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ABSTRACT 

 

Andrew C. D. Cleary, M.S. 

Department of Geography, 2017 

University of Kansas  

 

 

 

 Federal reservoirs in Kansas are presently undergoing infill at varying rates and represent 

a growing concern, as these features are integral to the state’s infrastructure and projected 

dredging required to restore capacities are substantial. Kansas exhibits a unique hydrography by 

having some of the highest densities of small impoundments in the United States. Previous 

studies have highlighted the potential of impoundments to act as significant sinks for sediment. 

However, their significance within Kansas reservoir drainages and potential service in mitigating 

downstream reservoir sediment yields is not well understood. This thesis seeks to improve 

understanding of small impoundments distributions and significance in relation to reservoir 

sediment yield through two stages.  

Chapter 2 applies elevation-based methods of impoundment identification using newly 

available LiDAR-derived Digital Elevation Models (DEM) in order to enhance Kansas reservoir 

drainage inventories relative to relying solely on the National Hydrography Dataset (NHD). The 

two DEM-based methodologies resulted in the identification of features absent in the NHD, and 

accuracy testing showed both DEM-based methodologies produce more accurate surface area 

geometries. In turn, the two approaches can be used to update and improve accuracy of 

inventories relative to using the NHD exclusively.   

Chapter 3 delineates small impoundment catchment areas within nine eastern Kansas 

reservoir drainages and compares erosion-related traits in the context of impoundment catchment 
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and direct runoff. The majority of sediment presently infilling Kansas reservoirs has been noted 

as originating from channel-bank erosion sources, not overland sources. Since impoundments are 

potentially positioned in the path of channel-bank eroded material, better understanding both 

their distribution and their potential sediment trapping is an important aspect of reservoir 

drainage yield modeling and management. By investigating erosion-related factors for reservoir 

drainages and addressing impoundment catchment, several possible trends were observed. For 

example, contrasting impoundment size distributions were observed in the highest and lowest 

drainage sediment yields. Impoundments tend to be more abundant in reaches and grassland 

areas, while they decrease in abundance closer to reservoirs and in cropland areas. Additionally, 

average catchment area for small impoundments in the region is much smaller than previous 

estimates, which may suggest smaller sediment loads reaching impoundments.  

This thesis demonstrates new approaches to investigating potential trends relating to 

reservoir sedimentation and suggests several avenues for further research. As LiDAR-derived 

DEMs become increasingly available, methods such as those demonstrated in Chapter 2 are 

particularly valuable. Not only does this project highlight potential inaccuracies of the NHD, but 

it presents automated and easily repeatable methods to enhance NHD-based inventories in other 

regions. Chapter 3 considers the significance of small impoundments when investigating 

potential sources of difference in Kansas reservoir drainage yields, which is a component often 

absent in drainage scale erosion modeling. Given the abundance of small impoundments for the 

region and the projected costs of reservoir restoration, this study provides insight into the 

significance of small impoundments in connection to a growing concern. By better assessing the 

factors responsible for differing rates of infill among reservoir drainages, reservoir drainage 

management may make more informed decisions. Additionally, this project also capitalizes on 
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the growing abundance of LiDAR-derived DEMs, and demonstrates their value in delineating 

small impoundment catchment to better understand their role as mitigators of downstream 

sediment yield.  
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Chapter 1 

 

Introduction 

 

Introduction 

The decline of water resources is a global problem exacerbated by climate change and 

unprecedented population growth. On a regional scale, water problems are more localized, 

reflecting the land use history, physical environment, and policy decisions of the area. In Kansas, 

federal reservoirs, which provide municipal, agricultural, flood control, and recreational services, 

are experiencing capacity loss due to sedimentation. Projected costs of capacity restoration are 

substantial, and research investigating factors that mitigate the impacts of sedimentation could 

prove valuable in developing more efficient management strategies. One such factor, small 

impoundment distribution in Kansas reservoir drainages, has been relatively understudied in 

terms of reducing reservoir sediment yield.  

Newly available high-resolution digital elevation models (DEMs) covering most of the 

state allow application of automated approaches to identifying small impoundments and a means 

to improving an important and popular water body dataset. This enhanced elevation dataset has 

been produced over the past six years and therefore includes impounded features constructed 

since the completion of the National Hydrology Dataset (NHD) in 2007. Deriving water bodies’ 

geometries and positions in the context of recent high-resolution elevation data not only 

identifies features absent in the NHD, but it also provides compatible pour points for 

subcatchment delineation using the same elevation data. In turn, a more current and accurate 
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water body dataset can be developed for Kansas reservoir drainages, offering a new resource to 

study the relationship between impoundment distribution and reservoir sediment yield. 

Furthermore, traits fundamental to erosion and runoff modeling can be quantified within 

impoundment catchments areas and compared with downstream reservoir fill rates. While 

landscape and climate traits have been characterized for reservoir drainage areas in Kansas, 

distinguishing the influence of these factors according to subcatchment area versus unimpeded 

reservoir catchment area may illuminate a landscape factor worthy of consideration when 

addressing current reservoir sedimentation concerns and future management strategies. 

 

Abundance of Impoundments and Impoundment Characterization in Kansas 

Historically, environmental analysis of lentic systems, or still water features, on a global 

level has been hindered by fragmentary data on the size and distribution of the world’s lakes and 

impoundments. However, advancements in remote sensing and satellite imagery resolution offer 

more accurate tools for estimation. In a study by Downing et al. (2006), enhanced spatial 

resolution coupled with novel analytical approaches estimated the world’s lakes and 

impoundments to exceed 304 million. Lakes and reservoirs cover 4.2 million square kilometers 

and are comprised of millions of lakes covering less than 1 sq. kilometer. In terms of farm ponds, 

the estimated aggregated area exceeds 77,000 square kilometers globally, with between 0.1–

6.0% of total agricultural land area covered by small impoundment surface area (Downing et al., 

2006).  

In the conterminous United States, the majority of the water surface area is attributed to 

artificial water bodies with distribution and functionality differing by local climate and land use 
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traits. When excluding the Great Lakes, unaltered natural lakes account for only a small 

percentage of water area across the conterminous U.S. (Smith et al., 2002). Of this total surface 

area occupied by artificial water bodies, impoundments less than 4 ha or roughly less than 10 

acres account for 20% of lentic water surface area (Smith et al.,  2002). Nationally, the number 

of water bodies covering less than 10 acres exceeds the number of larger bodies by an estimated 

factor of 70, and the trend for these smaller waterbodies is one of overall increase, with numbers 

estimated to grow 1-3% annually across the U.S. (Smith et al., 2002). The number of 

impoundments is much higher east of the continental divide, with the lowest density but often 

larger average surface areas occurring in arid regions of the southwest (Smith et al., 2002). 

Agricultural portions of the Midwest tend to have the highest densities of impoundments and the 

smallest mean surface areas (Smith et al., 2002). Specifically, the eastern portion of the Great 

Plains exhibits the greatest abundance of impoundments (Smith et al., 2002) due to agricultural 

water supply needs. Oklahoma, for example, has double the average density of waterbodies of 

Minnesota, which are primarily comprised of natural lakes. Furthermore, many of Oklahoma’s 

impoundments emerged in the past century (Smith et al., 2002).  Not surprisingly, findings by 

Smith et al. (2002) demonstrated an east to west decreasing gradation of impoundments between 

95 – 103° W due to rain shadow effects of the Rockies and increasing precipitation moving east. 

Kansas falls within this longitudinal range and is representative of this gradient.  

 Kansas exemplifies the agricultural industry’s tendency both towards constructing small 

impoundments and a dependence on reservoir water services. Kansas alone boasts over 200,000 

impoundments under 40 hectares, which combined cover approximately 288 square miles and 

store an estimated 1,299,000 acre/feet of water (NHD, 2016; Callihan, 2013). The density 

gradient for small impoundments as estimated by Smith et al. (2002) ranges from less than 0.03 
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impoundments per km2 in western portions of the state to an average of 1-3 water bodies per km2 

in the eastern third. Regarding large reservoirs, Kansas has over 200 reservoirs with surface areas 

exceeding 20 hectares, mostly state or federally owned (deNoyelles & Kastens, 2016). Eighty of 

these provide primary or backup drinking water for 60% of the state’s population and provide 

flood control services, which was the primary purpose for construction of the state’s 24 federal 

reservoirs. While these larger reservoirs provide municipal, flood control, and recreational 

services, smaller impoundments also provide a variety of services including livestock watering, 

irrigation, domestic water, and recreation (deNoyelles & Kastens, 2016). For a region with 

natural lentic systems limited to ephemeral playas predominately in western Kansas and 

relatively few oxbow and sinkhole lakes statewide (Martinko et al., 2014), this extensive 

landscape modification has substantially altered hydrological and physical processes.  

 

Kansas Reservoir Fill Concerns and Factors Influencing Downstream Sediment Yield 

 Water resources loss is a global issue, and like other declining resources, population 

growth and climate change have been identified and studied as factors influencing projected 

water resources loss. A paper by Vorosmarty et al. (2000) modeled the loss of water resources on 

a global scale in relation to climate change and population growth rates. Using census and 

climate data from 1985 – 2000, researchers predicted climate change and population growth 

leading up to 2025. Statistical analysis found population growth to be more influential on water 

resources stress than climate change. While it is difficult to accurately model and quantify 

change in global stress on water resources, the overall pattern is one of “pandemic increase” 

(Vorosmarty et al., 2000). Kansas has experienced a population increase of 164,000 people 
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between 2000 and 2010 (U.S. Census Bureau, 2015), which represents an increased demand of 

nearly 1.8 M m3 of drinking water per year (Rahmani et al., 2017). In addition to population 

growth and climate change consequences, an arguably more immediate and potentially 

financially taxing water resources problem is presently garnering concern in Kansas.  

