con-
sidered in [17] a Trapezoidal integral with o = % and the results in this paper can be

expressed as a special case of Theorem below.

4.1 Main results

Our goal for this paper is to extend the results of [S]] and [[15] to a general class of self-
similar Gaussian processes X, and a wider class of functions g. In the particular case
where X is a fBm, we extend Theorem 4.0.1]to the class of functions f with continuous
derivatives up to order 8¢+ 2. The idea of the proof is similar to the one presented in
[S]], but there are technical challenges that arise because in general X is not a stationary

process.

Our analysis of the asymptotic distribution of Sy (f’,¢) relies heavily on a central
limit theorem for the odd variations of X, which we establish in Theorem [{4.1.1] The
study of the fluctuations of the variations of X has an interest on its own, and has
been extensively studied for the case where X is a fBm (see for instance [40] and [[10]).
Nevertheless, Theorem[d.1.1]is the first one to prove a result of this type for an extended

class of self-similar Gaussian process that are not necessarily stationary.

For most of the stochastic processes that we consider, such as the fBm and its vari-
ants, the self-similarity exponent B and the increment exponent ¢ satisfy a = 23, but

there are examples where o < 2f3. In the sequel, we will assume that the parameters o
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and f3 satisfy 0 < @ < 1, B < 1/2 and a < 2. Following [20], we assume as well that

the function ¢ introduced in (4.0.1)), satisfies the following conditions:

(H.1) ¢ is twice continuously differentiable in (1,0) and for some A >0and & € (0,1),

the function

vx)=0x) +A(x—1)% 4.1.1)
has a bounded derivative in (1,2].

(H.2) There are constants C;,C, > 0 and 1 < v <2 such that

10" ()] < CrlLg 2 (x) (x = 1)* 2+ Col gy (x)x ™V (4.1.2)

Although the formulation is slightly different, these hypotheses are equivalent to con-
ditions (H.1) and (H.2) in [20], with the restrictions o < 1 and 23 < 1. In particular,

they imply that
19/ (0)| < Cl11 () (x = 1)* ' + Gl gy ()37, (4.1.3)

for some constants C and C5. Notice that by Lemma in the Appendix, Hypothesis

(H.1) implies that « is the increment exponent of X. Moreover the upper bound in

(4.0.6) holds for any ¢ € [0,T].

The following are examples of self-similar processes satisfying the above hypothe-

ses (see [20]):

(i) Fractional Brownian motion. This is a centered Gaussian process with covariance

function given by || Here (H.1) and (H.2) hold if H < % In this case,

0() = 5 (142 — (e 17",
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oo=2B=2Hand v=2-2H.

(i1) Bifractional Brownian motion. This is a generalization of the fBm, with covari-

(111)

ance given by

1
o ((le +S2H)K _ ‘t _S‘ZHK)

R(s,t) = K

for constants H € (0,1) and K € (0, 1]. See [21} 33, [51]] for properties, and note
that K = 1 gives the classic fBm case. Here (H.1) and (H.2) hold if HK < 1. For

this process we have

006) = g (142K — (= 17205)

with A =27K o =28 =2HK and v = (2+2H —2HK) A (3 —2HK) — 1.

Subfractional Brownian motion. This Gaussian process has been studied in [6, 8]

and it has a covariance given by
1
R(s,t) = s 4120 — 5 ((s+t)2H + ]s—t|2H) )

with parameter H € (0,1). Here (H.1) and (H.2) hold if H < % in which case

A=1/2,a=2p =2H, and

¢(x)=1+x" - % ((x+ 1) + (x—1)%H).
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(iv)

v)

Two processes in a recent paper by Durieu and Wang. For 0 < a < 1, we consider

the centered Gaussian processes Z; (), Z(t), with covariances given by:

E[Z1(5)Z1(t)] =T(1 — &) ((s+1)* — max(s,1)%)

E[Z(s)Z2(1)] =T(1 — o) (s* +1% = (s +1)%),

where I'(y) denotes the Gamma function. These processes are discussed in a
recent paper by Durieu and Wang [13], where it is shown that the process Z =
Z1 + Z, (where Zy, Z; are independent) is the limit in law of a discrete process
studied by Karlin. The process Z,, with a different scaling constant, was first
described in Lei and Nualart [33]]. The corresponding functions ¢ of these self-

similar processes are:

o1(x) =-T(1—a)(x=D)*+T(1—0) (x— )%+ (x+1)% =x%)

and

o (x) =T(1—0o)(1+x%—(x+1)%)

= T(1—a)(x—1)*+T(1— o) (1+x%+ (x— 1)% — (x+ 1)%).

It is shown in [20] that both ¢ and ¢, satisfy (H.1) and (H.2), with 23 = o and

v=2—0a.

Gaussian process in a paper by Swanson. This process was introduced in [52],

and arises as the limit of normalized empirical quantiles of a system of indepen-
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dent Brownian motions. The covariance is given by

R(s,t) = /stsin™! (s—\/AS—;) ,

and the corresponding function ¢ is given by

§(x) = Vasin™! (%) |

This process has @ = 8 = 1/2 and v = 2, so is an example of the case o < 2f3.

It is interesting to remark the differences on the asymptotic behavior of both the
power variations and the v-symmetric integrals of X, depending on whether a = 23
or @ < 2B. As we show in Theorem the process of variations of X satisfies an
asymptotic nonstationarity property when a < 2f3, which differs from the case oo = 23,
where the limit process is a scalar multiple of a Brownian motion. To better describe
this phenomena, we denote by ¥ = {Y¥;};>¢ a continuous centered Gaussian process

independent of X, with covariance function

2B

E[Y,Y,] = X(s,1) := (t As) @, (4.1.4)

defined on an enlarged probability space (Q,%,P). The process Y is characterized by

the property of independent increments, and
2B 2B
E[(Yi4s—Y)*] =t@ —s@ for 0<s<t.

Notice that for o < 23, the increments of Y are not stationary and when oo = 23, Y is

a standard Brownian motion. We need the following definition of stable convergence.
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Definition 4.1.1. Assume &, is a sequence random variables defined on (Q,.% ,IP) with
values on a complete and separable metric space S and & is an S-valued random vari-
able defined on the enlarged probability space (Q,%9,P). We say that &, converges
stably to & as n — o, if for any continuous and bounded function f : S — R and any
R-valued, . -measurable bounded random variable M, we have
lim E[£(§,)M] = E[f(E)M].
Next we present a central limit theorem for the odd power variations of X, which is a

key ingredient for proving Theorem and illustrates the asymptotic nonstationarity

property that we mentioned before.

Theorem 4.1.1. Fix an integer { > 1. Define the functional

|nt]—1
Vi)=Y axitt r>o. (4.1.5)
j=0 7

Ifa= zélﬁ and the process X satisfies (H.1) and (H.2), then for every 0 <t,... t, < oo,

m > 1, the vector (V,(t1),...,V,(tm)) converges stably to oy(Yy,,...,Y;,), where
2 o' 2(0—r)+1
of =55 LK . (Ip+1|%+1p—1]"=2[p|") . (416)
B r=0 PEZL

and K, = ci€22r A0 —r)+1)!, where A is the constant appearing in Hypothesis

(H.1) and c,y are the coefficients introduced in (I.2.1)).

Our main results are Theorems 4.1.2/and |4.1.3| below.

Theorem 4.1.2. Assume f € %8”2(1&). For a given symmetric probability measure

v and associated integer ((V), assume the process X satisfies (H.1) and (H.2) with
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2B > o= Then, as n tends to infinity,

2ﬁ+1

Stably

(21 b0 M2 (£(%,) — £(0) — Ky 0 /Otf(%“)(xs) dY o,

where oy and Ky ¢ are the constants given by (4.1.6) and (4.4.2)), respectively, and
the convergence is in the Skorohod space D|0,0). Consequently, we have the It6-like

formula in law
.,f \ 24-5—1
= +/f dX+KveO’£/f )(X,) dYs.

The proof of Theorem follows the same path as the proof of Theorem 1.1 of
Binotto, Nourdin and Nualart [S)], but there are technical challenges that arise because

in general X is not stationary. The next generalization of the result in [[15] easily follows

from the proof of Theorem

Theorem 4.1.3. Under the assumptions of Theorem 2 if o> 5 +1, then the v-
symmetric integral fo f1(Xy) dYXs exists as the limit in probability of the V-symmetric

Riemann sums Sy (f',t) and for all t > 0, we have
0+ [ 7% %,

The important new developments compared to previous work are:

e A system for constructing stochastic integrals with respect to rough-path pro-
cesses, originally developed in [5, (15,19, 41]] for the fBm, is now extended to a

wider class of processes that are not necessarily stationary.

e We prove a central limit theorem for the power variations of general self-similar

Gaussian processes.
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e We present a more efficient proof of tightness, which allows for less restrictions

on the integrand function f compared with [3]].

The chapter is organized as follows. In Section 4.3 we prove the convergence of the
variations of the process X. Section 4.4{is devoted to the proofs of Theorems|4.1.2{and

Theorem [.1.3] Finally, in Section 4.5|we prove some technical lemmas.

4.2 Notation

For n > 2 we consider the discretization of [0,0) by the points {,il, j>0}. Fort >0,

j=>0andn > 2, we define:

6=, &= (g e ) md o =1y

=~

| =

For the process X, we introduce the notation:

When not otherwise defined, the symbol C denotes a generic positive constant,
which may change from line to line. The value of C may depend on the parameters

of the process X and the length of the time interval [0,7] or [0, T] we are considering.

4.3 Asymptotic behavior of the power variations

This section is devoted to the proof of Theorem Define V,(r) by and
recall that o = ﬁ By the Hermite polynomial expansion of x>*! (see ), we
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can write

2041 ®@2(0—r)+1
AX + Z AX, Xg: 81
Cro Hp(p CreDo—p) a0 |
524+1 = g}n = éjzglz r)+1
where each ¢, is an integer with ¢ y = 1. It follows that
AX2€+1 Z CrE 5 12 <a®2(£r)+l)
Jin J :
Define ¢, = 2({ —r)+ 1 and notice that gy =l and 3 =¢qp_| < --- < qo =2(+ 1.

We can write for ¢ > 0

/¢
= chgv,;(l)
r=0
where
|t | — ) o
V, ()= Z Eindy, (9,7) = I, (hy (1)),
j n
and

] -
1) = 2 O

J=

4.3.1)

In the next lemma, we show that the term V//(z) does not contribute to the limit of V,,(z)

as n tends to infinity.

Lemma 4.3.1. The term

[nt|—1 [nt|—1
V= Y &)= Y EhAY,

j=0 j=0 "

tends to zero in L>(Q) as n tends to infinity.
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Proof. Recalling that Xo = 0 and AX;/, = X1 1)/, — X;/», We can rewrite the sum as

[nr|—1
14 20 20 20 20 20
Vn(t)zxméLntJ—l7n_Xl< in— o,n>— ) Xz( j,n_éjfhn)'
n n j:2 n
We have, for any integer j > 1,

Ein = (j+1)2B¢<1>+ <£)2B¢(1)—2 (%)2%(%)

n

=0 (G- ) -2 (o0 + Dy -e).

By (H.1), we can write this as

1 23
2= P80 [ tay =20 (<2 ey - v ) = el

By the previous formula, we can extend the function a, to all reals x > 1. Using the fact
that w(x) has a bounded derivative in (1,2], we can find positive constants C,C’" such

that for all x > 1,
‘a;(x)} <cn 2P (xzﬁfz_'_xZﬁfafl) < C'n~ 2B 2801,
Hence, by (4.5.2), it follows that for integers 2 < j < |nt],

dy(i)—a(i-1)| < €, el
A nt

1
< [ e 14)] dy < e 0828 gy,
0
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As a consequence, using again inequality (4.5.2), we can write

2
E (X%défrﬁj—l,n_xi< ) - JZ A 1.2517”)) |
|nr|—1

n %4 C Z

) —ay J—l)‘ <cn ',

which tends to zero as n tends to infinity. 0

Then, Theorem 4.1.1] will be a consequence of Theorem [I.2.1] if we show that the

remaining terms //,(¢), 0 < r < {—1, t > 0, satisfy conditions (1.2.11) and (1.2.12).

This will be done in the next two lemmas.

Lemma 4.3.2. Let 1 < p < g, — 1 be an integer. Then,
lim ||/, (¢) ®, h, (¢ Hﬁ@ grzp) = 0.

n—oo

Proof. We have for each n > 2

Hhr Dp hr Hf)®(24r 2p)

|nr|—1 » ) - -
2 , .

- Z ]lr,n ]z,nékl, ékz7 < J1 > <ak71,8k72> <3Q,8ﬁ> <3Q,3Q> .
jl7j27klak2: n ‘373 n n 57) n n fj n 7 f_)

Note that for applicable values of ¢, and p we always have p > 1 and ¢, —p > 1. By

(4.5.2) and Cauchy-Schwarz inequality, we have

sup ‘<81,85> ‘SCn_a.
0<jk<|nt|—1' N n n/9H
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Asa consequence,

4

r r 2 2 2g,—3

[ @) [oan 20 < | swp [gF]) s [(95.00) |
0<j<|nr|—1 0<jk< ) -1t Y D

T Kooy, op) (opa),

<)
4r2g,—3)+1 ! 3
et ( o 3 \<a,¢aﬁ>ﬁb) |

IN

J1,J2:k1 k=0
1 k=0

We now apply Lemma and noting that 4r +2¢q, =4/ 42 = =, we have up to a
constant C,

[[15,() @p (1 Hg@ g2y SCn 1,
which tends to zero as n tends to infinity. This completes the proof of the lemma. [

In the next lemma we show that the functions £, 0 < r < ¢ — 1, satisfy condition

(1.2.11) of Theorem|1.2.1] with some constants c;, to be defined below.

Lemma 4.3.3. Under above notation, let s,t > 0. Then for each integer 0 < r < {—1,

AN FZ ALY (pg(m) (432)

lim (A, (t), 7y, (5)) g0 = B 7

n—oo
where po(m) = |m+ 1%+ |m—1|% —2|m|*.
Proof. We can easily check that

[nt] =1 [ns|—1
(), 1 (8)) goar = Z ];0 Gn(j,k),
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where the function G,(j,k) is defined by
. reg2r ar
Galj:k) = E74825, (91,91 ) - (433)

Then the convergence (4.3.2)) will be a consequence of the following two facts:

(1) Forevery 0 < s1 <t < 53 < 12,

=1 {an -1
fim Y [Ga(jk)]=0. (4.3.4)
Jj=|ns1] k=|ns,

(i1) For every ¢t > 0,

|nt]—1

im Y Ga(jk) = et ® 22 A2FL Y (pg (). (4.3.5)
ne k=0 2p mez,

(04

First we prove (4.3.4]). We can assume thatn > 6, |ns;| > 1 and |nt) | +2 < |ns2 ],
which is true if n is large enough. This implies that j+ 3 < k for each k and j such
that |ns;| < j < |nt;| —1 and |nsy| < k < |nr| — 1. As a consequence, applying

inequalities (4.5.1]) and (4.5.3)), we obtain the estimate

lnt1]—1 (2j+2)A([nr2] —1) [nt]—1 [n1y] -1
G,(j,k)| <C Z Z n—4ﬁrk(2ﬁ—Ot)rj(Zﬁ—a)rn—2ﬁqrj(2ﬁ—a)qu(a—Z)qr
Jj=|ns1] k=|ns | Jj=|ns1| k=|ns>|

— Y
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which converges to zero as n tends to infinity due to the fact that o > 0 and ¢, > 1. On

the other hand, applying inequalities (4.5.1)) and (4.5.4) we obtain the estimate

Z 1Ga(j, k)| <C Z Z n—4l3rj(2ﬁ—a)rk(zﬁ—OC)Vn—2l3qrj(2ﬁ+v—2)qu—vqr

|_nt1J71 I_nlzjfl Lnt]Jfl I_nlzjfl
J=|ns1 ] k=(2j4+2)V|ns; ] Jj=|ns1| k=|ns;|

< Cp2-2Nartar)

The exponent of n is the above estimate is always negative, so this term converges to

zero as n tends to infinity.

Next we prove (#.3.5]). We can write
b~ ;

where O, denotes the Kronecker delta. First we will show that there exist constants

C,0 > 0, such that for 3 <x < |nt| — 1,

|nt]—1—x
Y (2-68:0)[Ga(j,j+x)| <Cx 0 4.3.7)
j=0

To show (4.3.7) we consider three cases:

Case 1: For j = 0, we have, using (4.5.1)) and (#.1.3),

IN

1G(0, )] Cn—4ﬁrx(2l3*a)r‘n72ﬁ(¢(x+ 1) —o(x)|” < Cpn—2B(26+1)  (2B—a)r—vq,

<y 2BRA)+B-a)r—ve, (4.3.8)
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which provides the desired estimate, because the largest value of the exponent —23 (2/+

1)+ (2B — a)r — vq, is obtained for r = £ — 1, and in this case this exponent becomes

2B(+2)—((—1a—-3v<—-a(2l+1)—3v=—1-3v.

Case 2: Applying (4.5.3)), yields

|nt|—1—x nt|—1—x
Z ’Gn(],]—f‘X)‘ <C Z nfzﬁ(zprl)j(zﬁ*a)('”r%)<j+x)(2ﬁfa)r+(a—2)q,
J=x=2 j=x—2

|nt|—1—x
<C Z n—2ﬁ(2€+1)(j_|_x)(2ﬁ—a)(2€+l)+(a—2)qr

Jj=x-2

|nt|—1—x
<C Z (]-_|_x>—a(2€+l)+(a—2)q,‘

j=x2
Hence, using the bound (j+x)(0€—2)4r < j(a—z)(%—l)x“_z, and the condition o = ﬁ,
we get

|nt|—1—x 0o
Y 1Gu( )| < Cx* 7Y e, (4.3.9)
j=x—2 j=1

The sum in the right hand side is finite due to the fact that ¢, > 3 and o < 1.

Case 3: By (4.5.4),

x—2

— x—2
Y 1Ga(j,j+x)| <C Y n 28R pBlrtar)-ar+(v-2ar(j 4 ) @B-@)r—var (43 10)
j=0 j=0

Notice that

e 2BQEE) 2BOar) (4 x)2B7 < g 28R (4 )2BR0H) < ¢
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and
(j+x)Var < YDy,

Hence, by (4.3.10)),
x—2 x—2 x—2
Z |Gn(j,j+X)| S Z j—ar+(v—2)q,(j+x)—ar—Vq, S x—V Z j—ar—qu+V(j+x)—ar
j=0 j=0 j=0

x—2
<Cx VY Rty (4.3.11)
j=0

The sum in the right hand side is finite due to the conditions ¢, > 3 and v < 2.

Relation follows from (4.3.8)), (4.3.9) and (4.3.11)). As a consequence, provided

that we prove the pointwise convergence

|nt]—1—x

. .. _ % 2041-g, 520412 ar
lim ;) Gn(]7]+x)—2B2 A= e (pa(x)) (4.3.12)

for any x > 0, by applying the dominated convergence theorem in (4.3.6), we obtain

(@.3.5)). The proof of (4.3.12)) will be done in three steps.

Step 1. Since ¢(y) = —A(y—1)* + y(y), for every x > 1 we can write

E [(Xj1 = X)) (Xjxt1 = Xjx)]
=(j+1)%*(p(1 ﬂ%) —9(1 +%)) + (o1 +§) —o(1 +"j )

= A+ DU = (= 1)) = AP — (x4 1))

) v+ ) P D) w0,

FU+ D1+
G+
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Hence, using the Mean Value Theorem for y, as well as (H.1), we deduce that for every

x > 1, there exist constants ¥; and 9, > 0, such that

E[(Xj+1 = X)) (Xjrat1 — X))
= A+ DO = (= )" = AP = (e 1))

+HDP Y 1 n) —- APY (+p).

As a consequence, taking into account that ¥’ is bounded and o < 1,

fim (j+1)%2PE [(Xj1 = X)) Xjarr = Xja)] = A2 = (x= )% = (x+ 1)%).

jroo
(4.3.13)

In addition, from Lemma[4.5.1] it follows that

lim (j+ 1)* 2PE [(Xj21 — X;)%] = im (j+ D)* 2PE [(Xjsci1 — Xj40)?] = 24.

Jeo jeo

(4.3.14)

Using (4.3.13)) and (4.3.14)), we get

. e 1
}ggéj,llgj;x,lE (X1 = X)) (Kjrer1 — Xjia) | = 5 (k= %+ e+ 1% =2 x]%).

(4.3.15)

Notice that the previous relation is also true for x = 0. Therefore, we deduce that for

every € > 0, there exists M > 0, such that for every j > M,

EET B [(Xpt — X)) (Xanrt — Xj)| ¥ =2 % (pa(0))"| <. (43.16)
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Step 2. Provided that we prove that

|nt|—1—x
.2 241 £20+1 2+1,%8
limp~w ) ETER T = ﬁ(zx) i 4.3.17)
j=0
taking into account the self-similarity of the process X, and the fact that o0 = ﬁ, the
proof of (4.3.12)) will follow from
IS ari1g, g2
. +1- r +1- r r T =
im X e (0,00 ) -2 R B pal) | =0
j=0
(4.3.18)
Using (4.5.2) we can easily prove that
11H1_>SUPZ ‘52“1 ar 2&}11 Qr<al7aj+x> - Qr§2f+1§2£—;il(pa( )| = 0.
n—so0 . n n
(4.3.19)
Applying the estimate (4.3.16)) and the limit (4.3.17), we obtain
I a1y 201
. +1—q, +1—gr r r
timsup Y |5 G (9,0 2 NG (pale))f
n—oo j:M n n
: b 2041 £20+1
~timsupn ¥ ¥ £
n—oo =M
’5 E B [(Xj1 = X)) (Xt = Xjin) | =279 (P ()%
B
e X (20)2H % (4.3.20)

Szﬁ

Therefore, (4.3.19) and (#.3.20) imply (4.3.18).

Step 3. In order to prove we proceed as follows. Using Lemma[.5.1] as well
as the condition o < 1, we deduce that for every € > 0, there exists M € N, such that

for every j > M,
(j7OP-®E &) (21)2”1‘ €,
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and hence, since a@ = (20 +1)~!

—1-
.- )= 241 £2+1 (97 \20H1 (2B—0)(20+1)
n Z é éj—i—x,l ( ) .]
=M
ey _
e Z (2B —a)(20+1) ‘ézzﬂéjzﬁ%] (28— )(2”1)—(2/1)2”1
j=M
|nt]—1—x B
<en « ] o
j=M
Therefore, since
|nt|—1—x
28 2 o 2B
limn @ e = 2w, 4.3.21)
n—yoo =0 2[3

we conclude that there exists a constant C > 0 depending on ¢ and x, such that

25 |nt|—1—
limsupn™ o Z

n—oo j:M

s (2)')2€+1 ((2B—a)(21+1) < Cé,

and hence, by relation (4.3.21)) and condition @ = (2¢+ 1)*1, we conclude that

|nt|—1—x

1imn—2ﬁ(2£+1) Z §2€+1€2€+1

n—yoo j:() j+x71
2041 11 B2+ 1) el (2B-a)(2041) _ @ 2041,
=(214) r}glgon ng) J :%(ZA) to,

as required. The proof of Lemma4.3.3|is now complete.
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4.4 Asymptotic behavior of weak symmetric Riemann

sums

In this section we prove the main results, Theorems 4.1.2) and 4.1.3] We follow argu-

ments similar to those used in the proof of Theorem 1.1 of Binotto, Nourdin and Nualart
[5], which was originally used in [15]. For f € €3/+2 (R) and a < b, we consider the
approximation (4.4.1)) below, which was proved in [15, Theorem 3.6] using Taylor’s

formula and the properties of v

2
+C(a,b)(b—a)**?, (4.4.1)

20
f6) = 7@+6-a) [ latro-a) vian+ ¥ s @ (0) p-a
0 h={

where C(a, D) is a continuous function with C(a,a) = 0, and the k j are the constants

given in [15, Theorem 3.6]. In particular,

1 1 1 1\*
Ky, = 20! ((2€+1)2M —/0 (y—i) v(dy)). (4.4.2)

Recall the notation X; and AX; introduced in Section From (4.4.1)), it follows that

forn > 2,
20 |nt]—1 _
FX)—fO) =80+ Y Y ko fPX ) (AX)P T SR (1),  (4.4.3)
h:[ ]:O n n
where

|nt|—1
Ri(t)= Y C(X;,Xj1)(AX;)* 2,
j:o n n n
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Then, we can write

20
FX) = £0) =Sy (f,0)+ Y, Ph(t) +Ru(1), (4.4.4)
h=/{
where
|nt]—1 _
Oh(t)=kyn Y. fPVX,)(AX;)HH (4.4.5)
=0 n

The term R,, converges to zero in probability, uniformly in compact sets. Indeed, for

every T,K, € > 0, we can write

|nT|—1
j=0

S~

1
P| sup [R,(t)|>¢e| <P | sup |[C(X:,X;)|>—=|+P
0<t<T 5,t€[0,T] K

j1—s|<%

(4.4.6)

Since AX; is a centered Gaussian variable, by (4.5.2), for all even integer r
n

sup E HAXl
1<j<|nT|~1 "

r}g(r—m! sup ]EUAX,-
1<j<|nT] -1 "

275 o
] <C(r—1)!n" 72,

where (r— 1)!! denotes the double factorial (r —1)!! = H,r;(l)(r — 1 —2k). As a conse-

quence, using the Chebychev inequality and the condition o = ﬁ, we get

L C 7]
—Ke n

|nT|—1
]P[ Y (AX;)*? > Ke

n

C
< —. 4.4.7
<= (44.7)

j=0

The convergence to zero in probability, uniformly in compact sets, of R,(¢) is obtained

from (4.4.6) and (.4.7), by letting first n — oo, and then K — oo.
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The previous analysis shows that the term R,, appearing in right hand side (4.4.4)),
does not contribute to the limit as n goes to infinity, so the asymptotic behavior of
SY(f,t) is completely determined by Z%f: ,®%(1). The study of the stochastic process
Z%:g @ can be decomposed in the following steps: first, we reduce the problem of

proving Theorems [A.1.2] and [4.1.3] to the case where f is compactly supported, by

means of a localization argument. Then we prove that the processes CIDZ(I), with i =
¢,...,2¢ are tight in the Skorohod topology, and only contribute to the limit as n goes

to infinity, when h = £.

Finally, we determine the behavior of CIDfl by splitting into the cases o = T:ul and
o> ﬁ. In the case o > ﬁ, we show that del — 0 in probability, which proves
Theorem m For the case o = ﬁ, we use the small blocks-big blocks method-
ology (see [5] and [10]) and Theorem , to prove that CIJf, converges stably to

{Ky 000 J FPHD(X,)dY, }i>0, which proves Theorem

We start reducing the problem of proving Theorems [4.1.2| and 4.1.3] to the case

where f is compactly supported. Define the process Z = {Z },>¢, by
t
Z; = Ky 40y / D (X)) dy,. (4.4.8)
0

By (@#4.4), it suffices to show that for all f € €3+2(R), the following claims hold:

L If o = 57,

20
bl
(Y @()}z0 "3 {Ziz0  asn— oo, 4.4.9)
h={

in the topology of D[0, o).
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2. If a > #ﬂ, then for every t > 0

2/
Y () 50, asn— o, (4.4.10)
h=/

Notice that the convergences (4.4.9) and (4.4.10) hold, provided that:

_ 1
1. fa= 201> then,

a) Forevery h=/(,...,2/, the sequence ®” is tight in D[0, o).
b) The finite dimensional distributions of ®f, converge stably to those of Z.

c) Forevery h=/{+1,...,2¢ and ¢ > 0, the sequence ®/(¢) converges to zero

in probability.