Many reservoirs of eastern Kansas are approaching the end of their usable life as 

sediment fill approaches 50%. By 2030, the first three federal reservoirs in Kansas, Tuttle Creek, 

Toronto, and John Redmond – will reach 50% infilling and require dredging to maintain 

functionality (deNoyelles & Kastens, 2016). If current fill rates remain constant, another 8 of the 

state’s 24 federal reservoirs will be half in-filled by 2105, and 44% of the total storage will be 

lost for the combined 24 (deNoyelles & Kastens, 2016). As reservoirs lose storage capacity to 

sedimentation, shallow zones expand, and the relatively young and unstable biotic communities 

can shift towards excess cyanobacteria growth, which can be detrimental to water quality 

(deNoyelles & Jakubauskus, 2008; deNoyelles & Kastens, 2016). In addition, capacity loss 

impairs a reservoir’s function as a flood deterrent. As the state considers plans for dredging 

action to recover reservoir capacity, projected costs are staggering. At a present-day cost of 

roughly $6 for removal of one cubic yard of sediment, restoring the 24 federal reservoirs to their 

original volume by the end of the century would cost $13.8 billion (deNoyelles & Kastens, 

2016). Furthermore, 1.4 million acres of one foot deep sediment would have to be disposed of, 

and costs and methods of disposal are difficult to ascertain (deNoyelles & Kastens, 2016).  

Reservoir sediment yield is dependent on several landscape factors, which naturally are 

related to sediment load in reservoir tributaries. Streamflow is the main source of sediment for 

reservoirs, and higher rates of sedimentation correlate with drainage areas experiencing higher 

precipitation rates (Langbein & Schumm, 1958). Increased runoff results in greater discharge and 
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sediment carrying capacity. In turn, potential runoff and sediment load are dependent on 

drainage area, watershed slope, soil type and permeability, and land use (Bedient et al., 2013; 

deNoyelles & Jakubauskus, 2008).  Drainage area determines the volume of water generated by a 

precipitation event (Bedient et al., 2013), the impacts of which are as follows. Watershed slope 

reflects the change in elevation with distance in an overland flow area and influences overland 

flow velocity. Soil type determines infiltration rate and water-holding capacity of the landscape. 

Finally, land use and land cover have significant effects on watershed response by influencing 

overland flow velocity, infiltration, and susceptibility to erosion. Under the “Rational Method” 

common in hydrological modeling, land cover types ranking from least to greatest runoff 

potential are as follows: woodland or forest, meadow or grassland, pasture or range land, 

cultivated land, and urban areas with increasing percent imperviousness (Bedient et al., 2013).  

 The present-day Kansas landscape is the product of a history of intensive land use and 

modified fluvial systems, which has resulted in higher than pre-settlement sediment loads and 

lentic body sedimentation rates exceeding those of most natural lakes. Prior to Euro-American 

settlement, Kansas watersheds were dominated by native grasslands, and riparian vegetation 

effectively stabilized soil and slowed runoff (deNoyelles & Kastens, 2016). However, current 

federal reservoir watersheds can be characterized by nutrient rich and erodible soils, which in 

many cases have experienced row crop production for the last 125 – 150 years (deNoyelles & 

Kastens, 2016). Infill rates for natural lakes of comparable size are not as high as rates for 

Kansas’s federal reservoirs, in part due to the greater watershed-to-basin area ratio typical of 

Kansas reservoirs (deNoyelles & Kastens, 2016). Furthermore, drainage modifications have been 

implemented in the form of straightened stream channels and constructed bank levees (Juracek & 

Zeigler, 2007). While the purpose for these modifications is based on channel position 
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stabilization and local flooding mitigation, the changes have resulted in “high water flows, 

reduced residence time, increased in-channel erosion, and increased sediment carrying capacity 

compared to pre-European settlement conditions” (deNoyelles & Kastens, 2016).  In a study 

highlighting the source of sediment infilling for Perry Lake, Juracek and Zeigler (2007) used 

chemical tracers to measure sediment origins from channel banks and surface soils. Results 

indicated that the majority of sediment infilling the reservoir originated from channel-bank 

sources (Juracek & Zeigler, 2007). 

In catchment areas with similar precipitation patterns, landscape factors clearly influence 

specific sedimentation yields. However, an additional factor, one relatively understudied on 

reservoir catchment scale and placed so as to intercept channel-bank eroded material, may be 

mitigating Kansas reservoir sedimentation. Given the abundance of small impoundments in the 

state, it is likely that they play a significant role in trapping sediment that would otherwise 

contribute to downstream reservoirs. Therefore, better characterization of their function as 

sediment sinks may augment reservoir watershed management knowledge. 

Studies have shown that small impoundments act as sediment sinks on a scale 

comparable to major lakes and reservoirs. Dams have been described as “significant features of 

every river and watershed of the nation” (Gaff, 1999). While the effects of sediment and 

particulate trapping in rivers is well documented (Trimble and Bube, 1990; Meade, 1990), the 

effects of upstream sediment trapping by small impoundments has often been overlooked 

(Mulholland & Elwood, 1982; Stallard, 1998; Smith et al., 2001). An estimated two thirds of 

annual erosion in the United States, or 600 t km-2 year-1 (Smith et al., 2001), is deposited in lentic 

systems. However, this accumulation is thought to be split fairly evenly between large and small 

(<4 ha) water bodies (Smith et al., 2002).  A 2005 study by Renwick et al. examining small 
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impoundments in the conterminous United States estimated total catchment area and sediment 

load trapped by small impoundments. Estimates from the study estimated that 25% of total sheet 

and rill erosion settle in small impoundments, which capture 21% of the total watershed areas for 

the subcontinental United States. Furthermore, using three separate models to compare small 

impoundment sediment load to that of reservoirs, total sediment rates in U.S. ponds ranged from 

0.43 – 1.78 x 109m3yr-1, which potentially matches or exceeds estimated total reservoir 

accumulation of 1.67 x 109m3yr-1 and supports the conclusions of Smith et al. (Renwick et al., 

2005). This wide range of projected small impoundment sediment yields reflects the difficulty of 

measuring cumulative small impoundment accumulation with precision. This may be due in part 

to the shear abundance of small water bodies, limited high resolution data and methods, and the 

multitude of factors involved in hydrological and sediment modeling. Nevertheless, it is accepted 

that small impoundments are significant sinks and reducers of downstream sediment load, 

although their value in moderating downstream reservoir sediment yields is still not well 

understood. 

 Given that sediment is itself a sink for nutrients, impoundments also serve as nutrient 

sinks, reducing riverine nutrient transport. A spatial modeling study (Bosch, 2008) of two 

Michigan watersheds investigated impoundment size and positioning in relation to total 

phosphorous (TP) and total nitrogen transport (TN).  Results showed TP and TN transport 

doubling after impoundments were removed from the model. As expected, impoundments were 

most effective at reducing TP and TN transport when positioned near the mouth of the river or in 

nitrogen and phosphorous source areas (Bosch, 2008). In the Midwest, Smith et al. (2002) has 

attributed the tendency of small impoundments to trap disproportionate amounts of nutrients to 

their proneness to occur in proximity to agricultural sources of nutrient loading. Finally, Bosch 
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(2008) found that multiple smaller impoundments caused a greater cumulative reduction in 

transport than a single large reservoir. Given the high density of small impoundments in Kansas 

and the current issues surrounding reservoir filling and eutrophication occurrences, the results 

from Bosch evoke the question: To what extent are small impoundments reducing the likelihood 

of eutrophication in downstream reservoirs by serving as nutrient sinks? If farm ponds are in fact 

catchments for high nitrogen and phosphorous source areas (i.e., fertilized crop land), the 

reduction in nutrient transport could provide a significant service in managing downstream 

reservoir water quality.  

 An additional service often overlooked in small impoundment valuation is the burial of 

organic carbon (OC). This process may be considered more significant in reducing atmospheric 

carbon dioxide levels than regulating downstream water quality. Downing et al. (2008) assessed 

OC burial in 40 impoundments in an intensively farmed region of Iowa. Results indicated that 

impoundments buried a higher concentration of OC than natural lakes due to heavier 

sedimentation and sediment aggregate transport, and OC burial proportions were significantly 

higher in small impoundments (Downing et al., 2008).  As in the case of nitrogen and 

phosphorus, this effect can be attributed to the tendency for rapid vertical accretion by small 

impoundments.  

 Because small impoundments are sinks for sediment, nutrients, and organic carbon, they 

provide a service in reducing downstream accumulation, including in managed reservoirs. 

However, it should be noted that, like reservoirs, impoundments eventually fill. There is 

relatively little research on how and when a small impoundment may turn from sink to source, 

but it could be assumed that impoundments are experiencing similar specific yields to nearby 

reservoirs due to similarity in landscape factors. Should the shift occur, the re-release of contents 
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into a stream system would likely disturb the lotic reach and contribute an abundance of 

sediment, nutrients, and carbon to the downstream lentic body. This deleterious effect on water 

quality and increased sediment and nutrient transport would reflect a reverse in the 

aforementioned sink services of small impoundments. However, operating under the assumption 

that small impoundments retain their sink functionality, effectively identifying their occurrence 

and characterizing their catchments may provide insight into their influence on downstream 

reservoir sedimentation. 

 

Methods of Impoundment Identification 

Historically, GIS water feature datasets have been created through manual geoprocessing 

with source data including topographic maps, land use raster data, and aerial imagery. The 

process of identification and digitization has often been hindered by spatial resolution, time, and 

resources available for manual geoprocessing. The National Hydrology Dataset (NHD) was 

developed using topographic quadrangle digitization coupled with visual identification using 

orthoimagery. Since the onset of its production, higher spatial resolution aerial imagery has 

become more common, and more recently, LiDAR has offered unprecedented digital elevation 

data resolution for select regions. LiDAR-derived DEMs combined with GIS tools and 

programming languages now offer novel approaches to identify small water features in the 

landscape, automating the geoprocessing and reducing inconsistencies resulting from human 

error. 