2. Ifa> ﬁ, then @/ (1) converges to zero in probability for every h = £, ...,2/

and r > 0.
In turn, these conditions are a consequence of the following claims:

(i) Forevery €,T >0and h=/,...,2/, there is a compact set K C D[0, T], such that

supP [CIDZ € K‘} <E.

n>1

(ii) Forevery €,6 >0,t >0and h=/¢+1,...,2/, there exists N € N, such that for

everyn > N,
P Hcpz(t)) > 5} <e.

(iii) Lete>0and0<# <--- <ty <T befixed. If ¢ = ﬁ, then for every compactly

supported function ¢ € €' (R?,R), and every event B € ¢(X), there exists N € N,
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such that for n > N,

)]E [(q)(d)fl(tl),...,cl)fl(td)) —¢(z,l,...,z,d))113] ‘ <e. 44.11)

1. fa > ﬁ then for every €,6 > 0,7 > 0 there exists N € N, such that for every

n>N,
PHcpﬁ(t)) >5| <e.

Recall that ®" depends on f via (#.4.5). We claim that it suffices to show conditions
(1)-(iv) for f compactly supported. Suppose that (i)-(iv) hold for every function in
€3+2(R) with compact support, and take a general element g € €3+2(R). Fix L > 1
and let g7 : R — R be a compactly supported function, with derivatives up to order
8¢+ 2, such that g, (x) = g(x) for every x € [—L, L], and define the processes )™~ =
(B () 0, h=1,...,20 and ZE = {ZL},5, by

[nt|—1

e 2h+1) , S
St =k, Y @YX (AX) P
=0

S~

and
~ P21
ZtL: KV,ZGE/O g(L " )(Xv)de

Fix T > 0 and define as well the events Az 7 = {supy<,<7 |Xs| < L}. Then, for every

€ > 0, there exists a compact set K C D[0, 7] such that forall h =¢,...,2/¢

supP [&:ZvL e K,f] <= 4.4.12)

n>1

[\
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) ~hlL .
Since CIDZ =&, inAr 7, we have

P [cpﬁ e Kg] < P [qnﬁ € KE,ALI} +P[AS ] =P [E)Z7L € KE,AL,T} +P A ]

IN

€
> +P[Af 7] <E€,

if L is large enough. This proves property (i) for g.

Given t € [0,T], for every € > 0O there exists a constant N > 0, such that for every

n> Ny and forevery h=/0+1,...,2¢,

supP Hcﬁﬁv%)) > 5} < g 4.4.13)

n>1
Again, this implies that
P HCI)Z(t)’ >8] <P Hcpz(t)( >8,41r| + P4 1] =P H&:’;L(z)( > 8,ALr | +P [A ]

€
2

IN

+P[A] 7] <&,

if L is large enough, which proves property (ii) for g.
Moreover, if o@ = ﬁ, then for every 0 <1, <.-- <t; <T there exists My € N,

such that for all n > M,

B[ 0@LH (1), B 1a) = 0 (2 ZE)) Lo

€
bl 4.4.14
< > ( )
and ifr € [0,T] and o > ﬁ, there exists Ry € N, such that for all n > Ry,
~ €
supP HCI)ﬁ’L(t)’ > 5] <. (4.4.15)

n>1
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Similarly, we have

B[O} 01), @ (1)~ 62y Z)La]|

< |E[(0@H(01), oo B (1) — 9(ZE . ZE) gy || 42 sup [6(0)| P [AG ]
x€Rd
< > +25up [9(x)| P47 1]
xR
and
H@h ‘>5] < ]P’Hd)ﬁ(t)‘>5,AL7T}+IP’[A27T}:PHCBZ’L(t)‘>5,AL]+P[A27T}
< §+P[AE7T}.

Taking L large enough we conclude that properties (iii) and (iv) hold for g.

Therefore, we can assume without loss of generality that f has compact support.
Relations (i), (i1) and (iv), for f compactly supported follow from Lemma@4.4.1] while
relation (iii) follows from Lemma [4.4.2l Modulo these two lemmas, which we state

below, the proof of Theorem 4.1.2]is now complete.

Lemma 4.4.1. Assume that o > 5~ +] Consider the process ®, h=(,...,2( defined

in ), for f € €3 +2(R) with compact support. Then,

1. The sequence of processes {®"},~1, is tight in D[0,), forh=1(,...,2(.
2. Ifh> L +1, then ®" 50, in the topology of D[0,00), as n — oo.

3. Ifa> Mlﬁ, then CI>£ LN 0, in the topology of D[0,0), as n — co.
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Proof. Fix h, £ <h <2(. Asin Section[d.3} co, . ..,cn, Will denote the coefficients of

the Hermite expansion of x***1, namely,

2h+1

ZcuhHZ h—u)+1(X)-
u=0

Then, we can write

2+1 ®2(h—u
AXlﬂL h AXi a ( )+
n n n
271 ZcuhHZh u) E; Zcuh5 2(h—u)+1
i u=0 S u=0 jn

To prove the result, we use the above relation to write the process ®” as a sum of

multiple Skorohod integrals plus a remainder term that converges uniformly to zero on

compact intervals. Indeed, we can write, for h = /¢

24,

th Z Zcu 2h+1( 1)62h+1 2u(a®2h+1 214)
n

n

Hence, applying Lemma|1.2.1

with F = f@h+1)(x;

=~

). q= 2h—|—1—2uandu_a®2h+l ~u
we obtain

2h+1-2u

2h+1-2
= Kv.n Z Z ( * , u) Cu,h®Z,r(t)7

where the random variable @” (), for h =/

(4.4.16)

., 20 fixed, is defined by

|nt]—1

G)Z,r(t) _ 62h+1—2u—r< Z é (2h+1+r) (

3\\.

)af§2h+l —2u— r<8”an>;>'

189



By [@#.4.16), we can decompose the process ®/ (1), as
@y (1) = (1) +Ra(0), (44.17)
where

h 2h—2u
2h+1—
W-xuY T ( )th@Z,r(Z)a (4.4.18)

and
|nt|—1

. 2h+1-2u
_thzcuh Z ]n (4h+2_2u)(Xﬁ)<8178 >5§ .

. n
J:

Therefore, to prove the lemma, it suffices to show the following four claims:

(a) The process R = {R/(t)};>0 converges uniformly to zero in L!(€) on compact

intervals, namely, for each T > 0,

E

sup
1€[0,T]

n(t)’] 0

(b) The process W/ = {W/(1)};>¢ is tight in D[0, o) for all £ < h < 2/.
(c) The process ¥ = {¥"(¢)},>0 converges to zero in D[0, o) for £+ 1 < h < 2/.

d If a > ﬁ, then the process W = {¥!(¢)},>0 converges to zero in probability

in D[0, ).
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Proof of claim (a): Using inequality (4.5.2)), as well as the fact that f has compact

support, we deduce that

h [nT]-1 N )
E sup RZ(Z)‘ SCZ EHf(4h+2—2u)(Xl)i| JZ,,:I <,§l7al> ‘2h+1 2u
ZE[OJ‘} u=0 j=0 n n nl $
b L 2h+1-2u
<ot T o),
L Ll

Hence, by inequality (4.5.6), there exists a constant C > 0, such that

h
E sup RZ’m(l‘)‘ <C Z n—au—4l3(h—u)
t€[0,T] u=0
h—1
=C(n "+ Y 0Py < O 4 hn~P),  (4.4.19)
u=0

which implies that sup; (o ] R converges to zero in L'(Q), as required.

Proof of claims (b), (c) and (d): Since h > ¢ and o > (2¢+1)~!, by the ‘Billingsley
criterion’ (see [4, Theorem 13.5]), it suffices to show that for every 0 <s <t < T, and

p > 2, there exists a constant C > 0, such that

)4
2

|nt| — |ns|

n

(4.4.20)

n

B (i) - wh(s)| '] < cnt-a@ieD)

Indeed, relation (4.4.20) implies that

P
2

|nt| — |ns|

n

Y

E[|wh) —‘I’Z(s)‘p] <c

so that P is tight. Moreover, if £+ 1 > hor o > ﬁ, then E D‘I‘Z(t) —Ph(w) ]p] —0

as n — oo, which implies conditions (c) and (d).
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To prove (4.4.20) we proceed as follows. By (4.4.18), there exists a constant C > 0,

only depending on 4, v and 7, such that

Hl}f’,;(t) — () 4.4.21)

<C " (1)—0"
ey =€ 2%, @5 (1) — O} ,(s)
0<r<2h—2u

lire)

For 0 <u < h and 0 < r < 2h—2u, define the constant w =2h+1—2u—r > 1. By
Meyer’s inequality (1.2.2), we have the following bound for the L”-norm appearing in
the right-hand side of (#.4.21).

107,(1) = % ()| 1y

nt|—1 , 2
( Z g (2h+14r) ( i)al@@w <§laal> )
Jj=|ns] "o noonl 8 Q)
wo|| L] -1 -2
SCZ Z 12% (2h+14+r+i) (7 (X l)a®w®8®l<£laal> 4.4.22)
i=0 Il j=|ns] "oon no N IS [ Lp(Qe@ i)
2

|nt|—1

Z g (2h+1+r+i) ( )a®w ® 8®l <8J , aj >;

Lns n n n n

o}

i=0

HO(w+i) Lg @)
From the previous relation, it follows that there exists a constant C > 0, such that

w |_ntJ—1

H®Z,r(t)_®;l,r(s)Hip(Q) < CZ Z é 2h+1+r+l)(Xl)f(2h+l+r+i)(j(vk)
i=0 1l j k=ns| ! "
<(9:9), <5/;’5:z>5 (Bp9), (B101), | a9

Since f has compact support, by applying Minkowski inequality and Cauchy-Schwarz
inequality in (4.4.23)), we deduce that

|nr|—1

HGZ,V(I)_@ZJ(S)Hip( <CZ Z §2u+r§2u+r

i=0 j.k=|ns|

i+r i+r

)

€k

n
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From here, using the Cauchy Schwarz inequality, it follows that

<af;’aﬁ>g‘w
<8i’8ﬁ>5§"

|nr|—1

[CHORCHRO] ATl Wt
Jisk=|ns]

2h £2h
SC. Z gj,n k,n

Consequently, we get

|nt|—|ns|]—1|nt|—1—x

1€, =05, ()| <€ X Y GhEt
Lr()
=0 j=ns)

(91.00) | @a29)

Then the estimate (4.4.20)) will follow from

éZh 2h
Jj,noj+x,n

<8f,8m>5‘ < Cp~ ¥t =10 (4.4.25)
for some 6 > 0 and for all x > 3 and |ns| < j < |nt| —1. Set
G ) = ETNET el (5.0 ) |

By considering the cases j =0, j >x+2and 1 < j <x+2, for x > 3, we obtain the

following bounds:

Case j = 0: Using (4.1.3)) and 4.5.2), we get

G(0,x) < Cn~ C" 2B (x 4 1) —  (x)]

< Cn_a(2h+l)x_v.
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Case j > x+2: Using (4.5.3)), we deduce that for every j > x—2,

6(j,x) < Cn—2ﬁ(2h+1)j(2ﬁ—a)(h+1)(j+x)(2/3—a)h+a—2

< Cp 2B j2B-a) (1) (4 ) (2B o2

S Cn—Zﬁ(Zh—H)(j+X)(2ﬁ—a)(2h+1)xa—2 — Cn—a(Zh—H)xa—Z.

Case j < x+2: Using (4.5.4), we deduce that for all j <x—2,

/G\(j,x) S Cn—Zﬁ(2h+1)](2ﬁ—a)h+2ﬁ+v—2(]_’_x)(Zﬁ—oc)h—v.
If v>2—«, then
D—a—V

G+x) Y =(+x)*2(+x)* Y <x%72j

and thus, by (4.4.26)),

G(j,x) < Cn—2B(2h+1)j(2B—a)(h+l)(j+x)(2ﬁ—a)hxa—2 < Cp@ht1) o2,

On the other hand, if v <2 — «, then by (4.4.26),

G(j,x) < Cn—zﬁ(Zh—i—l)j(zﬁ—a)h—i—ZB—a(j+x>(2ﬁ—a)h—v
< Cn—2ﬁ(2h+l)j(2ﬁ—a)(h+l)(j+x)(2ﬁ—a)hx—v

< Cn—a(2h+1)x—v‘

The proof of the lemma is now complete.

(4.4.26)

(4.4.27)

(4.4.28)

]

Lemma 4.4.2. Assume that o« = ﬁ andlet0 <t <--- <t; <T be fixed. Define CI>£

and Z by (4.4.5) and (4.4.8)) respectively, for some function f with compact support.
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Then,

stably

(Ph(11),.. DY) = (Ziy,- . Z1y). (4.4.29)

Proof. We follow the small blocks-big blocks methodology (see [S] and [10]). Let

2 < p < n. For k > 0, define the set

I={je{o,.. LntJ—l}I <! k“}

The basic idea of the proof of (@.4.29), consists on approximating (®%(¢(),..., P (ty))

by the random vector (EIv)n,p(tl), e ,5n7p(td)), where

= Ky Z Z f 2€+1 ﬁ)Z(-H

k=0 jel

By Proposition @.1.1] for every .#-measurable and bounded random variable 7, the

vector (&, »(t1), ... ,CIDnJ,(td), 1) converges in law, as n tends to infinity, to the vector
(E,-.-,29, 1), where
. Lpti]
B =Kye0r Y FED(Xe) (Vi — Vi), fori=1,...,d.
=0 Z 2 [z

1

In turn, when p — oo, the random vector (E pre

. ,Eg, M) converges in probability to a
random vector with the same law as (Z;,...,Z;,,n), which implies (4.4.29), provided

that

=0. (4.4.30)

lim limsupz HCIDE t) — an () L@

p%oo n—oo

i=
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Indeed, if (4.4.30) holds, then for all g : R4+! s R differentiable with compact support,

and every p > 1,

limsup |E |g(®}(11),...., @ (ta), 1) = &(Zs . Z2M)] |

n—yoo

< timsup B [g(@}(11),.... ®4(00), 1) — 8@ p(t1),- .. Buplta). )|

n—oo
+11m_;€,up E [g(&)n,p(tl)u s 7€ISI’l,p(td)7n) _g(Ztl7' . 7Zld7n)i| ‘
= timsup |E [g(® (11)..... @} (1a). 1) ~ 8(Pup(11).....Bup(1a). )|

+ ‘IE [g(zg,,...,zg,n) —g(Z,l,...,th,T[)] ‘

Then, taking p — oo, we get

lim [E [(®) ().} ta). 1) ~Elg(zy- ., Zesm)]| = 0,

n—yoo

as required.

In order to prove (4.4.30) we proceed as follows. Following the proof of (4.4.16)),

we can show that

€ 2041-2u [ 204+ 1—2u
Dt =re Y Y Cu @) (1), (4.4.31)
u=0 r=0 4
- 0 2041-2u [ 2041 —2u -
Dup(ti) =KoY, Y Cu @ (1), (4.4.32)
u=0 r=0 r
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where @, ,(7) and @)Zf(t) are defined, for0 <u < /and 0 < r <2/+1—2u, by

Lpti] r
®Z,r(t) _ 62€+1—2u—r( Z Z g 2€+1+r )a®2€+1 —2u— r<€l,81> ),
k=0 jel n n neon
~ Lpti] r
@Zif(l) _ 52€+1—2u—r( Z Z g 2€+H—r )al®2€+1—2u—r <£k7al> )
k=0 jEI L L

In view of (4.4.31)) and (4.4.32)), relation (4.4.30) holds true, provided that we show that

forevery t >0

=0. (4.4.33)

lim limsup HG)Z,,(r) ~0.0)|, @

p_>°° n—oo

We divide the proof of (¢4.4.33)) in several steps.

Step 1. First we prove (4.4.33) in the case r = 2+ 1 — 2u. To this end, it suffices to

show that for every p fixed,

204+1-2
lim Z IR A (Xk)<£kaal > ' =0, (4.4.34)
n—oo P ) " 5’)
k=0 jel} LZ(Q)
and
- 20+1—-2u
lim Z ) RS A (Xl)<€1,81> = 0. (4.4.35)
n—yeo n n nl %
=0jel; LZ(Q)

Relation (#.4.35)) was already proved in Lemma.4.T| (see inequality (4.4.19)). In order

to prove (4.4.34) we proceed as follows. Since f has compact support, there exists a
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constant C > 0, such that for every u = 0,..., ¢, we have

>2€+ 1-2u

(40+2— 2u( k)<£
p

k=0 jel

Lpt] 204+1-2u

L2(Q)
<C 5 &k,
LT (o),

k 25@‘“) Lpt |
g

p k=0 jel,

ACRAN

where the last inequality follows from Cauchy-Schwarz inequality and (4.0.2). There-

9

fore, by relation (4.5.2) there exist a constant Cy , > 0, such that

>2€+ 1—2u

(40+2—-2u) (X )<£k,a]
P

n

k=0 jel H 12 (Q)

Lpt] 2B
= Gt MZ 3 (p)

=1 j&l

Using the decomposition (@.1.1) we get

o(520)-o (%) < (S -) - ()]
() v (2)]

(G+Dp  N\* [(ir v P
A_( nk ! nk ! +ig€‘W(x)|nk'

The sum in j € I; of this expression is bounded by a constant not depending on n

IN

because the first term produces a telescopic sum and the second term is bounded by a

constant times 1/n. This completes the proof of the convergence (4.4.34).
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Step 2. Next we show (4.4.33) for 0 < r < 2/ —2u. To this end, define the variables
Fk”]I’r — f(2€+1+r) (j(’l) <gl’al> _f(2€+1+r) (X%) <8%,8l> .

We aim to show that for every u =0,...,¢, and 0 < r < 2¢ —2u,

lim limsup ||§>! -2~ (Z Y EnE, }Pra?”“ e ) =0. (4436
p—° n—o0 Ojelk LZ(Q)
Define w = 20 + 1 —2u — r. By Meyer’s inequality (1.2.2)), we have
Lpt] oy <5 2
l/l P w
Z Z Jon k,] raJ
0]61]( LZ(Q)
W 2
< CZ Z Y ED'ET a5
k=0 jEl " L2(Q; 58 (w+i))
w o Lpt] (4.4.37)
_ 2u i n,p a a w
_CZ Z Z 5]ln JZnE |:< k] J17r,DFk2’j27r>fJ®l:| < J1 Q> ‘
i=0ky,kr=0 j1 E[kl n nl$
J2€l,

By the Cauchy-Schwarz inequality, we have

n

<8 it s 8j2> ‘ < &;, #&j,.n, and hence,
QO 5

< (5]17115]2 n)zg u=r <811 aj >55

n

)

Y

=|
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which, by (4.4.37), implies that

Lpt] 2
Z Z gZu n.p a®q
], k T J
k=0 jel; L2(Q)
v, 2 20 20 i i
—rg20—r || i pop igpn.p -
<Z Z Z jin Sian [Py 12(Q.5%7) ‘D Fe o 12(Q.9%) <8]n1’8],%>55

=0k kr= Ojlelkl

J2€l,
S 2] 20 20
E max ||D'F"? E E SETESTT N (D, 0
k DT || 200 600 Jin Pjasn 1,9 ’
J)Enp Q9 l)k17k2:0j161k1 7 o

J2€l,

(4.4.38)

where J,, , denotes the set of indices
Jnp={(k,j) eN|0<k<|pt|+1 and
We can easily check that

Fkrffr _ f(ZZ—O—H-r) ()?l) <E;®r _ 8£®r’ at]&r>
n Hor

n P n

i <f(2£+1+r)(§£) _f(2£+1+r)(X )> <€g7(91>r ’

and hence, we have

; 20+1 j
DFk jp}’ _f( +1+r4i) (X

S~

)s®’ <e®r e’ 8®’>

) (8®1 ) <8k, ;
+ <f(2€+l+r+i) (5(']) _f(2€+1+r+i) (X )) 8;®i<££ 9
) p

n

)y

Sk
S ~.
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From the previous equality, and the compact support condition of f, we deduce that

there exists a constant C > 0, such that

| 1D
Ry,

L2(Q,5%)

<C

gy +C

~0i  ®i
€, —&

n n P

oQr Xr AKr
, <81 —&.",0; >
Y)®’ n )4 n ﬁ@r

+ Hf(ZE—O—l—i-r—O—i) (yﬁ> _f(2€+1+r+i) (Xk)

p

e
P

L(Q)

and hence,

i r

€

n

>Qr Kr
8] —8k

d;

n

(4.4.39)

i ;7P
|oEzy,

<c|

L2(Q,9%7) 9| =z b 9

H%r

r r

+C Ex

p

=i ®i
€ —&

d;

n P 9 )

57J®i
I H f(2€+1+r+i) ()?1) _ f(2€+1+r+i) (Xy)

n P

r+i r

0i

A
n

73
p

‘LZ(Q)‘ b 9

Using the Cauchy-Schwarz inequality, as well as (4.0.2)), we have that for every y € N,

Y > 1, there exists a constant C > 0 such that

€, —¢&, g‘sl—sk ‘sl Ex gC‘sl—sk
n p|lger n rllg i » 11 Py n P16

As a consequence, by (4.4.39), there exists a constant C > 0 such that

DiF"P
H k7.]7r L2(Q7ﬁ®i)
<cer, ( [ —ec| +|reetemi®,) - peteteix,) )
’ n Pl§ n P LZ(Q)
1 1
2 2|
<cer, (E sup |%—X,| | 4E | sup |fREITEI(g) - Rl () )

1
|l—S|S7)
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From the previous inequality, we deduce that the function

q

—2r i
=supeg max ||D'F"P
Op nzlzéj,n Ez)(w)ew ki || 2 (o)
satisfies lim;, ;.. O, = 0. Hence, by (4.5.2) and (4.4.38),
TN I 2 Lpt]
u )
(L Eemno)|  <co, ¥ T ggh|(0.0;),]
k=0 jel LZ(Q) k17k2:Ojl€Ikl 9
J2€lk,
Lnt
:CQP Z 11n 12n <a’178’2> ‘
i,i2=0

|nt|—1|nt]—

SCQP Z Z 5]}’[ J+xn

x=0

(095, |

(4.4.40)

Using the previous inequality, as well as (4.4.25]), we deduce that

2

<CtQ, Z 2R (1 447170 (4.4.41)
L2(Q)

(z ¥ ey a)

0j€el;

for some & > 0. Since, o =

Relation (#.4.36) then follows from (4.4.42)) since lim,_..Q, = 0. The proof is now

ﬁ, relation (4.4.41) implies that

2
< CtQ,. (4.4.42)

0jel; LZ(Q)

(z ¥ e ;’185@‘1)

complete. [
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4.5 Appendix

The following lemmas are estimations on the covariances of increments of X. The proof
of these results relies on some technical lemmas proved by Nualart and Harnett in [20].

In what follows C is a generic constant depending only on the covariance of the process

X.

Lemma 4.5.1. Under (H.1), for 0 < s <t we have
E[(Xi4s— X)?] = 2008 =%5% g1 (1,5),

where |gy(t,s)| < Cst*P~1,

Proof. See [20, Lemma 3.1] and notice that the proof only uses that |y’| is bounded in

(1,2]. O

Remark 4.5.2. Notice that g\ (t,s) satisfies |g1(t,s)| < Cs*t*P~%, because o < 1 and

o < 2. Therefore, for any 0 < s < t, we obtain
E[(X+s — X)?] < Cs%?P~2,
With the notation of Section 2.3, this implies
Ern < Cn P PP 4.5.1)

On the other hand, we deduce that for every T > 0, there exists C > 0, which depends

on T and the covariance of X, such that

sup E [AXE] <Cn . 4.5.2)
0<t<|nT | "
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Lemma 4.5.3. Let j,k,n be integers withn > 6 and 1 < j < k. Under (H.1)-(H.2), we

have the following estimates:

(a) If j+3<k<2j+2, then

‘E [AXl AX%} < cn2B jPB-aya2, 4.5.3)

(b) If k > 2j+72, then

(E [AX ; AXS} < Cn2B jPBHv=2 v, 4.5.4)

Proof. We have

E [AX%AX%} =n P (j+1)% ((P (];i—D —¢ (]%D
o5 5)
= 2P ((j+1)% - ) (¢’ (lji—b ¢ (J%))
oG ) ()]

We first show (4.5.3)). Condition j+ 3 < k <2j+ 2 implies that the interval [Hil, k*j’—l]

is included in the interval [1,5]. Therefore, using (4.1.2) and (4.1.3), we deduce that

there exists a constant C > 0 such that for all x € [h%, %} ,
|6 ()] < Ck/ ™.

and

19" (x)| < Clk/j)* 2.

204



The estimate (4.5.3]) follows easily from the Mean Value Theorem.
On the other hand k > 2j 42 implies that the interval [J%, kj—'} is included in
the interval [2,00]. Therefore, using (4.1.2)) and (4.1.3), we deduce that there exists a

constant C > 0 such that for all x € [j%, ]%1} ,

o' (x)| < C(k/j)~.

and

9" (x)| < Ck/j)~"

Therefore, estimate (4.5.4) follows easily from the Mean Value Theorem. The proof of

the lemma is now complete. O

Last, we have two technical results that have been used in the proofs of Theorems

4.1.2)and 4.1.3| For a fixed integer n and nonnegative real #1,,, note that the notation

of Section[4.2] gives
E[AX, AXy | = <9n,3fz>ﬁ-

Lemma 4.5.1. Assume X satisfies (H.1) and (H.2). Then for any integer n > 2 and real
T > 0, there is a constant C is a constant which depends on T and the covariance of X,
such that
|nT |1
sup Y ‘<al,ak> )gc:n*“. 4.5.5)
0<k<|nT|-1 j=0 n nl$

Proof. In view of the estimate (4.5.2), we can assume thatn > 6 and 4 < j+3 <k or

4 <k+3<j.If4 < j+3 <k, from the estimates (4.5.3) and {#.5.4), we deduce

(9s.00) | <cn P2,
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Summing in the index j we get the desired result, because 2 —1 < 0 and 23 > «. On

the other hand, if 4 < k+3 < j <2k+2, the estimates ({.5.3)) yields

)<a]_,ak>ﬁ‘ < CanBk2ﬁfaj(x72 < Cnfozjafz’

n

which gives the desired estimate. Finally, if 4 < k+ 3 and 2k + 2 < j, the estimate

@54 yields

‘<a£’aﬁ>5‘ < Cn 2P HV2 v,

If a +v —2 <0, then summing the above estimate in j we obtain the bound

Cn—zﬁkzﬁ—a+(a+v—2) <Cn“.