Following the advent of GIS, features of topographic maps could be digitized for 

cataloguing and analysis purposes, and aerial imagery aided in the validation of digitized water 
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features. As described above, the NHD is the product of digitized water features drawn from 

topographic maps supplemented with aerial imagery. NHD source topographic maps range from 

the 1950s to present, and geometry validation during digitization (beginning in the 1990’s) was 

restricted by the temporal and spatial resolution of orthoimagery available at the time (USGS, 

2009). In addition to dated source maps and imagery, another limitation of NHD accuracy can be 

attributed to manual photointerpretation methods, which are subject to human error and 

inconsistencies (Carpenter et al., 2011). While the NHD includes much of the long-term 

impoundments exceeding 100 square feet in relative geometric accuracy (USGS, 2009), 

introducing new methodologies and more recent data may allow not only the identification of 

more recently constructed water bodies, but produce updated, improved geometries as well.  

 A study by Smith and researchers further emphasizes potential spatial resolution and 

manual geoprocessing limitations of manual water feature identification and dataset generation. 

Smith et al. (2002) first used the United States Geological Survey (USGS) Land Cover Dataset to 

vectorize 30-m pixels representative of water bodies to estimate impoundment abundance in the 

conterminous United States. This dataset resulted in an estimate of 2.6 x 106 water bodies with a 

lower surface area limit of 1000 m2 (Smith et al., 2002). When using higher resolution data 

offered by the USGS Digital Line Graph dataset and a feature resolution limit of 25 m2, 

researchers turned to extrapolation rather than the massive manual geoprocessing resources that 

would have been required. The resulting number for total water bodies in the conterminous U.S. 

was estimated at 9 x 106 (Smith et al., 2002). While enhanced raster resolution offered 

identification of finer water features, the geoprocessing that would have been required by manual 

geoprocessing forced researchers to extrapolate regional findings and potentially compromise 

accuracy. 
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 Using LiDAR-derived elevation data, researchers have been able to automatically 

distinguish water bodies in largely consistent, efficient, and easily duplicated approaches. A 

popular approach demonstrated by Leonard et al. (2012), uses neighborhood analysis to 

distinguish depressions. The study incorporated 2 meter LiDAR elevation data into custom relief 

models to identify localized concavity and potential wetland locations. Each raster cell value was 

divided by the mean of the adjacent cell values. Should the ratio be < 1.0, concavity is indicated. 

Results showed an 85.1% accuracy rate in the automated wetland identification after field 

validation. Wu et al. (2014) further demonstrated advantages of depression analysis using 

LiDAR-derived DEMs and developed an approach to identify vernal pools more accurately and 

efficiently than previous photointerpretation methods.  Wu and colleagues developed a semi-

automated approach to extract surface depressions from a 1 meter resolution DEM, which 

alleviated inconsistencies and repeatability issues inherent in manual geoprocessing (Wu et al., 

2014). Furthermore, boundaries of vernal pools identified using DEMs can be extracted as 

polygon features, automating characterization of geometric properties (Wu et al., 2014). While 

photointerpretation and manual feature tracing have historically been popular approaches to the 

identification of minor lentic bodies, these recent studies demonstrate the possible improvements 

in consistency and efficiency associated with automated geoprocessing using LiDAR-derived 

DEMs.  

In a regional study occurring in western Kansas, photointerpretation using 1-m and 2-m 

imagery led to the successful identification of new ephemeral water body features relative to 

previous catalogs. By combining the high-resolution aerial imagery, raster graphics, soils data, 

and manual feature delineation, Bowen et al. (2010) conducted playa identification to augment 

previous datasets for 46 counties in western Kansas. The resulting dataset included 22,045 
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playas, more than doubling that of previous inventories, with a field validation accuracy 

assessment of 98% (Bowen et al., 2010). Bowen attributed the success in identifying new 

features and the failure of past inventories to the enhanced spatial resolution of the imagery data. 

Since this study’s publication, equally high-resolution elevation data have been made available 

for the study area as well as much of the rest of the state. With this new 2-m LiDAR-derived 

elevation data, an alternative approach to playa identification has successfully demonstrated 

automatic feature identification and reduced manual processing relative to Bowen’s approach. 

 Kastens et al. (2016) identified playas by extracting sinks meeting depth threshold criteria 

from LiDAR-derived DEMs, naming the model the Topographic Wetland Identification Process 

(TWIP).  Researchers found that DEM preparation prior to running TWIP, including applying a 

median focal filter and burning interpolated elevation values into buffered road and railroad 

areas, resulted in fewer false positives in the model results. The TWIP works by first creating a 

sink depth map by subtracting prepared DEM from a filled DEM and selecting sink depth pixels 

with a value less than or equal to a given depth threshold. These pixels are vectorized into 

polygons representing water bodies, the elevation values inside the polygons “punched” from the 

DEM, and the process repeated with new features appended to the dataset until no new features 

are identified. After establishing suitable DEM preparation and applying various depth 

thresholds, researchers identified 37.3% of features present in the Playa Lakes Joint Venture 

(PLJV) dataset (Kastens et al., 2016). Given the broad study area, ephemeral nature of playas, 

extensive number of features not intersecting with the PLJV, and the purpose of the funding, 

exact determination of which additional features identified were undocumented playas and which 

were false positives was not carried out. However, the study demonstrated a novel automated 

approach to identifying subtle water lentic features over a broad area of Kansas, and the steps 
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involved have been scripted in Python and packaged as an ArcGIS tool for easy duplication and 

application to other study areas. Furthermore, researchers were able to delineate playa catchment 

areas by making use of the ArcGIS toolset and 2 meter DEMs, a task previously impossible to 

complete accurately for the smallest playas due to absence of high-resolution DEMs.  

 Since the compilation of the NHD for the area covering Kansas, new imagery and 

elevation data have been developed. Recent studies have demonstrated success in water feature 

identification via automated depression or sink analysis using 1-m and 2-m DEMs (Leonard et 

al., 2012; Wu et al., 2014; Kastens et al., 2016). With LiDAR-derived DEMs now available for 

the majority of Kansas, there is an opportunity to apply similar geoprocessing methods focused 

on water feature identification and recognition of recently constructed water bodies absent in the 

NHD as well as update preexisting feature geometries. Furthermore, an automated geoprocessing 

approach may offer a more efficient, consistent, and easily duplicated alternative to previous 

photointerpretation and topographic map digitization.  

 

Problem Summary and Research Objectives 

 The dense distribution of small impoundments in eastern Kansas reflects Kansans’ 

dependence on the various services provided by impoundments and reflects major anthropogenic 

alteration of natural processes. A consequence of this alteration is the infilling of artificial water 

bodies. With growing concern surrounding reservoir infilling, research tied to limiters of 

downstream sediment yield could offer valuable insight into reservoir management on a drainage 

scale. To better understand the role impoundments may play as sinks within a reservoir drainage, 

there first is a need to update and improve the accuracy of available water body distribution data. 
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Automated geoprocessing techniques combined with newly available high-resolution elevation 

data provide alternative means of identifying water bodies and offer improved efficiency and 

consistency when compared to previous manual approaches. Furthermore, delineating 

impoundment subcatchments using newly available elevation data and characterizing 

subcatchment traits related to erosion potential may identify subcatchment trends connected to 

reservoir sediment yield.  

 In order to better characterize the distribution of small impoundments and their 

significance as sources of subcatchment within Kansas reservoir drainages, this research has 

three central objectives: 1) Conduct two automated water feature identification approaches – the 

TWIP approach taken from Kastens et al. (2016) and the Zero Slope method – and gauge their 

efficiencies using aerial imagery, the NHD, and an accuracy assessment index, 2) Update the 

water body data of the NHD for select drainage regions by incorporating newly identified 

features and amending less accurate geometries, 3) Delineate subcatchment areas for select 

reservoirs, analyze landscape traits which influence erodibility, and compare impoundment 

distributions and subcatchment traits among reservoir drainages. 

 The first and second objectives are addressed in Chapter Two. Using LiDAR-derived 

DEMs generated from 2010 – 2016, two automated methods are applied in efforts to identify 

recently impounded water bodies and update NHD feature geometries. The first method, the 

Topographic Wetland Identification Process (TWIP), uses sink mapping with a sink depth 

threshold to identify elevation patches potentially representative of water bodies. The second 

method, the Zero Slope approach (ZS), identifies hydro-flattened patches potentially 

representative of water bodies. The results of these methodologies are validated in the context of 

aerial imagery, and an accuracy assessment index quantifies geometry accuracy of the TWIP, 
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ZS, and NHD. Features from each dataset are merged into a single new dataset by order of 

highest accuracy index. 

 Chapter 3 addresses the final objective by delineating impoundment drainage areas, 

summarizing land use, soil, and slope traits for cumulative subcatchment areas, and 

characterizing the water body and subcatchment distribution for ten reservoir drainages in 

eastern Kansas. The resulting water body dataset from Chapter 2 serves as pour points for 

identifying subcatchment areas, which are then merged to measure total subcatchment for each 

reservoir drainage. Land use raster data from the 2005 Kansas Land Cover Patterns dataset, soil 

data from gridded Soil Survey Geographic Data shapefiles (gSSURGO), and slope rasters are 

then clipped according to subcatchment and unimpeded area masks and analyzed to identify 

landscape trends in the context of subcatchment and possible relation to downstream reservoir 

sediment yield.  

 

Significance 

 Automated geoprocessing methods paired with recent LiDAR-derived elevation data 

offer an opportunity to augment data taken from the NHD and advance our understanding of 

water body distribution within Kansas reservoir drainages. The accuracy of the current NHD is 

limited by dated topographic source material (with the earliest beginning in the 1950s) and 

orthoimagery available at the time of digitization, which began in the 1990s (NHD Feature 

Catalog, 2009). With impoundment numbers increasing yearly, the use of more current data 

sources in identifying water bodies will likely show new impoundments and altered geometries 

relative to the NHD. Several studies have investigated impoundment distribution on a national 
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scale (Smith et al., 2002; Renwick et al., 2005), but have had to sacrifice regional detail and 

accuracy in favor of broader characterization. Efforts have also been made to characterize 

impoundment abundance for Kansas (Callahan, 2013), but methodologies and conclusions have 

been limited to available datasets at the time of the studies (i.e., NHD and National Elevation 

Dataset). However, with recent LiDAR-derived elevation data collected from 2010 – 2015 

covering most of the state, and with Kastens et al. (2016) demonstrating their utility in water 

body identification, there now is an opportunity to apply relatively novel methodologies to 

enhance and modernize water body inventories for the region. By developing a more current and 

precise water impoundment dataset for reservoir drainages, the influences of impoundment 

distribution on reservoir sedimentation may be more rigorously explored.  

Subcatchment delineation and trait characterization may provide further insight into the 

connection between the impoundment distribution of a reservoir drainage and reservoir sediment 

yield. Combining the NHD with the results of the geoprocessing approaches explored in Chapter 

2 will offer a more complete and potentially compatible pour point dataset for subcatchment 

delineation. The anticipation is that since the water bodies are delineated from elevation data, the 

features may be more suited for raster processing, such as watershed delineation, than rasterized 

features drawn from topographic maps or aerial imagery.  Additionally, most of the reservoirs of 

eastern Kansas have not had impoundment subcatchments delineated nor their land use, soil, or 

slope characterized and compared for subcatchments and unimpeded contributing areas. By 

doing so, trends may be recognized related to subcatchment landscape factors and downstream 

sediment yield, a little studied dynamic related to reservoir infill for the region.  

 Finally, as LiDAR-derived elevation data become more common, this study will provide 

a methodology that can be easily repeated and applied to other regions. The automated aspect of 
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much of the geoprocessing may reduce sources of human error as well as time and costs related 

to manual water body identification and geoprocessing. Much of the methodology is scripted and 

packaged as ArcGIS tools, which will be openly available to other researchers. The overarching 

goal of this project is to demonstrate novel and easily duplicated methods in water body 

inventorying and subcatchment characterization, which may be suitable for adoption in 

investigating and managing the various effects of impoundments.  
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Chapter II 

Approaches in Identifying New Water Bodies and Improving  

Geometries Relative to the NHD 

 

Introduction 

Small impoundments demonstrate significant anthropogenic alteration of landscape 

systems and processes. The effects of these fluvial modifications range in nature, including 

hydrological, geochemical, and ecological impacts. While there is abundant literature 

investigating the various effects of impoundments, popular water datasets vary in the extent of 

their spatial resolution and inclusion of water bodies, which is a central limitation in water body-

related research. For this study focused in eastern Kansas, novel high resolution data and 

methodologies offer an opportunity to improve on the National Hydrography Dataset (NHD) by 

means of adding recently constructed impoundments and revising feature geometries via high-

resolution topographic data. The methodology demonstrated in this chapter and the resulting 

datasets provide new tools in improving regional knowledge of water body distribution, which 

can be applied to the continued study of impoundment effects and watershed management.  

 

Hydrological, Sedimentation, and Geochemical Effects of Impoundments 

Hydrological effects of impoundments 

 While there are numerous hydrological consequences of impounding lentic systems, 

certain effects may be keenly felt in Kansas due to its high density of small impoundments and 
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precipitation trends that are characterized by periods of drought, intermittent heavy rainfall, and 

flash flooding. Chief among the impacts of impoundments are increased evaporation rates, 

altered groundwater recharge, and decreased downstream flow. The prolific impoundment 

practices of the agricultural Midwest reflect local landowner attempts to counteract natural water 

loss by storing water on the surface. While impoundments may result in water being more 

readily available locally, the larger-scale cumulative effect is an increase in water loss due to 

evaporation, which occurs more rapidly in a densely impounded landscape than one permitting 

natural downstream flow and percolation (Smith et al., 2002). Furthermore, shallow systems, 

such as smaller impoundments, experience higher summer heating, resulting in greater 

evaporation than large water bodies (Harbeck, 1962; Smith et al., 2002). An additional 

consequence of impoundments is altered recharge incidence. The retention of water in upland 

areas by impoundments increases residence time and local groundwater recharge. In turn, 

downstream areas experience less discharge, percolation, and groundwater recharge (Smith et al., 

2002). Additionally, stream flow becomes more homogenized with a reduction in peak flows and 

greater occurrence of low flow periods (Moore, 1969; Gordon et al., 1992). Abatement of peak 

flow events reduces flushing of accumulated sediments and organic matter in streams, and in 

turn accumulated sediments covering coarse substrates may reduce seepage and subsurface flow 

(Mammoliti, 2002). To investigate these various impacts on a regional scale, individual 

impoundment effects can be aggregated, and accurately assessing these effects may benefit from 

a complete and geometrically accurate water body dataset. 

Sedimentation effects of impoundments 

 Small impoundments’ cumulative effects on sediment retention have been studied on a 

national scale (Smith et al., 2002; Renwick et al., 2005; Downing et al., 2008), but on a regional 
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scale, more precise size and spatial distribution data is needed to address trap efficiency, or the 

percentage of sediment retained by a water body relative to the inflowing sediment load, and 

cumulative yield. Two thirds of annual total erosion in the conterminous United States is 

estimated to be deposited in lentic systems (Smith et al., 2002). Of this portion, the amount 

estimated to settle into “small” water bodies (< 4 ha) equals the combined total of all larger lakes 

and reservoirs (Smith et al., 2002).  Renwick et al. (2005) used three separate models to estimate 

small impoundment sediment yield for the continental United States, and resulting total sediment 

rates ranged from 0.43 – 1.78 x 109m3yr-1, which potentially matches or exceeds estimated total 

reservoir accumulation of 1.67 x 109m3yr-1 and supports the conclusions of Smith and 

collaborators. However, there is a wide sediment yield range in this study, which reflects the 

difficulty of accurately estimating cumulative small impoundment yield on a large scale with 

coarse data. In turn, reducing the scale and extrapolating these findings to a specific region, such 

as the Midwest, would likely be impractical. Additionally, these landmark studies in small 

impoundment sedimentation omit any consideration of trap efficiency in their models, a result of 

scale, the sheer number of water features, and lack of data on various parameters involved in trap 

efficiency prediction. 

 Trap efficiency may be dependent on a variety of parameters, but all models require 

either surface area or volume as indicators of capacity, which is fundamental to yield trapping 

estimations. Two other factors, capacity and residence time, are partially dependent on water 

body geometry (Verstraeten & Poesen, 2000). Thus, attempts at assessing trap efficiencies on a 

regional scale benefit from datasets with accurate feature geometries. In addition to individual 

water body geometries, distribution of impoundments plays a part in cumulative and individual 

sediment collection. Local high impoundment density typically results in high local yields 
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(Smith et al., 2002). However, sediment originating from an upstream impoundment will be 

finer, and the downstream impoundment will have a lower trap efficiency should other 

parameters hold constant (Churchill, 1948). In Kansas, discharge and velocity may be high 

during the flood events characteristic of the region. These events may result in greater scouring, 

higher sediment loads, and reduced discharge residence times. In these cases, it may take 

multiple impoundments within a lotic system to effectively slow velocity and induce deposition. 

If efforts are to be made to account for small impoundment trap efficiencies on a regional scale, 

such as a Kansas reservoir drainage, geometric accuracy of water bodies is necessary. Trap 

efficiency modeling would benefit from comprehensive impoundment inventories with precise 

geometries to assess densities, connectivity, and capacities. 

Geochemical effects of impoundments 

 Given that sediment is itself a sink for nutrients, impoundments also serve as nutrient 

sinks, reducing riverine nutrient transport. A spatial modeling study (Bosch, 2008) of two 

Michigan watersheds investigated impoundment size and positioning in relation to total 

phosphorous (TP) and total nitrogen transport (TN).  Results showed TP and TN transport 

doubling when impoundments were removed from the model. As expected, impoundments were 

most effective at reducing TP and TN transport when positioned near the mouth of the river or in 

nitrogen and phosphorous source areas (Bosch, 2008). Finally, multiple smaller impoundments 

caused a greater cumulative reduction in transport than a single large reservoir (Bosch, 2008). 

The trend of small impoundments trapping more combined nutrients can be credited to faster 

vertical accretion and the tendency of smaller impoundments to occur adjacent to agricultural 

and human sources of nutrient loading (Smith et al. 2002). Given the high density of small 

impoundments in Kansas and the current issues surrounding reservoir filling and eutrophication 
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occurrences, the results from Bosch raise the question: How are small impoundments reducing 

the likelihood of eutrophication in downstream reservoirs by serving as nutrient sinks? If farm 

ponds are in fact catchments for high nitrogen and phosphorous source areas (i.e., fertilized crop 

land), the reduction in nutrient transport could provide a significant service in managing 

downstream reservoir water quality.  