On the other hand, if o + v —2 > 0, then

o+v-2
Cn—zﬁk2[3+v—2j—v < Cn—zﬁkzﬁ—a (E) ja—z < Cn—aja—z
J

and summing in j we get the desired bound. [

Lemma 4.5.4. Assume that 0 < oo < 1 and let n > 1 be an integer. Then, for every

reNandT >0,

L ,
< cp 2B, (4.5.6)

nT|—1 N
L [(%2),
Proof. By (@.0.2),

(3,:8), = 3B [~ X1 +X))] = 5B [ X3 | =00,

n n
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where

- (2"

We can easily show that ¥, (j) < Cn~2B, and hence,

|nT|—1

Y [(0,2),] =o0r L W, () < Cn B

j=0 noon j=0 j=

r nT|—1

Since the right-hand side of the last inequality is a telescopic sum, we get

LnTZ“ ‘<a,.,g,->5 "< cn 20 (@)m .

=0 n n n

Relation follows from the previous inequality.

207

Yu(J)-
0



Chapter 5

Collision of eigenvalues for matrix-valued processes.

5.1 Introduction

For r € N fixed, consider a centered Gaussian random field § = {&(¢);r € R’_}, defined

in a probability space (Q,.7,P), with covariance function given by

E[E(s)E(1)] =R(s,1),

for some non-negative definite function R : (RQ_)Z — R. Let {& ;,mij;i,j € N}, bea
family of independent copies of &. For § € {1,2} and d € N, with d > 2 fixed, consider

the matrix-valued process XB = {Xﬁ j(t);t eR’, 1<i,j<d}, defined by

&ij(t) +ilg_oymi ;(r) if i<
XPA6) =S (Lpory VE+ Do) )it +iL gy miae) i i= j (5.1.1)
Gi,j(t) —ilig—oymi ;(t) if j<i.

In accordance to the type of symmetry of X B (1), we will refer to X' and X? as the

Gaussian orthogonal ensemble process (GOE) and Gaussian unitary ensemble process
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(GUE), respectively. Let AP be a fixed Hermitian deterministic matrix, such that AP

has real entries in the case B = 1, and complex entries in the case f§ = 2.

Consider the set of the ordered eigenvalues llﬁ (t)>-> 15 (t) of
YP(t) :=AP +XP(r). (5.1.2)

The purpose of this paper is to determine necessary and sufficient conditions under
which, with probability one, we have llﬁ (1) > > lf (t) for all 7 belonging to a suit-

able rectangle of R/, .

The matrix-valued process Y8 was first studied by Dyson for f = r = 1, in the case
where & is a standard Brownian. In particular, he proved that the processes lll, . ,Ag}
satisfy a system of stochastic differential equations with non-smooth diffusion coeffi-
cients, as well as the non-collision property

P[4} (t) = A} (t) forsome t>0and 1 <i< j<n]=0. (5.1.3)

For a more recent treatment of these results, see [2, Section 4.3].

Afterwards, Nualart and Pérez-Abreu used Young’s theory of integration, to prove
that in the case where = r = 1 and & is a Gaussian process with Holder continuous
parths larger than %, relation (5.1.3) holds. This result can be applied to the case where
X! is a fractional Brownian matrix with Hurst parameter % < H < 1. Namely, when
& ={&(¢);t > 0} is centered Gaussian processes with covariance

1
(P 4 20— 5. (5.1.4)

R(s,t) = 2(

209



In this manuscript we prove, among other things, that the results presented in [45] are
sharp, in the sense that for H < 1/2, the eigenvalues A/, ... ,lc} collide with positive
probability, and with probability one if A! = 0. We also give an alternative proof of the
results obtained by Nualart and Pérez-Abreu in [45]. On the other hand, we obtain the
surprising results that for the fractional Hermitian matrix X2, the eigenvalues 2,12, . ,),j
do not collide when H > % and collide with positive probability (or with probability one
if A2 = 0), when H < % The case H = % cannot be handled with the techniques used

in this paper and remains an open problem.

When y(s,7) is of the form (5.1.4)) and B = 1, the non-collision property is of great
interest, since it is a necessary condition for characterizing (A/,...,A}) as the unique
solution of a Young integral equation (in the case where H > %), or as an Itd stochastic
differential equation (in the case H = %). We refer the reader to [2] and [46] for a proof

of such characterizations.

The goal of this manuscript is to investigate the probability of collision of the eigen-
values llﬁ b ,/”Lf , for & belonging to a class of processes that includes the complex
Hermitian and real symmmetric fractional Brownian motion of Hurst parameter H # %
The proofs of our main results are based on estimations of hitting probabilities for
Gaussian processes, as well as some geometric properties of the set of degenerate ma-
trices. This approach is different from the methodology used in [45] and [2], where the

process (All b ,/'LC}) is studied by means of stochastic integral techniques.

5.2 Main results

As mentioned before, the ideas presented in this manuscript rely heavily on the the

hitting probability estimations presented in [3]]. In order to apply such results, we will
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assume that the there exists a multiparameter index (Hy,...,H,) € (0,1)", and an inter-

val

.
I=1a,b] := [[la;,b;] C R, (5.2.1)
j=1

with a = (a1,...,a,),b = (by,...,b,) € R’ satisfying a; < b; for 1 <i < r, such that

the following technical conditions hold:

(H1) There exist strictly positive and finite constants ¢ 1, ¢2 2 and ¢ 3 such that E [& (1)?]

¢ forallz € I and

CZZZ‘SJ_IJ} Y <E[(&( —é(l))2}362,3i15j—’j‘m’

J=1

for s,¢ € I of the form s = (sy,...,s,) and t = (t1,...,t).

(H2) There exists a constant c¢; 4 > 0 such that for all s = (s1,...,s,),t = (t1,...,t,) €1,

Var £ () | £(5)) = e24 Y |sj— 1"

j=1

where Var [£(¢) | £(s)] denotes the conditional variance of £ (¢) given & (s).

The collection of random fields satisfying conditions (H1) and (H2) includes, among
others, the fractional Brownian sheet and the solutions to the stochastic heat equation
driven by space-time white noise. Our main results are Theorem and Corollary

[5.2.2]below. The proofs will be presented in Section[5.5]

Theorem 5.2.1. Define Q := ZJ | H Then, for B = 1,2, we have the following results:

211

v



(i) IfQ<B+1,

P[)Lf(z) = 2P(t) forsome t €land1<i< j<n|=0. (5.2.2)

(i) fQ>Pp+1,

P (2l (1) =20 (1) forsome 1€1and 1 <i< j<n| >0, (5.2.3)

In particular, when & is a one-parameter fractional Brownian motion with Hurst

parameter H € (0, 1), we obtain the following result.

Corollary 5.2.2. If § = {&(¢);t > 0} is a fractional Brownian motion with Hurst pa-

rameter 0 < H < 1 and I = [a,b], where 0 < a < b. we have the following results:

(i) Ifﬁ <H<I,

P [?LiB (1) = lf (t) forsome t €land 1 <i,j<n|=0. (5.2.4)

(ii) If0<H < 15,
P [llp (1) = lf (t) forsome t €land 1 <i,j<n| >0. (5.2.5)
Moreover, if either AP =0 or the spectrum ofA[i has cardinality d — 1, then

P (AL (1) = AP (1) forsome 1 >0and 1 <i,j<n|=1. (5.2.6)

Remark 5.2.3. Combining Corollary with [2| Section 4.3], we conclude that

the condition H > % is necessary and sufficient for the non-collision property of real
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symmetric fractional Brownian matrices. On the other hand, the critical value for the

collision property for the fractional GUE is H = % Nevertheless, our proof of Corollary

5.2.2|is not valid for the critical value H = ﬁ Thus, if B =2 and H = % the non-

collision property for llz, e ,lg is still an open problem.

The rest of the paper is organized as follows. Section 3 contains the results from
hitting probabilities for Gaussian fields that we will use throughout the paper. In Section
4, we describe some geometric properties of the set of degenerate Hermitian matrices
of dimension d; namely, the Hermitian matrices with at least one repeated eigenvalue.

Finally, in Section 5 we prove Theorem and Corollary

5.3 Hitting probabilities

In this section we present some results on hitting probabilities for Gaussian fields and
their relation to the capacity and Hausdorff dimension of Borel sets. We will closely
follow the work by Biermé, Lacaux and Xiao presented in [3], and we refer the inter-

ested reader to [3, 56, 57 for a detailed treatment of the theory of hitting probabilities.

Forne N, letW = {(W;(t),...,Wy(t));t € R’_} be an n-dimensional Gaussian field,
whose entries are independent copies of £. In the sequel, for every g > 0 and any Borel
set F C R", ¢, (F) will denote the g-dimensional Hausdorff measure of F' and 6 (F)

will denote the Bessel-Riesz capacity of order @ of F', defined by

-1

6ut) = (,ant [ [ sallesbut@on@) . sa

peZ(

213



where &(F) is the family of probability measures supported in F and the function

fo : Ry — R, is defined by

r ¢ ifa>0,
fa(r):=1q log(:4) ifa=0, (5.3.2)
1 if o0 < 0.

Define as well the Hausdorff dimension dimg (F'), by
dimy (F) :=inf{g > 0 | 7 (F) = 0}.

We refer the reader to [14, 30] for basic properties of the Hausdorff measure and ca-
pacity of Borel sets. The following results, presented in [3, Theorem 2.1], will be used

to prove Theorem

Theorem 5.3.1 (Biermé, Lacaux and Xiao). Consider an interval I of the form (5.2.1)).

If F C R" is a Borel set, then there exist constants cy,cy > 0, such that
C1Gn—o(F) <P[W Y (F)NI£0] < x5, _o(F),

_ 1
where Q =Y, ot
As a consequence, we have the following result.

Corollary 5.3.2. Let F C R" be a Borel set. Then

1. If dimy (F) < n— Q, the set W~1(F) N1 is empty with probability one.

2. Ifdimy(F) > n— Q, the set W~ (F) N1 is non-empty with positive probability.
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5.4 Geometric properties of degenerate Hermitian ma-

trices

Let .#(d) and .7 (d) denote the set of real symmetric matrices and complex Hermitian

matrices, respectively. Define

d(d+1)/2 if B=1

Vlﬁ (d) =
d? if B=2.

In the sequel, we will identify an element x € R™ () with the unique £ = {X; j }1<i j<q €

for 1 <i< j<d. In asimilar way, we can

S (d) satistying £ j = X1, 0q_j)—atj»

identify an element x € R"2(4) with the unique £ € . (d) given by

o Xli(l42d—i)—d ifi=j
Xij =

Xli(142d—i)—d+j +ixn1(d)+%i(2d—i—1)—d+j ifi<j.
We will denote by ®;(x) the i-th largest eigenvalue of £. Notice that since (®;(x),...DPy(x))
are the ordered roots of the characteristic polynomial of £, it follows that ®;(x) is con-

tinuous over x forevery 1 <i<d.

Define the sets %’ifég and ,Vjeg by
A, = {x e R | d(x) = @;(x), forsome 1 <i< j<d}, (5.4.1)
T o= {x e R | @;(x) = ®j(x), forsome 1 <i< j<d}. (5.4.2)

We are interested in describing the size of the sets %Zg and .#% . The main results of

deg®
this section are Propositions[5.4.5][5.4.6] [5.4.7]and [5.4.8| which, roughly speaking, state
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that there exist measurable sets .7, .74 < R and 724, 7%, c R, satisfying

in’<” out in < “out
d d d d d d
‘5ﬂin - ydeg - y{)ut and ‘%’in - ‘}fdeg - ‘%)ut?

as well as the following properties:

1. #4 and 52 are manifolds of dimensions n;(d) — 2 and na(d) — 3, respectively.

2. 74

.« 1s the image of a smooth function defined in an open subset of R™ (4)=2 with

values in R () and ji’j,f is the image of a smooth function defined in an open

subset of R™(@)=3 with values in R™2(4).

In Section we will use these properties to show that yddeg and %Zg have Hausdorff
dimension n;(d) — 2 and ny(d) — 3 respectively, which will be an important ingredient
in the proof of Theorem Notice that after identifying the random matrix Y B (1)
defined in as a random vector with values in R"(%)| we have that

Alr) = /'L}(t) forsome t€land 1 <i< j<n}={r'(r)e Yfeg for some ¢ € I},

and

{A2(1) = ?LJ-Z(t) forsome t€land 1 <i< j<n}={Y*(r)e %ig for some t € I}.

Thus, in order to prove Theorem it suffices to study the hitting probability of
Y1) to Yj”eg and Y2(1) to %ig.
To prove the main results of this section, we will require the following terminology

from differential geometry. In the sequel, for every n € N, x € R” and 6 > 0, we will

denote by Bg(x) the open ball of radius d and center x. In addition, we will say that an
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R”"-valued function, defined over an open subset of R with m € N, is smooth, if it is

infinitely differentiable.

Definition 5.4.1. Let m,n € N be such that m < n. A set M C R" is a smooth sub-
manifold of R", with dimension m, if for every xo € M, there exists € > 0, an open

neighborhood of zero U C R™ and a smooth mapping
F:U—M,

satisfying F(0) = xo, as well as the following properties:

- F is a homeomorphism from U to M N Bg(xp).

- Forevery p € U, the derivative of F at p, denoted by DF),, is an injective mapping.
If such mapping F exists, we call it a local chart for M covering xy.

If M is a smooth submanifold of R”, we define its tangent plane at a given point
x € M, denoted by TM,, as the set of vectors of the form a’(0), where a: (—1,1) = M

is a smooth curve satisfying o(0) = x.