 An additional service often overlooked in small impoundment valuation is the burial of 

organic carbon (OC). This process may be considered more significant in reducing atmospheric 

carbon dioxide levels than regulating downstream water quality. Downing and colleagues (2008) 

assessed OC burial in 40 impoundments in an intensively farmed region of Iowa. Results 

indicated that impoundments buried a higher concentration of OC than natural lakes due to 

heavier sedimentation and sediment aggregate transport, and OC burial proportions were 

significantly higher in small impoundments (Downing et al., 2008).  As in the case of nitrogen 

and phosphorus, this effect can be attributed to the tendency for rapid vertical accretion by small 

impoundments. Additionally, rapid accretion in farm ponds can result in altered decomposition 

rates than larger water bodies. Optimal microbial activity occurs at or near the maximum amount 

of water a soil can hold against gravity, and as soil becomes waterlogged, decomposition slows 

(Rice, 2002). Artificial ponds create a permanently saturated environment for rapidly 

accumulating organic carbon. This results in altered redox rates which may be further hindered 

by suboxic or anoxic conditions following eutrophication. These nutrient and geochemical 

effects of impoundments can be tied with sediment transport and trapping, which suggests that 

improving the quality of water body data available to model sediment catchment may offer new 

opportunities to study other impoundment sink effects on a regional scale.  
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It should be noted that impoundments are not exclusively sinks or reducers of 

downstream sediment and nutrients yields. There is relatively little research on how and when a 

small impoundment turns from a sediment sink to a sediment source, but an argument could be 

made that impoundments are infilling at similar rates to nearby reservoirs due to similarities in 

landscape factors. Conversely, the typically low capacity to catchment area ratio of small 

impoundments (Verstraeten & Poesen, 2000) suggests that their life as sinks is much shorter than 

for large reservoirs. Should a shift from sediment sink to source occur, the re-release of contents 

into a stream system would likely disturb the lotic reach and contribute an abundance of 

sediment, nutrients, and organic matter to the downstream lentic body. This deleterious effect on 

water quality and increased sediment transport would reflect a reverse in the sediment sink 

services of small impoundments. Additionally, impoundments can indirectly increase 

downstream erosion and sediment yield through flow alteration. Dams reduce out of bank flows 

but extend bank-full flows (Wetter, 1980). Protracted periods of bank-full flows can accelerate 

bed and bank erosion, and the resulting additional sediment may then be deposited in 

downstream lentic systems.  

 

Ecological Effects of Impoundments 

 The abundance of artificial water bodies found in Kansas reflects a dramatic 

anthropogenic shift in ecological impacts. Regional consequences dependent on impoundment 

distribution include providing corridors for invasion, species assemblage gradation, and habitat 

fragmentation. Research resulting in improved and current impoundment distribution data may 

prove beneficial in research and management surrounding these effects.  
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Dispersal sources and corridors for aquatic invasives 

 Constructing a network of impoundments in the Midwestern United States has resulted in 

corridors for migration for many species associated with lentic systems. The classic case is 

migratory waterfowl. These species use impoundments as “stepping stones” during temporal 

migrations, and in effect, this service provided by impoundments is valued by hunters and nature 

enthusiasts alike. However, impoundments also create new ecosystems, which lack resilience 

and favor generalists. In turn, impoundment networks facilitate invasion and act as corridors for 

exotic species.  

 An argument could be made that natural lentic systems, such as lakes or pools, could 

seemingly facilitate invasion in a similar manner as impoundments. In a study conducted in the 

Great Lakes region of the United States, Johnson and collaborators (2008) sought to investigate 

this notion by investigating how impoundments and natural lakes enable the establishment of 

five aquatic invaders of differing taxa. For each invader, impoundments were found 2.5-7.8 

times more likely to be invaded than natural lakes, and impoundments more often housed 

multiple invaders (Johnson et al., 2008). In addition, these proportions are likely an 

underestimate, as inaccessible natural lakes, which are far less affected by human activity, were 

omitted from the study. Reasons for successful establishment of invasive species in 

impoundments stem primarily from the young age of impoundments. The oldest impoundment 

included in the study was 161 years old, while the oldest glacial lake was approximately 10,000 

years old (Johnson et al., 2008). The young age of impounded systems results in increased niche 

availability, a simplified trophic structure, and lower biotic resistance. A high disturbance regime 

with fluctuations in water levels, temperature, fish stocking, and nutrient content could also 
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increase invasiblility (Johnson et al., 2008). Furthermore, invasive species may have adapted to 

impoundments in their previous ranges, which could increase their establishment success. 

 In terms of small impoundments such as those characteristic of Kansas, change in water 

quality is likely an additional facilitator of invasive species success and native species loss. 

Shallow water bodies experience greater summer heating (Smith et al., 2002), which results in 

reduced dissolved oxygen (DO) concentration. Reduction of peak flow due to upstream 

damming can reduce streambed flushing (DeCoursey, 1975; Zale et al., 1989), which may 

increase stream turbidity. Additionally, nutrient enrichment, algal blooms, and eutrophication in 

farm ponds decreases DO concentration and increases stream turbidity (KDHE, 1981). These 

changes in water quality in small impounded features may favor hardy generalists and limit 

success of sensitive endemics and sight-feeders (Mammoliti, 2004).   

 Following impoundment of a lotic system in Kansas, it is standard practice to introduce 

sport fish, such as the largemouth bass, Micropterus salmoides (Mammoliti, 2002). As an 

introduced piscivorous population grows, there is an increase in the number of individuals 

dispersing upstream or being washed downstream. This increases predation pressures on obligate 

stream species. Predation by game species, such as M. salmoides, has been documented as a 

significant influence on the reduction or extirpation of native stream species in Kansas such as 

cyprinids (Mammoliti, 2002). Although native stream species of Kansas have historically 

occurred with other piscivorous fishes (Lepomis cyanellus, Ameiurus melas, and Micropterus 

punctulatus), most are considered facultative piscivores and rely less on fishes in their diet 

(Mammoliti, 2002). In effect, impoundments in Kansas serve as sources for exotic obligate 

piscivores, which increase predation pressure and alternative fish assemblages. 
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Assemblage gradients caused by impoundments 

 Common traits of impoundments support the conception that impoundments are a form of 

disturbance. Altered flow is chief among these traits. While many terrestrial disturbance studies 

rely on a temporal scale in recovery assessment, a few studies have focused on impoundments as 

agents of disturbance in aquatic systems use a spatial scale to assess recovery. Findings indicate 

proximity both downstream and upstream of the disturbance to influence the degree of recovery.  

 A study conducted on the Cahaba and Tallapoosa Rivers of the Alabama River Basin 

assessed fish assemblage recovery on a flow regulation gradient. Results showed obligate fluvial 

species increased in richness and abundance in a gradient moving downstream and away from a 

hydroelectric dam (Kinsolving & Bain, 1993). Contrarily, microhabitat generalists demonstrated 

no significant assemblage gradient in the dammed or control rivers, reflecting that the taxa were 

relatively unaffected by flow fluctuations (Kinsolving & Bain, 1993). Obligate stream natives are 

thus more affected by the disturbance of altered flow regimes than generalists. 

 In addition to fishes, other taxa assemblages exhibit a similar gradient to disturbance by 

impoundment. In the Little River of Oklahoma, Vaughn and Taylor (1999) observed an 

extinction gradient in mussels. Moving downstream from an impoundment, mussels showed 

greater richness and abundance, with relatively rare species furthest from the impoundments. 

However, upon reaching the confluence (inflow from a second reservoir), the same trends were 

observed, although weaker (Vaughn & Taylor, 1999). In conclusion, considerable lengths of 

streams unaffected by neighboring impoundments are necessary to overcome the effects of an 

impoundment on species assemblages. 
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 Assemblage gradient trends due to impoundments have also been noted in Kansas. 

Faulke and Gido (2006) assessed fish assemblages moving upstream from 19 Kansas reservoirs. 

The authors found significant results indicating a decrease in reservoir species occurrence and an 

increase in assemblage variability and native species occurrence moving further upstream 

(Faulke & Gido, 2006). In effect, areas upstream of impoundments can also exhibit assemblage 

gradients. 

 Altering the flow regime and native assemblages results in a gradient of homogenization 

centered on impoundment proximity. As shown by Vaughn and Taylor (1999), this gradient 

resets once resubmitted to the effects of another impoundment. Given the high density of 

impoundments in Kansas, there are likely systems unable to escape the gradient cycling and 

eventually settle into a more homogenized steady-state. Identifying the thresholds for 

impoundment disturbance recovery could be useful in mitigating this homogenization and 

improving conservation management. Additionally, current impoundment distribution data 

noting recently constructed impoundments could be valuable to gradient modeling focused on 

recent disturbance. 

Habitat fragmentation, homogenization, and loss 

 Harsh environmental conditions that select for high colonization rates make prairie 

stream fishes particularly vulnerable to the effects of fragmentation (Hudman & Gido, 2013), 

and it has long been established that impoundments serve as barriers for migration of aquatic 

species (Deacon, 1961). Given the ephemeral nature of many headwaters in prairies and the 

proliferation of impoundments in Kansas, impoundments preventing recolonization following 

local extirpation is a common occurrence. Furthermore, research has shown reduced migration 
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resulting from impoundments to erode genetic diversity and reduce population fitness. Finally, 

retention of water in upland areas can cause desiccation and loss of naturally occurring wetland 

systems downstream.  

In the Midwest, there is a clear link between impoundments and native cyprinid 

extirpation. In the Cottonwood Creek of Oklahoma, Stearman and Lynch (2013) established a 

negative relationship between a fragmentation metric based on impoundment density and 

cyprinid abundance and richness. The authors concluded that fragmentation associated with 

impoundments can be especially harmful to small-bodied, mobile minnow species (Stearman and 

Lynch, 2013). In a similar study in the Flint Hills of Kansas (Schrank et al., 2002), various 

landscape and ecologic factors were incorporated in a stepwise regression to establish indicators 

of Topeka Shiner (Notropis topeka) extirpation. The regression found the most significant 

indicator of whether the threatened species occurred within watershed subsections to be 

impoundment density. Impoundment density alone correctly classified 83% of extant sites and 

85% of extirpated sites (Schrank et al., 2002).  There are many potentially deleterious effects of 

impoundments, but increased fragmentation and recolonization prevention from high 

impoundment density is particularly harmful for headwater species.  

 Recent literature on population fragmentation from impoundments has illuminated 

genetic consequences to population isolation. Hudman and Gido (2013) investigated 

impoundment effects on genetic structure of a native cyprinid, Semotilus atromaculatus, in the 

Kansas River basin. Results showed a high degree of spatial genetic structure, suggesting that 

catchments house sets of isolated genetic units, and sites within catchments are further 

subdivided into groups divided by intervening lentic habitat (Hudman & Gido, 2013). These 

barriers for dispersal among tributaries may reduce the opportunity for genetic rescue of 
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populations in tributaries draining into impoundments. However, their findings also indicated 

that reservoirs may be less genetically deleterious if a tributary houses a large enough population 

(Hudman & Gido, 2013). The historic environmental conditions and life histories of native 

cyprinids reflect a pattern of local extirpation, recolonization, migration and associated gene 

transfer that has been significantly disrupted by large-scale habitat fragmentation.  

 In addition to acting as barriers for stream species migration, impoundments reduce and 

homogenize stream flow and habitat. Should water levels within impoundments drop due to 

drought, an upstream impoundment may prevent flow downstream, causing the next 

impoundment to receive a reduced input and to lose volume. This domino effect can cause lotic 

stretches connecting impoundments to experience low flow, fed only by the sliver of watershed 

below the upstream impoundment. By reducing peak flow in streams, scouring is less intense, 

and there is a decline of structurally diverse pools and an increase in predation success by 

invasive generalists such as largemouth bass (Mammoliti, 2002). Studies have shown structurally 

complex environments to be favorable for native species by providing more refuge and reducing 

predator forage efficiencies of invasive generalists (Menge & Sutherland, 1976; Power et al, 

1985).  

 While impoundments directly affect adjacent stream habitat, collective upland water 

retention by impoundments may cause lowland wetland habitat loss. Wetland loss in the 

conterminous United States exceeds 500,000 km2 (Mitsch & Gosselink, 1993). While a 

connection between upstream impoundment and wetland loss has been suggested (Tiner, 1989; 

Smith, 2002; Callihan, 2013), the water retention impacts and ecological ramifications have been 

difficult to assess. Should there be substantial loss of wetlands via constructed water bodies, a 

decline in wetland endemics or their migration to potentially less favorable impounded habitats 
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seems likely. Efficient water feature identification and surface area measurement that can be 

applied on a drainage scale could be a useful tool in modeling water displacement and 

investigating wetland displacement. 

Significance of water body data 

 The various ecological consequences of constructed water bodies reflect a major 

anthropogenic alteration of ecosystems. While the list of ecological effects of impoundments 

exceeds those discussed, invasion facilitation, species assemblage gradation, and habitat 

alteration are all concerns recognized in Kansas and should be studied and managed in a spatial 

context. Water feature size, proximity, connectivity, and density all influence the discussed 

ecological effects. If these effects are to be studied on a regional scale, a current, accurate 

characterization of water body distribution would be of great value. 

 

Current water body inventories 

Historically, digital water feature inventories have been created through manual 

digitizing from source data including topographic maps, land use raster data, and aerial imagery. 

The process and efficiency of digitization has often been dependent on data resolution and the 

resources required for manual geoprocessing. National water body inventories vary in purpose 

and source data, and as a result, differ widely in feature inclusion and representation, particularly 

in the case of small water bodies. The National Hydrography Dataset (NHD) was developed 

using topographic quadrangle digitization coupled with visual identification using orthoimagery, 

and since its upgrade in 2007, it can be considered the most comprehensive national water body 

dataset for the United States (McDonald et al., 2012; Callihan, 2013). Studies using previous 
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datasets, including the NHD, show Eastern Kansas as having a dense distribution of small 

impounded features due in part to its degree of agricultural land use and absence of abundant 

natural lentic bodies. However, the full extent of impoundments and the associated effects in the 

region are not fully understood, and with the number of impoundments continuing to increase in 

Kansas, automated identification techniques using recent high quality data may help in keeping 

inventories current.  

Limitations of popular water body datasets and inventory approaches 

Following the advent of GIS and related digital image processing software, features on 

aerial imagery and topographic maps could be digitized for cataloguing and analysis purposes. 

However, spatial resolution and resources available for manual geoprocessing limit the quality of 

the inventory. In effect, inclusion and accuracy of small water body features has historically been 

difficult in large area inventory efforts. A study by Smith et al. (2002) illustrated the differences 

in lentic feature inclusion among popular national inventories and general underestimation when 

compared to estimations derived from higher resolution data sources. Smith et al. (2002) 

compared water body data from the National Atlas, the Census Bureau’s Tiger Database, and the 

National Inventory of Dams (NID) to water feature data derived from the National Land Cover 

Dataset (NLCD) and the United States Geological Survey (USGS) Digital Line Graph (DLG). 

Smith et al. (2002) first used the NLCD to vectorize 30-m pixels representative of water bodies 

to estimate impoundment abundance in the conterminous United States. This dataset resulted in 

an estimate of 2.6 x 106 water bodies with a lower surface area limit of 1000 m2 (Smith et al., 

2002). When using higher resolution data offered by the USGS Digital Line Graph (DLG) 

dataset and a feature resolution limit of 25 m2, the researchers chose to sample and extrapolate 

due to the time and effort required to manually extract water features from the DLG. The 
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resulting number for total water bodies in the conterminous U.S. was estimated at 9 x 106 (Smith 

et al., 2002). While enhanced spatial resolution (i.e., USGS DLG) improved identification of 

finer water features, the resources required by manual geoprocessing forced researchers to 

extrapolate regional findings, resulting in reduced accuracy. The results of both approaches led 

researchers to conclude that small water bodies (<10,000 m2) are overwhelmingly dominant 

across the U.S., and “available datasets differ widely in representing those features” (Smith et al., 

2002). The more conservative estimate of water bodies taken from the NLCD data estimated 35, 

60, and 500 times as many water bodies as the TIGER, NID, and National Atlas databases, 

respectively (Smith, et al., 2002). The trend among the national inventories is fairly accurate 

coverage for water bodies over 100,000 m2 and an absence of the majority of features under 

10,000 m2, which can be attributed to limited data resolution at time of cataloguing, limited or 

inadequate geoprocessing resources, or prioritization of large water bodies in water resources 

management.  

To date, the most comprehensive water body dataset for the United States may be the 

NHD, but there are inherent limitations to this inventory. The NHD is the product of digitized 

water features drawn from topographic maps and aerial imagery. Original NHD source 

topographic maps range from the 1950s to present, and validation of water body geometry during 

digitization (beginning in the 1990s) has been limited to the temporal and spatial resolution of 

the orthoimagery available at the time (USGS, 2009). In 2007, the NHD upgraded its inventory 

of lentic features using 1:12,000 USGS Digital Line Graphs (DLGs) supplemented by Digital 

Orthophoto Quarter Quadrangles (USGS, 2007). The result was a change in scale from 

1:100,000 to 1:24,000, or 1:12,000 in certain areas, and an increased inclusion of smaller water 

features. Despite a marked improvement in the small water body inventory, the upgrade still  
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relied on imagery dating as far back as the 1980s for Kansas (Callihan, 2013), and relied on 

manual photointerpretation methods, which are subject to human error and inconsistencies 

(Carpenter et al., 2011). Additionally, the boundary geometries of impoundments are dynamic, 

whether due to sedimentary processes or landowner management, and impoundments appear to 

be continually increasing across the U.S. (Smith et al., 2002; Renwick et al., 2005). While the 

updated NHD includes many of the long-term impoundments that are “at least 100 feet in the 

shortest dimension” (USGS, 2009), introducing new methodologies and more recent data may 

allow the identification of more recently constructed water bodies and update previous 

geometries.  

Water body characterization and recent inventories in Kansas 

Kansas exemplifies the agricultural industry’s tendency towards constructing small 

impoundments and a dependence on reservoir water services. Kansas alone boasts over 240,000 

impoundments of under 40 hectares, which combined cover approximately 288 square miles and 

store an estimated 1,299,000 acre/feet of water (Callihan, 2013). The density gradient for small 

impoundments as estimated by Smith et al. (2002) ranges from less than 0.03 impoundments per 

km2 in western portions of the state to an average of 1-3 water bodies per km2 in the eastern 

third. Regarding large reservoirs, Kansas has over 200 reservoirs, mostly state or federally 

owned, with surface areas exceeding 20 hectares (deNoyelles & Kastens, 2016). Eighty of these 

provide primary or backup drinking water for 60% of the state’s population and provide flood 

control services, which was the primary purpose for construction of the state’s 24 federal 

reservoirs. While these larger reservoirs provide municipal, flood control, and recreational 

services, smaller impoundments provide a variety of services including livestock watering, 

irrigation, domestic water, and recreation (deNoyelles & Kastens, 2016). For a region with 
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natural lentic systems limited to ephemeral playas predominately in western Kansas and 

relatively few oxbow and sinkhole lakes statewide (Martinko et al., 2014), this extensive 

landscape modification has substantially altered hydrological and physical processes. 

Studies of small water body inventories in Kansas have advanced awareness of source 

data restrictions and variations in perceived regional abundance. In 2004, Buddemeier assessed 

the accuracy of the Kansas Surface Water Database and the Surface Water Information System 

in regards to small water bodies. The results showed the KSWD and SWIMS only included 1% 

and 3% of water bodies less than 40 ha, respectively, and features derived from coarser 

resolution imagery resulted in exaggerated surface areas due to larger pixels and the inclusion of 

mixed water and land pixels at the boundaries of water features (Buddemeier, 2004). In effect, 

lower resolution imagery or raster source data results in misrepresentation of surface areas as 

well as fewer features identified. Following the increase in NHD resolution and feature 

incorporation, Callihan (2013) used the new dataset in conjunction with the National Wetlands 

Inventory and the 2005 Kansas Land Cover Patterns dataset to evaluate small water body 

abundance in Kansas. Merging datasets and including only impounded features under 40 ha 

resulted in 241,295 small impoundments with a combined surface area exceeding that of all state 

and federal reservoirs in Kansas (Callihan, 2013). To date, this is the most thorough inventory 

for the state. However, its results rely on the accuracy of the NHD, which has its aforementioned 

limitations. An approach using newer high-resolution elevation data would offer an alternative to 

the NHD’s more traditional feature inventory method and could illuminate shortcomings in NHD 

accuracy and completeness. 
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Water body identification associated with LiDAR-derived data 

 LiDAR (light detection and ranging) datasets have produced unprecedented spatial 

resolution for elevation data for many regions of the U.S. In recent years, studies have used 1 and 

2-m LiDAR-derived elevation data to identify water features through automated geoprocessing 

approaches. In doing so, resource limitations, consistency issues, and efficiency restrictions 

associated with manual water body digitization have been avoided. 2-m LiDAR-derived digital 

elevation models (DEMs) are now available for the entirety of Kansas, which for the first time 

allows elevation-based automated identification of the state’s small water features. Should DEM-

based water feature identification methods prove successful for Kansas, they may be adopted in 

other regions as the USGS and partners work to produce high resolution elevation data for the 

entire United States.  