Let M and N be smooth manifolds. We say that f : M — N is smooth if for every
x € M and all charts F and G, covering x and f(x) respectively, the function G™'o fo F
is smooth. In this case, we can define the derivative of f at a given point x € M, as the
function Dfy : TMy — TNy(y), that maps every vector v € TM, of the form v = a/'(0),
to the vector Dfy(v) := 4 f(at(t))|i=o-

Let f : M — N be a smooth mapping between manifolds M, N C R". We say that a
point y € N is a regular value for f, if for all x € f~'{y}, the derivative Df, : TM, —

TNy is surjective. The following result allows us to identify the level curves of a smooth
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function, as smooth manifolds. Its proof can be found, for instance, in [S54, Theo-

rem 9.9].

Theorem 5.4.2 (Preimage theorem). Consider a smooth mapping f : M — N, where
M and N are smooth submanifolds of R" of dimensions my; and my respectively, with
my < my <n. Ify €N is a regular value for f, then f~'{y} is a smooth submanifold

of R" of dimension my; — my.

Along the paper we will denote by || - || the Euclidean norm on R" and by (-,-) the
corresponding inner product. We will use the same notation for the norm and inner

product in CV.

For d,h € N, let R?*" denote the set of real matrices of dimensions d x & and let I,

be the identity element of R4*d For every integer 0 < i < d, we define the sets
O(d;i) ;= {A e R A*a = 1,_;}, (5.4.3)

where A* is the transpose of A. In the case where i = 0, the set €'(d; i) is the orthogonal
group of dimension d, which will be denoted simply by &'(d) := €'(d;0). Using the

preimage theorem, we can show that &(d; i) is a submanifold of R?*(4—1) = Rd(d—i) f

dimension w. This result can be proved in the following manner. Consider

the mapping f : R4~ — (4 — i), defined by
fX):=X"X—1; ;.
Then, for every A € f -1 {0}, the derivative of f at A, denoted by D f, satisfies

DfsB=A"B+B*A,  forevery B € R4, (5.4.4)
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In particular, for every C € .¥(d — i), the matrix B := %AC satisfies D f4B = C, so that
Df, is surjective for every A € f~1{0}. Consequently, zero is a regular value for f,
and by the preimage theorem, &(d;i) = f~'{0} is a smooth submanifold of R¢* (¢~
of dimension dim(R4¢~)) — dim(.(d —i)) = w.

Similarly, for d,h € N we denote by C?*" the set of complex matrices of dimensions

d x h, and define
U (d;i):={A e C™E=D . A*A=1,_;}, (5.4.5)

where A* denotes the conjugate of the transpose of A. Proceeding as before, we can
show that % (d;i) is a smooth submanifold of C¢*(4—) = R24(d=1) of dimension d* —

i2. In particular, the unitary group % (d) := % (d;0) has dimension d°.
In the sequel, for every A € C?*" we will denote by A, j the j-th column of A,

where 1 < j < h. Next we will show the following technical result.

Lemma 5.4.1. For every R € % (d;2), there exists ¥ > 0, such that the set

VR ={A €U (d:2)NBy(R) : (Asj,Rsj) = |(Asj,Rej)| for 1< j<d—2},
(5.4.6)

is a (d* — d — 2)-dimensional submanifold of % (d;2) N By(R).

Proof. Consider the manifold

T2 .= {(®,... %) e C72: 6, ¢ [-n/2,7/2)}.
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We will prove that if ¥ > 0 is sufficiently small, the point 1:= (1,...,1) is a regular

value for the smooth function f : % (d;2) N By(R) — T2, defined by

= ([{Au 1, R )7 A1 R ) o [ {Aa—2, Ria—2) | (A a2, Ry 2)).
547

Notice that % (d;2) is a (d> — 4)-dimensional manifold. This implies, by Theorem

5.4.2| that the set ”//},R = f~{1} is a (d> — d — 2)-dimensional manifold. To check that

Tisa regular value for f, notice that the tangent plane to T¢~2 at 1, consists of the the
set of vectors ) € C4~2 of the form ) = (iny,...,ing_»), for n; € R. For such 1, there

exists 0 > 0, such that the mapping A : (—9,6) — %,R, given by
Ay j(1) = &VR; .

is a curve inside of % (d;2) N By(R), satisfying DfR(%f(A(t)) |t:0> = 1. This proves

that T is indeed a regular value of f. 0

The next lemma is a refinement of the well-known continuity property for the eigen-
projections of real symmetric matrices. In the sequel, Z(d) will denote the set of diag-
onal real matrices of dimension d. In addition, for every A € Ca%4 | the set Sp(A) will
denote the spectrum of A and for A € Sp(A), Eﬁ‘ will denote the eigenspace associated
to A. For every w',...w" € C¢, with h € N, we will denote by [w!,... ,w"] the element

of C¥*" whose j-th column is equal to w/ forall 1 < j < h.

Lemma 5.4.3. Let A be a d x d real symmetric matrix, with |Sp(A)| = d — 1, such that

A = PDP",
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for some P € O0(d) and D € 2(d). Then, for every € > 0 there exists d > 0, such that

forall B € Yjeg satisfying

max |A;j—Bij| <8, (5.4.8)
I<ij<d

there exists a spectral decomposition of the form B = QAQ*, where Q € 0(d) and

A € 2(d) satisfy

—Pj|<e 5.4.9
12‘32(1’@’] ij|l < ( )
and
max ‘Di,i_Ai,i‘ <E. (5.4.10)
1<i<d

Proof. The existence of a matrix A satisfying (5.4.10) follows from the continuity of ®,
so it suffices to prove (5.4.9). The idea for proving this relation is the following: first we
express the eigenprojections of the degenerate symmetric matrices lying within a small
neighborhood U around A, as matrix-valued Cauchy integrals. This representation al-
lows us to prove that the mapping that sends an element B € U, to the eigenprojection of
B over its i-th largest eigenvalue, is continuous with respect to the entries of B. Finally,
we will choose a set of eigenvectors for B by applying the (continuous) eigenprojections
of B to the eigenvectors of A. The matrix Q, with columns given by the renormalization

of such eigenvectors will then satisfy (5.4.9).

The detailed proof is as follows. Define A; := D; ; for 1 <i <d, and assume without

loss of generality that A; < --- < A;_; = A4. Using the fact that [Sp(A)| =d — 1, we
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get
M<h< <Ao<l =MN. (5.4.11)

Fori=1,...,d, let €, C C\Sp(A) be any smooth closed curve around %; and denote
by .# f{ the closure of the interior of ‘5{5. Assume that %Ad -1= %f and that the diameter

of ‘Ké is sufficiently small, so that .7, Al ey I ffl are disjoint. For 8 > 0, define the set

Vs := {B € yddeg ‘ 12?Xd’Ai’j_Bi’j} < 3}

Using (5.4.11)), as well as the continuity of ®y,...,®, and the fact that V5 C Yjeg, we

can easily show that there exists 6 > 0, such that for all B € Vy,
D (B) <Py(B) < <Dy »(B) < Py;_1(B) =Dy(B), (5.4.12)
and
®;(B) € .7 forall BEVs and 1<i<d. (5.4.13)
For such 8, define the mapping &} : Vs — .7 (d), by
K\ (B) :

: / (&1,—B)"1dE. (5.4.14)

2@ Jg

The matrix K/g (B) is the projection over the sum of the eigenspaces associated to eigen-

values of B inside of ﬂf{ (see [32], page 200, Theorem 6]). Thus, using (5.4.12)), (5.4.13))

and the fact that .7 S5 d=1 are disjoint, we conclude that k' (B) is the projection
A A ) A proj

over Egi(B), forall 1 <i<d.
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From (5.4.14), it follows that the mapping B — KA (B), defined on Vj, is a continu-

ous function of the entries of B. Let v!, ..., v denote the columns of P and define
. k! (B)v/
wl = /j— (5.4.15)
[, (B)V/|

for1 <j<d-—1and

o KB BV BV a
BV el (B I(B)Vdfluz'(f\ (B (5.4.16)

Since KX (B) is the projection over Eg,-(B)’ forall 1 < j <d and B € Vg, we can easily

check that w!, ..., w? are orthonormal eigenvectors for B. Thus, using the continuity of
Kf{ and the fact that &, (A)v/ =1/ for all 1 < j < d, we deduce that there exists 8’ > 0,

such that for all B € Vs, the vectors w', ..., w? given by (5.4.13)) and (5.4.16), form an

orthonormal base of eigenvectors for B satisfying

max vlj —w{ :
1<i,j<d
where
vVo=],...,v}), and w/=(wi],...w)).
Thus, the matrix Q = [w!, ..., w] satisfies B = QAQ* and (5.4.9), as required. O

The next result is the complex version of Lemma [5.4.3] where the sets . (d) and

0'(d) are replaced by ' (d) and % (d), respectively.
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Lemma 5.4.4. Let A be a d x d complex Hermitian matrix, with |Sp(A)| = d — 1, such

that
A = PDP*,

for some P € % (d) and D € 9(d). Then, for every € > 0, there exists § > 0 such that

forall B € %ig satisfying

max }Ai’j—BiJ’ <0,
1<i,j<d

there exist a spectral decomposition of the form B = QAQ*, where Q € % (d) and

A € 9(d) satisfy the relations

max ‘Q,-_j—PiJ‘ <& and max |D;; —A; ;| < €.
1<i,j<d '™ 1<i<d

Proof. It follows from arguments similar to those used in the proof of Lemma

]

Define the function A : R¢~! — 2(d), that maps the vector B = (Bi,...,Bs_1) €

R4~ to the matrix A(B) = {A;;(B);1 <i,j <d}, given by

5i’jﬁ,‘ if 1<i<d-2
Aiyj(ﬁ) = (5.4.17)
6i,jﬁd—1 if i=d-1,d.

In the next proposition, we bound from above the set Yje -
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d(d—1)

Proposition 5.4.5. There exists a compactly supported smooth functionT1: R~ 2 1 —
R4 such that the mapping F RYTY -1 RA-1 < (d), defined by
F(a,B) =I(a)A(f)I(a)", (5.4.18)
dd-h g d=1 o
fora e R™2 and B € R, satisfies
T C Sy = {xe R % e Im(F)}. (5.4.19)

d(d-1)

Proof. For € >0, define the interval J; := (—¢,€) ™ 2 ! First we reduce the problem,

. . . d(d—1)
to proving that there exist L € N and smooth functions IT!,... TIF: R 2~ — R9x4,

supported in Jg, such that the mappings F' : Jo x R4~ — .7(d), defined by
F(a, ) :=TI' (@) A(B)IT ()", (5.4.20)
for 1 <I<L,a€Jeand B € R satisfy
L
S CfxeRM@ ke | JIm(F')}. (5.4.21)
I=1

To show this reduction, notice that if (5.4.21)) holds, then any smooth function IT, sup-

ported in J3¢z, satisfying

d(d—1)

(x) :=1IT'(x—3le,0,...,0)) if xeBe(3le,0,....0)CcR 2 !

is such that the mapping (5.4.18)) satisfies (5.4.19).
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Therefore, it suffices to find IT!,... IT. The heuristics for constructing such func-

tions is the following: every matrix X € .74

deg AN be expressed in the form

X = PDP*,

with D € Z(d) and P € 0(d). Since X is degenerate, we have some flexibility for
choosing P, due to the fact that if X has eigenvalues Ui, ..., Uy, and t, = Uy 1, then
the eigenspaces EXJ,, with u; # uy,, completely determine Eﬁh. This allows us to con-
struct P by describing only the eigenvectors associated to Eﬁj, with u; # p,. We can
show that these spaces can be locally embedded into the set &'(d;2), which has di-
mension @ — 1. Then we extend such local embeddings to compactly supported
R?¥*4_yalued functions, and apply a compactness argument to obtain the existence of
... k.

The detailed construction is as follows. For each matrix R € '(d;2), we have
that R*R = I;_», and thus, the columns of R are orthonormal. As a consequence, by
completing {R*J, ... 7R*,d—2} to an orthonormal basis of R?, we can choose an element
Pe 0(d),suchthat P, j =R, jforall 1 < j<d—2. Since 0(d;2)is a smooth manifold
of dimension @ — 1, we have that if ¥ > 0 is sufficiently small, the set &(d;2) N
BY(R) can be parametrized with a chart ¢, defined on J¢, for some € > 0. Namely, the
mapping

¢ :Je — O(d;2)NBy(R)

is a diffeomorphism satisfying ¢(0) = R. Denote by ¢, ; the j-th column vector of ¢.

By construction, every matrix S € &'(d;2) of the form S = ¢(a), with o € J¢, satisfies
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HP*J — S*JH < yforall 1 <j<d-—2,and thus, for y sufficiently small,

d-2
||P*,d—l - Z <S*,j;P*,d—1>S*,jH —1
j=1
d-2 d-2 1
= 1Pea1= X (SejoPea—1) Sejl = 1Pea—1 = Y, (PejiPea—1) Pejll] < 3
j=1 j=1

As a consequence, ||Py 41 — Z;tf <(p*7j(a),P*7j> 0. (o) H is bounded away from zero

for all o € J¢, and hence, the mapping o — y;(a), with

B P*,dfl — 27;12 <(P*,j(a)ap*,d71> (P*,j(a)
|Pea—1 — ng;lz (@ j(@),Peg_1) @ j(0X) H

vi(a): (5.4.22)

is smooth. Proceeding similarly, we can show that for y sufficiently small, the mapping

o — (o), with

(5.4.23)

P (@) Pa) wi(@) — X577 (9s(@) Pra) 91, (a)
v (a) : 2
1

N |Pea — (w1 (e0), Pa) 1/’1(0‘)—2?; (@uj(0),Peg) 9. j(0)]|

. d(d-1) . .
is smooth as well. Let IT: R~z —! — R?*“ be any smooth function, supported in Je,

such that for all o € J; /2

o (o) if1<j<d-—2
IL (o)== yi(a) ifj=d—1 (5.4.24)

(o) if j=d.