Overview of LiDAR and DEM generation 

 The USGS is currently facilitating nationwide high-resolution elevation mapping via 

LiDAR data collection, and USGS specifications require a level of hydro-flattening to all bare 

ground DEMs. In 2009, a $14.3 million allocation from the “America Recovery and 

Reinvestment Act” marked the undertaking of Quality Level 2 (1 meter horizontal resolution) 

LiDAR data and DEM production for the conterminous United States (Heidemann, 2014). 

LiDAR-based elevation data are collected via laser pulses dispersed from LiDAR-equipped 

aircraft. As the reflected pulses return to their source, the data are recorded as a raw point cloud 

composed of multiple pulses per square meter of land surface with the minimum required pulse 

number dependent on Quality Level, and elevation is calculated based on return time and data 

recorded in unison with a GPS sensor. The point cloud often contains voids in data due to light 
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refraction and absorption, and a common source of void occurrence is the absorption, refraction, 

or both by water. The USGS specified treatment of significant water-attributed voids is “hydro-

flattening” (Heidemann, 2014). As mandated by the USGS, all water bodies equal to or greater 

than 8000 m2 are to be converted to a flat surface of equal elevation values at or below the 

surrounding terrain, and all rivers with a width of 30 meters or greater are to be flattened in 

segments with elevation values interpolated from riparian values (Heidemann, 2014). In turn, 

high-resolution, hydro-flattened elevation data offer a new level of precision in hydrological 

modeling and unique representation of water features.   

Water body research associated with LiDAR 

 Using LiDAR-derived elevation data, researchers have been able to automatically 

distinguish water bodies in largely consistent, efficient, and easily duplicated approaches. A 

popular approach was demonstrated by Leonard et al. (2012), which used neighborhood analysis 

to distinguish depressions. The study incorporated 2 meter LiDAR elevation data into custom 

relief models to identify localized concavity and potential wetland locations. Each raster cell 

value was divided by the mean of the adjacent cell values. Should the ratio be < 1.0, concavity 

was indicated. Results showed an 85.1% accuracy rate in the automated wetland identification, 

after field validation. Wu et al. (2014) further demonstrated the advantages of topographic 

depression analysis using LiDAR-based DEMs in identifying vernal pools. Wu et al. (2014) 

developed a semi-automated approach to extract surface depressions from a 1 meter resolution 

DEM. A major benefit of the approach was that boundaries of vernal pools identified using 

DEMs can be extracted as polygon features, automating characterization of geometric properties 

and alleviating inconsistencies inherent in previous manual inventory attempts (Wu et al., 2014).  
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In western Kansas, Kastens and researchers (2016) identified playas by extracting sinks 

meeting depth threshold criteria from LiDAR-derived DEMs, naming the model the Topographic 

Wetland Identification Process (TWIP).  Researchers found that DEM preparation prior to 

running TWIP, including applying a median focal filter and burning interpolated elevation values 

into buffered road and railroad areas, resulted in fewer false positives and general noise in the 

model results. The TWIP first creates a sink depth map by subtracting a prepared DEM from a 

filled DEM and selects sink depth pixels with a value less than or equal to a given depth 

threshold. These pixels are vectorized into polygons representing water bodies, the elevation 

values inside the polygons “punched” from the DEM, and the process is repeated with new 

features appended to the dataset until no new features are identified. After suitable DEM 

preparation and applying various depth thresholds, researchers identified 37.3% of features 

present in the Playa Lakes Joint Venture (PLJV) dataset (Kastens et al., 2016). Given the broad 

study area, the ephemeral nature of playas, the extensive number of features not intersecting with 

the PLJV dataset, and purpose of the funding, exact determination of which additional features 

identified were undocumented playas and which were false positives was not carried out. 

However, the study demonstrated an automated approach to identifying subtle water features 

over a broad area of Kansas, and the steps involved have been scripted in Python and packaged 

as an ArcGIS tool for easy and consistent execution. Furthermore, researchers were able to 

delineate playa catchment areas via 2 meter DEMs, a task previously impossible to complete 

accurately for the smallest playas due to absence of high-resolution DEMs.  

LiDAR data for the state of Kansas 

 The LiDAR Implementation Plan beginning in 2011 led to production of 2 meter LiDAR-

derived DEM mosaics collectively covering the entirety of Kansas (completed in 2016). While 



41 

 

adhering to much of the USGS standards of LiDAR collection, processing, and DEM generation, 

the plan added an additional requirement that exceeded the standard for accuracy of water feature 

processing established by the USGS. The plan required vendors to hydro-flatten all water bodies 

“greater than ¾ of an acre and streams wider than 50 feet” (LiDAR Implementation Plan, 2011). 

In effect, all water features greater than ¾ of an acre should be identifiable through 

geoprocessing designed to delineate hydro-flattened features.  

 

Project Summary 

 There is a range of consequences stemming from damming – including hydrological, 

geochemical, and ecological – and collectively they represent a major anthropogenic disturbance 

of natural processes. While the effects can be observed anywhere impoundments occur, Kansas 

offers a unique opportunity to investigate their effects due to its lack of natural lentic bodies and 

density of agricultural ponds. Many of the aforementioned consequences of impoundments can 

be seen as aggregative in effect or dependent on distribution. In turn, regional research and 

management related to impoundment effects will benefit from a precise dataset of impoundment 

attributes and distribution. However, national inventories and attempts specific to Kansas have 

historically been restricted by available data, which may be dated, inconsistent, or too coarse in 

resolution. A general characteristic of past inventories has been the bias of data sources towards 

identifying large water bodies and neglect of small water bodies. However, with the update of 

the NHD, recent inventories have shown a greater number of small impoundments in Kansas 

than previously known. Still, the NHD is imperfect since it originates from manual digitization 

and mixed-date source materials. As new impoundments are constructed and higher-resolution 
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elevation data become available, the question arises: “is it possible to improve further on the 

NHD through a novel and efficient elevation-based approach?” 

Since the compilation of the NHD for the area covering Kansas, new imagery and 

elevation data have been developed. Recent studies have demonstrated success in water feature 

identification via automated depression or sink analysis using 1-m and 2-m DEMs (Leonard et 

al., 2012; Wu et al., 2014; Kastens et al., 2016). With LiDAR-derived DEMs now available for 

the majority of Kansas, there is an opportunity to apply similar geoprocessing methods focused 

on water feature identification and to recognize recently constructed water bodies absent in the 

NHD as well as to update preexisting feature geometries. Furthermore, an automated 

geoprocessing approach may offer a more efficient, consistent, and easily duplicated alternative 

to previous methods relying on photointerpretation and topographic map digitization. With 

LiDAR-derived elevation data emerging for new regions of the United States, efficient and easily 

duplicated elevation-based methods for creating water feature inventories may be applied in 

other regions to improve understanding of water body distribution and significance.  

This research uses recent high-resolution elevation data to test automated water body 

identification in a region characterized by substantial impoundment abundance and significant 

anthropogenic disturbance. The primary objectives are: 1) Conduct two automated water feature 

identification approaches, the TWIP taken from Kastens et al. (2016) and the Zero Slope 

approach, and gauge their efficiencies using aerial imagery, the NHD, and an accuracy 

assessment index, 2) Update the water body data of the NHD for selected drainage regions by 

incorporating newly identified features and amending less accurate geometries. In doing so, the 

following questions are addressed: 1) Is there an efficient elevation-based alternative to manual 
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lentic body delineation?  2) Can elevation-based water feature identification and geometry 

characterization improve the accuracy of the NHD water bodies dataset? 

 

Methods 

Study Area & Data Sources 

Reservoir drainages of eastern Kansas were chosen as study areas for the following 

reasons: 1) It seems unlikely that water features would straddle drainage boundaries, so complete 

geometries are assumed to be contained within processing extents, 2) lentic features identified 

can be assumed to be impoundments since playa abundance is minimal in eastern Kansas, 3) and 

the results of this chapter serve as a foundation for the next chapter, which focuses on reservoir 

drainage characterization in eastern Kansas. Reservoir drainages selected for this study include 

Perry, Clinton, Pomona, Council Grove, Melvern, John Redmond, Marion, El Dorado, Toronto, 

and Fall River (Figure 1). Drainages were delineated using 30-meter resolution DEMs, and 

drainage boundaries ended below the dam(s) of any upstream reservoir(s) (e.g., Figure 2). This 

delineation procedure was based on the estimated 90% trap efficiency held by the upstream 

reservoirs (deNoyelles & Jakubauskus, 2008) and methods demonstrated by Rahmani et al. 

(2017).  

Reservoir catchments cover portions of the following 20 counties: Atchison, Butler, 

Brown, Chase, Coffey, Douglass, Elk, Greenwood, Harvey, Jackson, Jefferson, Lyon, Marion, 

McPherson, Morris, Nemaha, Osage, Shawnee, Wabaunsee, and Woodson. Perry and Clinton 

reside in the Lower Republican basin; Pomona & Melvern in the Marias Des Cygnes; Marion, 

John Redmond, and Council Grove in the Neosho; Fall River and Toronto in the Verdigris; and 



44 

 

El Dorado in the Walnut. Catchment area ranges from 535 sq. km (Marion) to 6645 sq. km (John 

Redmond) with a mean of 1736.4 sq. km (Table 1). With the exception of portions of the 

Toronto and Melvern catchments, all catchments have annual precipitation rates of 850-1000 

mm (Rahmani et al., 2017). 