By construction, IT has the property that

VE = {1 (a0),.... TL g2(@)] : @ € Je o} = @(Je2), (5.4.25)
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is an open subset of &'(d;2) containing R. Therefore, since 0'(d;2) is compact and
the collection of sets {VX : R € €0(d;2)} is an open cover for &(d;2), we deduce that
there exist L € N and smooth R?*?-valued functions IT', ... ,TT of the form (5.4.24),

supported in intervals of the form Jg,, with & > 0, such that the sets
Vi = {1 (@),...,IL, 4 (@) : & € Jg o},
satisfy
0(d;2)=VU---UVL. (5.4.26)

In the sequel, we will assume without loss of the generality that there exists € > 0, such
that g =¢eforalll=1,...,L.

By construction, the functions IT!, ... TTF are smooth and compactly supported, so

it suffices to show that

FheC |J {xeR@ ke m(F)},
1<I<L
where F!,... FL are defined by (5.4:20). To this end, take x € .%,, and let Q € O(d)
and A € 2(d) be such that £ = QAQ*. By permuting the diagonal of A and the
columns of Q if necessary, we can assume that Ay_; 41 = Az 4. Applying (5.4.26)

to [Q«.1,...,0xq-2] € O(d;2), we deduce that there exist 1 </ <L and & € Jg, such

that [Q*J,. e Q*,d—Z] = [HiJ(OC), . ,Hidiz(a)].
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Let A= A(B) for B € R4"!. To finish the proof, it suffices to show that £ =

IT' (o) A(B)IT () *. By construction,

{IL (@),....,TE y()}  an

o

{Q*,la' . '7Q*,d}

are orthonormal bases of R satisfying

{ka.,l (a)7 oo 7Hi<,d—2(a)} = {Q*,la SRR Q*,d—z}‘

1

Thus, span{IL. , | (@),I1, ;(a)} =span{Q. 41,0« 4}. In particular, span{IL, ,  (a),IT ()}
is contained in the eigenspace associated to Ay 41, Which implies that Hi J-1(a), Hi J(@)
are orthonormal eigenvectors of X with eigenvalue A;_; 4_1. From here we conclude

that {Il | (@),...,TT' (@)} is a basis of eigenvectors for £, hence implying that
2= (o) A(B)IT (a0)",

as required. [

In the next proposition, we bound from above the set %’jﬂe "

Proposition 5.4.6. There exists a compactly supported smooth function I: R¥—d-2

C4%4 | such that the mapping F R —d-2 H(d), defined by
F(a,B) :=TI(a) A(B)TI(ex)", (5.4.27)
for o € R¥=4=2 gngd B € R4 satisfies

A, C {x e Rt e Im(F)}. (5.4.28)
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Proof. For € > 0, set Jg := (—¢, 8)d2’d’2. Similarly to the proof of Proposition
it suffices to show that there exist M € N and smooth C¢*4-valued functions ﬁl, with

1 <1< M, supported in Je, with & > 0, such that the mappings FliJe xR4T H(d),

defined by
Fl(a.p) =T(o)A(B)TT ()", (5.4.29)
satisfy
M ~
A, CH = {x e R g e | JIm(F)} (5.4.30)
=1

For each R € % (d;2), choose a unitary matrix P € % (d), such that P, ; = R; ; for
all 1 <i<dand 1< j<d-—2. Using the fact that the set #F, defined by (5.4.6),
is a smooth manifold of dimension d? —d — 2 for v sufficiently small, it follows that
there exist €,7 > 0, and a smooth diffeomorphism @ : J; — 7/},R, such that ¢(0) = R.
Moreover, as in the proof of Proposition if 7 is sufficiently small, the mappings
v and Y, defined as in (3.4.22)) and (5.4.23) (when @ is replaced by @), are smooth.
Let IT : R&—4-2 _, dxd pe any smooth function, supported in JNg , such that for all

o< j;z/z’

¢, j(a) if1<j<d-2
ILj(a) ;=93 y(a) ifj=d—1 (5.4.31)

w(a) if j=d.
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Define the function {¥ : % (d;2) N By(R) — % (d;2) by {R(A) = { lﬁ-(A);l <i<

d and 1< j<d-2}, where

Cf,j(A) = <A*,j>R*,j>_1 | (A j Rej) |As ),

and the set

VI{(; = {[[L.1(),.... L g o()] : @ € J5} = §(J5),

for 0 < § < &. By the continuity of the inner product in C?, there exists 0 < &’ < £/2,

such that
ER(@Ue)) C @)

By construction, fI(O) = P and Vflf o is an open subset of %/ (d;2) containing R, such

that

R/y/R R
C (Vﬁﬁ/) - Vﬁ,é"

Therefore, since % (d;2) is compact and the collection {Vflf o RE€ U (d;2)} is an
open cover for % (d;2), we deduce that there exist M € N, €{,¢€1,...,&,,&u > 0 and
smooth C?*4-valued functions I1',... ,ﬁM , supported in intervals of the form JNgl, with

g/ < &/2, such that the sets

Vii= A (@), T ()] € T o}
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satisfy
U (d;2) =ViU---UVy, (5.4.32)
and the matrices R; := [ﬁil 0),... >ﬁi,d—2<0)]’ with 1 <1 < M, satisty
< (Vf’f,@,) C Vg,y g (5.4.33)

In the sequel, we will assume without loss of the generality that there exist €,&" > 0,

such that & = eand g/ = ¢ forall [ =1,...,M.

By construction, the functions ﬁl,...,ﬁM are smooth and supported in Je, 0 it
suffices to show relation (5.4.30). To this end, take x € %‘ég and let A € 2(d), Q €

% (d) be such that
2= QAQ". (5.4.34)

As in the proof of Proposition @], we can assume that Ay_j 41 = Ay 4 and thus
there exists § € R?~! such that A = A(B). Let B € C?*(4=2) be given by B; ; = 0; j,
for ] <i<dand 1< j<d-2. By (5.4.32), there exists 1 < [y < M, such that
B € II"(J,). Define P :=I10(0) and R € C4*(4~2) py Rij:=Pjforall 1 <i<d
and 1 < j < d —2. Notice that the decomposition (5.4.34)) still holds if the columns
of Q are multiplied by any complex number of unit length. Moreover, by (5.4.33),
CR(B) belongs to Vflfz()’ EITO , and thus, since the columns of [Q. 1,..., Q4 4-2] are scalar

multiples of {®(B), by replacing the first d — 2 columns of Q by those of the matrix

¢R(B) in relation (5.4.34), we can assume that

(@t Qua 2] = [0 (@),..., IO,y (a)],
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for some a € J~8/2. To finish the proof, it suffices to show that £ = IT% (o) A(B)IT (or)*.

By construction,

! =l ) =
{Q*,l - H*OJ ((X), ceey Q*,d—Z = H*(id_z(a%H*O’d_l(a)an*o,d(a)}
and
{Q*,la ) Q*,d}

are orthonormal basis of C¢, and thus, span{ﬁffd?l (a), ﬁi"d(a)} =span{ Q. 4—1,0Q4a}-
In particular, span{fliO d_l(oc),ﬁfg 4(@)} is contained in the eigenspace associated to
Ag—1.4-1 = Ay g4, which implies that ﬁi(’ J—1 (a),ﬁi‘) (@) are orthonormal eigenvectors

of £ with eigenvalue Ay 4—1(f). From here we conclude that

{ﬁio,l(‘x)a e ,ﬁfgd(a)}’

forms a base of eigenvectors for X, hence implying that

as required. The proof is now complete. [

The following result gives sufficient conditions for points xp € ., to have a neigh-

borhood diffeomorphic to R (42,

Proposition 5.4.7. Let xo € .7 jeg be such that |Sp(%y)| = d — 1. Then there exists y >0

such that .94

deg 1 By(x0) is an (n1(d) —2)-dimensional manifold.
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Proof. The ideas of the proof are similar to those used in Proposition but in this
case, the compactness argument that leads to (5.4.26), is replaced by a localization

argument for the matrix of eigenvectors of Xo.

Let P € 0(d) and D € Z(d) be such that
% = PDP*.

Since |Sp(£)| = d — 1, only one of the eigenvalues D 1,...,D4 4 of Xy is repeated. We
will assume without loss of generality that Dy_1 41 = Dy 4. Define Je, for € > 0, by
dd-1) . ) .
Je:=(—¢€,€)" 2 ,and let R € 0(d;2) be the matrix R={R; ;1 <i<d, 1 <<
d—2},withR; j=P,jforall 1 <i<dand 1< j<d-2. Since 0(d;2) is a manifold

of dimension @ — 1, there exists ¥ > 0 and a smooth diffeomorphism

¢:Je — 0(d;2)NBy(R),

with ¢(0) = R. Denote by ¢, ; the j-th column vector of ¢. Proceeding as in the proof
of Proposition [5.4.5] we can show that if 7y is sufficiently small, the functions y; and

Y, defined in (5.4.22) and (5.4.23)) are smooth. Define IT: J; — &/(d) by

q)*.,j<a) iflgjgd—z
L j(a) =4 yi(a) ifj=d—1

w(a) ifj=d,

and F : Jp x RA-1 5 o4

deg by

F(a,B) :=H(a)A(B)II(a)".
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In order to show that .4

deg VBy(x0) is an (n(d) — 2)-dimensional manifold, we

will prove that there exist open subsets U C J; and V C . d

fieg (1 By(%o), such that the

mapping

UxRI-1 5 vy

(5.4.35)
(a,B) — F(a,B)
is a diffeomorphism. To this end, define
L min |u—v (5.4.36)
ri=— 1 —V|. 4.
2 p,veSp(to) a
HFV

Notice that by Lemma , there exists § > 0 satisfying that for all x € .7¢, ,NBs (%0),
there exist Q € 0(d) and A € Z(d), such that £ = QAQ*,

Qeo(d) ﬂBy/z(P), (5.4.37)
and
A€ 2(d)NB.(D). (5.4.38)

By (5.4.37), there exists o € Jg such that @(a) = [Qs 1,...,0Q4 4—2]. As a consequence,

since

{1 (a),.... M 4(0)}  and  {Qs1,...,0s4a}

are orthonormal bases of R? satisfying

{1 (e), ..., I g (o)} ={Qs15---,0na—2},
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we have that span{IT, ;i (@),IL, 4(@)} = span{Q. 4_1,0.4}. On the other hand,
by (5.4.38), we have that A; | < --- < Ay_j4-1 = Agq, and thus, we conclude that
IT, 41 (o), I, 4(cx) are eigenvectors of & with eigenvalue A;_; 41, hence implying
that

{H,;J(OC), e ,H*d(a)}

is a basis of eigenvectors for X and

£=T(a)A(B)T(ax)".

From here it follows that if U ¢ R"(@)=2 and V C Yjég are given by V := Bg(%o)
and U := F~!(V), the mapping (5.4.33) is onto. Therefore, in order to show that the
mapping F defined in (5.4.39)) is a diffeomorphism, it suffices to show that the following

conditions hold:

(i) The restriction of F' to U is injective,
(i) The function F~! is continuous over V,
(iii) D,F is injective for every p € Je x R?~1.

Notice that condition (iii) implies that F is locally injective, which gives condition (i)
for 6 > 0 sufficiently small. Hence, it suffices to show that F —1 is continuous and
D,F is injective for every p € Jg X R~ We split the proof of these claims into the

following two steps:

Step 1. First we show that F ~1 is continuous. Consider a sequence {y, }n>1 C Vjeg N

B (%) such that lim, y, = y for some y € .7%¢ NBgs(%o). Consider the elements (i, B,), (¢, B) €

deg
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Je x R4~1, defined by (a, B,) = F~(y,) and (e, B) := F~1(y), that satisfy

and

y = () A(B)I(e). (5.4.39)

Our aim is to show that lim, o, = & and lim,, 3, = . Condition lim, 8, = B follows

from the continuity of ®y,...,®,;. To show that
lima, = a, (5.4.40)
n

we proceed as follows. By construction, for all n € N, I1(o,) € &(d) NBy/»(P), and
thus ¢(a,) € O(d;2) N By 2(R). As a consequence, the sequence {a, },>1 is contained
in the compact set K := ¢~ 1(0(d;2) N By/(R)). Therefore, it suffices to show that

every convergent subsequence { .y, }n>1 C {0 }n>1, satisfies lim,, 0y, = o.

By taking limit as n — oo in the relation y,,, = IT(ty, ) A(Bm, ) T1(tn, )*, wWe get
y = I(lim o, )A(B)TI(lim & )" (5.4.41)
n n

Assume that A(B) = (i1, .., 1y) for some py, ..., 1, such that gy | = py. Since K C

Je, then lim,, ¢, belongs to the domain of IT. Moreover, by (5.4.41)), we have that
I j(limay,) €E},  forall 1<;<d-2. (5.4.42)
n

On the other hand, since A(f) € B,(D), we have that y; > up > --- > Uy, and con-

sequently, Eflj is one-dimensional for 1 < j < d — 2. Therefore, using (5.4.42)) as well
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as the fact that |IT, ;(lim, o, )| = 1 for all 1 < j < d, it follows that
IL, ;(limoy,,) € {IL, j(a), —I1, j(a)}, (5.4.43)
n

forall 1 < j <d—2. Since the image of I'l, ; is contained in B% (I, j()), we conclude
that IT, ;(lim, &y, ) = I, j(a), which implies that ¢(lim, @,,) = @(c). Therefore,
using the fact that ¢ is a diffeomorphism, we conclude that lim, &, = @, as required.

Step 2. Next we prove that DF), is injective for all p € J;. Consider an element (a,b) €

d(d—1)

7 ! x R4! satisfying DF;,(a,b) = 0. Then, for € > 0 sufficiently small, the

curve M : (—€,€) — Lo N Bs(%o) given by M(t) := F(ta,tb), satisfies M(0) = £ and
M(0) = DF;,(a,b) = 0. Denote by v!(t),...,v4(t) the columns of II(ta) and define
pi(t) := A; ;(tb). Then, we have

MWV (1) = w()v'(1). (5.4.44)
By taking derivative with respect to 7 in (5.4.44)), we get
MWV (£) 4+ M (2)v () = fi()v'(2) + wi(e)v' (¢), forall 1 <i<d,
which, by the condition M (0) = 0, implies that
M(0)v(0) = f1;(0)v'(0) + w;(0)v*(0), forall 1 <i<d. (5.4.45)
By taking the inner product with v/(0) in (5.4.43)), for j # i, we get

((0),9(0)) (1;(0) — wi(0)) = 0.
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In particular, since uy_| = Ug is the only repeated eigenvalue for Xy, we deduce that for

1 <i,j<d-—1satisfying i # j,

{(v/(0),¥(0)) =0. (5.4.46)
On the other hand, the condition ||v/(z) H2 = 1 implies that

{(v'(0),v'(0)) =0, (5.4.47)

which by leads to v(0) =0 for all 1 <i <d — 1. Since the last two columns of
IT are smooth functions of the first d — 2 (see equations (5.4.22) and (5.4.23))), from the
equations v!(0) = --- = v/~1(0) = 0, we conclude that %H(ta) ‘[:0 = (. On the other
hand, since IT is a local chart for the manifold & (d;2) around IT(0), the derivative IT1(0)

is injective, and thus the equation %H(ta) | o = 0 implies that a = 0.

Finally we prove that b = 0. By definition, M(r) = IT(at)A(Bt)I1(ar)*, and hence
: d . d . d
M(t) = (EH(at))A(ﬁt)H(oct) +H(at)EA(ﬁt)H(at) +H(at)A(ﬁt)(EH(at)).
Since a = 0, by evaluating the previous identity at = 0, we get
0 =TI(0)(A(0)B)I1(0)",

which implies that » = 0. From here we conclude that the only solution to DFy(a,b) =
0 is (a,b) = 0. This finishes the proof of the injectivity for DFy,. The proof is now

complete. 0
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The next result gives a sufficient condition for points xo € 73, to have a neighbor-

hood diffeomorphic to R™2(d)-3,

Proposition 5.4.8. Let xo € ., be such that |Sp(%9)| = d — 1. Then, there exists

Y > 0, such that %ig N By(xo) is an (ny(d) — 3)-dimensional manifold.

Proof. Let P € 7 (d) and D € 9(d) be such that
£ = PDP".

Since |Sp(£o)| = d — 1, only one of the eigenvalues D 1,...,D4 4 of % is repeated. We
will assume without loss of generality that Dy_1 41 = Dy 4. Define fg, for € > 0, by
Je = (—8,8)‘12"1’2, and let R € 7% (d;2) be the matrix R={R; j;1 <i<d, 1<j<
d—2}, withR; ;=P jforall 1 <i<dand 1< j<d-—2. Using the fact that for v > 0
sufficiently small the set %X given by (5.4.6) is a manifold, we deduce that there exist

€,7> 0 and a diffeomorphism
¢:Je = VL,

such that @(0) = R. As in the proof of Proposition [5.4.7, we can construct a smooth
function I1 : Je — % (d) with entries IT; , such that IT; j(t) = @; ;() for all o € J¢

and 1 <i<dand1<j<d-2.

Define F : Jp x R~ — ¢4

deg by

F(a,B) := () A(B)T(ax)".
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By Lemma |5.4.4, there exists § > 0 such that for all x € ¢

deg (1 Bs(%0), there exist

Qe (d)and A € 2(d), satisfying

QAQ", (5.4.48)

=
Il

as well as
Q€% (d)NBy,(P) and A€ P(d)NB(A),

where r is given by (5.4.36). Notice that relation (5.4.48) still holds if we multiply the
Jj-th column of Q, for 1 < j < d —2, by (P j,Rs )/|(Psj R« )|, s0O we can assume
without loss of generality that [Q. 1,...,Qx4-2] € ”VYR. In particular, there exists o € J:;
such that ¢(a) = [Qx 1,...,Qx 4—2]. Then, by proceeding as in the proof of Proposition
we can show that

for some B € R4~!. As a consequence, if we define V := Bs(£y) and U := F~1(V),

then the mapping

UxRI-1 5
(a,B) — F(a,B)

(5.4.49)

is onto. As in the proof of Proposition [5.4.7] provided that we show the conditions
(i1) F~!is continuous over U
(ili) DF, is injective for every J,

then the mapping (5.4.49) is a diffeomorphism. The proof of the continuity of F !

follows ideas similar to those from the GOE case. The only argument that needs to be
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modified is the proof of (5.4.40), since equation (5.4.43)) is not necessarily true when
B = 2. To fix this problem, we replace equation (5.4.43) by

IL.;(lim o, ) = NIL. (), for 1<i<d—2,
n

which holds for some 1 € C with || = 1. Then, by using the fact that [IT, ; (t),...,T1, 42 ()]
belongs to ”VYR, we conclude that TI(lim, Op,) = TI(a), which in turn implies that
@(lim, 0y, ) = @(ox). Then, since @ is a diffeomorphism we conclude that lim, ¢, =

o, as required.

The proof of the injectivity of DF), , for p € Je, follows the same arguments as in

the GOE case, with the exception that identity must be replaced by
Re((v'(1),V'(t))) = 0. (5.4.50)

Then, since (v(¢),v'(0)) = |{(v(¢),v'(0)) |, we conclude that (v'(r),1*(0)) . is real.

cd
This relation can be combined with (5.4.50), in order to get (5.4.47). The rest of the

proof is analogous to Proposition O

5.5 Proof of the main results

This section is devoted to the proofs of Theorem[5.2.1]and Corollary [5.2.2]

Proof of Theorem The cases B =1 and B = 2 can be handled similarly, so it
suffices to prove the result for B = 1. First suppose that Q < 2. By Proposition |5.4.5]

there exists an infinitely differentiable mapping F : R"1(4)=2 — .%(d), such that cheg —
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A! € Im(F). As a consequence,

P (A (t) =2 (t) forsome t€Tand1<i< j<d]

=P [Xl(t) € Yjeg—Al for some 7 GI}
(5.5.1)
<P|[X'(t) € Im(F) forsome ¢ €1].

Since the smooth mapping F is defined over R™ (4)=2 it follows that the set Im(F) has

Hausdorff dimension at most 1 (d) — 2. Thus, since Q < 2, by Corollary|5.3.2]
P [X'(r) € Im(F) for some ¢ € 1] =0.
Therefore, by (5.5.1)) we get that

P[l-l(t):l}(t) for some 1 €Jand 1 <i< j<n| =0,

as required. To prove (5.2.3) in the case Q > 2, choose any xq € .74

deg satisfying

ISp(%0)| =d — 1. By Lemma there exists 6 > 0, such that Yjeg N Bg(xp) is
an nj(d)-dimensional manifold. In particular, the Hausdorff dimension of ffeg is at
least n1(d) —2. The Hausdorff dimension of the shifted manifold Yddeg —A? is also
larger than or equal to n; (d) — 2. Relation (5.2.3)) then follows by Corollary This
finishes the proof of Theorem[5.2.1] 0

Proof of Corollary[5.2.2] The cases B = 1 and 8 = 2 can be handled similarly, so we
will assume without loss of generality, that B = 1. Our goal is to prove that with strictly
positive probability, the eigenvalues of Y'!(¢) collide for values of ¢ arbitrarily close to
zero. Corollary [5.2.2] then follows from the representation of the fractional Brownian

motion as a Volterra process and Blumenthal’s zero-one law.

243



Suppose that the process & is a one dimensional fractional Brownian motion of
Hurst parameter 0 < H < 1. If H > 3, relation (5.2.4) follows from equation (5:2.2) in
Theoremm Moreover, if H < %, then relation (5.2.3) follows from equation (5.2.3).
Therefore, it suffices to show relation in the case where H < § and A € Yjeg

satisfies either |[Sp(A')| =d — 1 or Al = 0.

The proof of (5.2.6) will be done in several steps.

Step 1. We will show first that there exists 6’ > 0 such that for any 0 < T < 1,

P[4} (t) = A} (t) forsome 1 € (0,T]and 1 <i< j<n]>8§">0. (5.5.2)

We will split the proof of (5.5.2) into the cases A' = 0 and [Sp(A!)| =d — 1.

(i) Suppose |Sp(A')| =d — 1. Then A! has exactly one repeated eigenvalue. We will
assume without loss of generality that ®;_(A') = ®4(A!). Fix T < 1. By the self-
similarity of X'(z), we can write
P [A!(t) =2 (t) forsome t € (0,T]and 1 <i< j<n]

=P :Xl(t) € (Yfeg—Al) for some t € (0,7T]and 1 <i< j< n]

=P[x'(s) € (7, —A") forsome s€ (0,1]and 1 <i< j< n} (5.5.3)

>P _X](s) ET_H(,erg—A]) for some s € (1/2,1] and 1 §i<j§n}.

By Theorem[5.3.1] there exists ¢; > 0, such that

P [X(s) e T H (4, —A") forsome s € (1/2,1]and 1 §i<j§n}

> 1, (g1 (17 (7, —A"). (554

H
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LetG: (—1,1)m(@)=2 ffeg — Al be a parametrization of the manifold yjeg —Al
around zero. Consider the probability measure me (dx) := (2£)> 1) L_g gmit@-2 (x)dx
and let Vg (dx) be the pullback measure of . under the map x — £~ 'G(x). Define fq

by (5.3.2). Since vyu(dx) is a probability measure with support in T—# (.74 —Al),

deg
we have
~1
G TSt~ a0 = ([ g Quvra(@vr(av)
T-H(d ~AY)

vV
V)
=

—1
(@rpem@ [ i (T 166 = GO sy
“1

— 22(m(d)-2) ( /(_1 - Fu d)fﬁ(T_HHG(THx) —G(THy)||)dxdy> .

(5.5.5)

By the mean value theorem, there exists 7 € (0, 1), depending on 7, such that the vector

v(7) := 7(1 —x) + 7y satisfies

T-7(G(T"x) — G(T"y)) = T—Hj—TG(T”(r(l —x)+1y)) = DGy [x—y]. (5.5.6)

Consider the mapping (w,v) — ||DG,[w]||, defined over the compact set K := {(w,v) :
Iwl| =1, and ve [-T#,TH](d)-21 " By the smoothness of G, this mapping has
a minimizer (wo, Tp). Moreover, since DG, is injective for v near zero, we have that

0 := ||[DGy,[wo]|| > 0. Using this observation as well as relation (5.5.6), we get that

T~G(T"x) = G(THy)|| = | = YIDGy o) [l =yl 7 (x = )]

> 6|y —x]|.
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Therefore, by (5.5.9), it follows that if n;(d) > 4,

-1
—H{cpd 41 2(n (d)— 1) 1+ —ni(d)
G T T A 2 PO D( [ @asay)

T

The integral in the right-hand side is finite due to the condition % > 2, and thus, there

exists a constant &’ > 0, such that

Gy 1 (T ( Sy — A1) > 8 >0, (5.5.7)

I

By following a similar approach, we can show that also holds for the case
ni(d) = 4, while in the case n(d) < &, identity follows from the fact that
fo = 1 for all a > 0. Combining (5.5.3)), (5.5.4) and (5.5.7), we conclude that there
exists 8’ > 0 such that for all T € (0,1), holds.

(ii) Next we show that relation (5.5.2)) holds as well in the case A =0, if 6’ > 0 is
sufficiently small. Notice that if A = 0, by the self-similarity of & and the homogenity

of the function (®y,...,®P,), we have

P [A}(t) = A} (t) forsome ¢ € (0,T]and 1 <i< j<n]
[@:(X'(1)) = ®;(X'(t)) forsome t € (0,T]and 1 <i< j<n]
[@:(THX (1)) = @,;(T"X"(t)) forsome r€ (0,1]and 1 <i< j<n]
[A!(t) =2} (t) forsome ¢ € (0,1]and 1 <i< j<n]

[

Al (t) = A} (t) forsome ¢ €[1/2,1]and 1 <i< j<n].

Relation (5.5.2)) for A = 0 then follows from Theorem[5.2.1]
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Step 2. By taking T — 0 in the left hand side of (5.5.2), we get

Pl () Al '(¢) forsome € (0,T]and 1 <i< j<n}| >8§ >0. (55.8)
T€(0,1)

Finally, fori < j, we write & ; as a Volterra process of the form &; ;(¢) = [§ Ku (s,t)dW; j(t),

where the {W; ;(¢);r > 0} are independent standard Brownian motions and

Ku(s,t) :=cn <(t/s)H5<z )2 (H—1/2)s27H [ =2 (u— s)H—édu) :

1

where ¢y := (2H)"2(1—2H) [} (1 —x)"2Hx"~24x. We can easily check that

ﬂ {1 )forsomete(OT]andl<l<]<n}
T€(0,1)

belongs to the germ o-algebra %, := (-0 0{W, j(1);0 <u <s,0<i<j<d}. Thus,

combining with Blumenthal’s zero-one law, we conclude that
P ﬂ Ak )forsometE(()T]and1<z<]<n} =1
T€(0,1)

The proof is now complete. ]
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