Vector datasets were downloaded from the Kansas Data Access & Support Center 

(DASC) including: National Hydrography Dataset “water bodies” shapefile produced by the 

USGS, 2002 KDOT non-state road system shapefile produced by Kansas Department of 

Transportation, TIGER 2014 center-line roads shapefile produced by the U.S. Census Bureau, 

and TIGER 2010 railroads shapefile produced by the U.S. Census Bureau. Additionally, 30 

meter DEM tiles from the USGS National Elevation Dataset (NED) were obtained through 

DASC. LiDAR-derived 2-meter DEMs were provided by faculty at the Kansas Biological 

Survey, a research center affiliated with the University of Kansas. DEM tiles were produced 

from 2010 – 2016 by separate vendors under the 2011 LiDAR Implementation Plan. The ArcGIS 

World Imagery Basemap provided 0.3-meter resolution aerial imagery collected in July of 2015. 

Geoprocessing was conducted using ESRI ArcGIS, scripting and tool creation were carried out 

in Python, and spreadsheet and statistical analysis was conducted in Microsoft Excel following 

importation of water feature attribute data from ArcMap. 

 

Preliminary Processing 

 An overview of geoprocessing procedures is displayed in Figure 3, and the steps for 

elevation data extraction are shown in Figure 4. Ten reservoir polygons of interest were retrieved 

from the NHD water body dataset to provide pour points for catchment determination. 30-meter 



45 

 

DEMs taken from the NED provided the surface data for watershed geoprocessing. Resulting 

drainage areas of 10 representative watersheds were converted to polygons and merged to 

provide a mask for extracting 2-meter elevation data. Given time requirements and previously 

demonstrated reservoir drainage delineation methodology (i.e., Rahmani, 2016), using 30-meter 

resolution DEMs for drainage delineation was deemed more practical than directly extracting 

reservoir catchments with 2-meter elevation data. Individual mxd files in ArcMap were created 

for specific reservoir drainage analyses, and reservoir drainage polygons derived from 30-meter 

elevation data provided extents to extract drainage specific 2-meter DEMs. Mosaicking 2-meter 

DEM tiles prior to drainage area DEM extraction was necessary since tile boundaries did not 

adhere to drainage area geometries, and several drainages required elevation data pulled from 

multiple tiles.  

 NHD water bodies were extracted using reservoir drainage area masks to inventory NHD 

features for each drainage. After applying a 100 meter buffer to the focus reservoir, NHD 

features intersecting the reservoir or buffer were checked with aerial imagery for clear 

disconnectedness. The reservoir and any possibly connected water bodies were removed from 

each drainage dataset (Figure 5).  For proceeding sections, any reference to NHD data for a 

drainage refers to the NHD data following exclusion of the reservoir and reservoir-connected 

features. 

 Following procedure by Kastens and others (2016), a 3x3 focal median filter was applied 

to the 2-meter DEM for each reservoir catchment to remove minor sinks and peaks, followed by 

road and railroad removal. Since the focal statistics tool in ArcGIS does not permit a median 

operation on a float type raster, the procedure was coded in Python (see Appendix). As shown in 

previous studies (Leonard et al., 2012; Kastens et al., 2016), roads and railroads can be sources 
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of false “dams” in elevation-based water body identification if unchecked. The procedure to 

remove roads and railroad followed that of Kastens et al. (2016) (Figure 6). Road and railroad 

data were acquired through KDOT non-state roads, TIGER roads, and TIGER railroads 

shapefiles. While Leonard and others (2012) applied a 15 meter buffer, both Kastens et al. (2016) 

and my preliminary results favored a 30 meter buffer to smooth roads, railroads, and adjacent 

ditches from DEMs and eliminate false dams.  

 

Topographic Wetland Identification Process model (TWIP) and Zero Slope (ZS) Method 

 The Topographic Wetland Identification Process model (TWIP) developed by Kastens 

and others (2016) employs a sink depth map and depth threshold to identify potential water 

bodies (see Appendix 1). Initially, sinks are filled and a sink depth map calculated by subtracting 

the original DEM from the filled DEM. Using a mask composed of resulting sinks, a zonal 

maximum depth raster is generated for sink patches. Sinks with zonal maximums meeting or 

exceeding the designated depth threshold are then extracted to create a raster layer representing 

potential water bodies (Figure 7). After testing various depth thresholds, a depth of 0.3 meters 

was found to be best for maximizing feature identification without excessive false positives. The 

resulting raster is then converted to polygons and appended to a water body shapefile. Should the 

converted raster result in an empty shapefile, the process terminates, and the water body 

shapefile contains the total TWIP results. If not, an inverted sink depth raster is created with 

appended water body patches removed. The process then iterates using the inverted sink depth 

raster as the DEM. 
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 As specified in the LiDAR Implementation Plan (2011), streams with widths exceeding 

50 meters and lentic bodies exceeding ¾ of an acre necessitate hydro-flattening. The Zero Slope 

tool (ZS) exploits hydro-flattened patches by identifying cells with a slope value of zero and 

converting those patches to polygons representative of water bodies (see Appendix 1). First, a 

raster of cell slope values is calculated from the 2-meter DEM. Cell values equal to zero are 

extracted from the slope raster and converted to polygons. Since a cell’s slope value is a function 

of the greatest difference in elevation between the focal cell and adjacent cells, the perimeter 

cells of the hydro-flattened area have a slope value greater than zero. This results in 

underestimation of the hydro-flattened patch’s area. To compensate for this, a buffer with 

distance equal to the cell size (2 meters) was applied to all polygons (Figure 8). 

 Noise and false positive removal required manual processing and validation using aerial 

imagery. All resulting TWIP and ZS features with areas less than 250 m2 were selected and 

deleted from respective datasets. This removed noise and any potential water bodies under 1/16 

acre, which would be difficult to disseminate given the resolution of aerial imagery. As with 

NHD preparation, a 100 meter buffer was created around the reservoir to avoid designating 

connected segments as distinct water bodies. Any polygons intersecting with the reservoir or the 

100 meter buffer were examined in the context of aerial imagery, and any water bodies not 

clearly disconnected from the reservoir were removed from the dataset. Remaining TWIP and ZS 

polygons were intersected with NHD data, and those not intersecting were checked with aerial 

imagery and identified as true water bodies or false positives. Any TWIP or ZS features 

intersecting with the NHD were assumed to be true water bodies. In turn, false positives were 

removed, leaving only features intersecting with the NHD or verified with aerial imagery. 
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Accuracy Assessment 

In order to quantify the geometric accuracy of the NHD, TWIP, and ZS features, fifty 

water bodies from each dataset were compared with water bodies manually traced from aerial 

imagery (Figure 9). Ten samples were taken from five reservoir drainage areas: Marion, 

Melvern, El Dorado, Council Grove, and Pomona. These reservoirs were selected due to 

successful execution of the TWIP tool within their watersheds and considered representative of 

the entire dataset. The five population groups consisted only of features identified in the NHD, 

TWIP, and ZS and were identified by intersection. Ten features were sampled randomly from 

each TWIP drainage population (see Appendix 1), and the corresponding NHD and ZS water 

bodies were identified via intersection.  

Polygons were manually drawn for the fifty water bodies using 2015 30-cm resolution 

imagery at a 1:1000 – 1:2000 scale and appended to a new feature class named “Verified.” Area 

polygons for three categories – Verified and NHD overlap, Verified and TWIP overlap, and 

Verified and Zero Slope overlap – were calculated for all sample features. An equation was 

implemented to assign an accuracy index value ranging from 0 – 1.00 to all samples for the three 

datasets (Figure 9). After determining indices for the 50 sampled features, summary statistics for 

mean, standard deviation, minimum, and maximum were calculated (Table 6). 

 

Combined Dataset 

 Features from TWIP results, ZS results, and the NHD were merged into a final dataset 

named “Combined”. Based on accuracy assessment results, the merging prioritization was as 

follows: 1) the TWIP features form the foundation of the final dataset, 2) all ZS features that do 
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not intersect with the TWIP features, 3) and all NHD features that do not intersect with the 

merged TWIP and ZS features (Figure 10).  

 

Results 

NHD Results 

NHD water feature count, cumulative surface area, and percentage unidentified by the 

TWIP or ZS approaches are shown in Table 1. Calculations exclude the reservoir itself and any 

connected features. Naturally, the number of NHD water bodies tends to increase with increasing 

drainage area with the exceptions of Melvern Reservoir and Fall River Reservoir. Water body 

densities, or average count per square kilometer, range from 1.09 Ct/km2 (Marion) to 2.97 

Ct/km2 (Clinton), with a mean count per km2 of 2.04. The percentage of NHD features 

unidentified by either of TWIP or ZS procedures ranges from 41.78 % (El Dorado) to 88.31 %, 

(Toronto) with a mean of 69.68%.  

TWIP Results 

Results of the TWIP approach are summarized in Table 2. The approach encountered 

scaling issues and was most successful in identifying greater numbers of NHD features in 

smaller drainages. Significant processing issues occurred for three large drainages, Clinton, 

Perry, and John Redmond, and these drainages are therefore omitted from Table 2. Partial results 

were obtained for Clinton Reservoir, with the script only identifying features in the southwest 

portion of the drainage. While these results are omitted from the TWIP summary table (Table 2), 

they were incorporated in generating the Combined dataset and are recognized in later tables. 
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The script failed to execute for Perry Reservoir, the second largest drainage area, and that 

drainage is excluded from the TWIP results. The required road and railroad removal procedure 

could not be completed for the largest drainage, John Redmond, as the number of points 

resulting from the buffered roads and railroads caused the extract-values-to-points tool of 

ArcGIS to fail.  In turn, that drainage also is excluded from the TWIP results. The approach was 

most successful in identifying NHD features for the three smallest drainage areas: Marion – 

32.71%; El Dorado – 55.87%; and Council Grove – 35.64%. The approach identified over 90% 

of all ZS features in Council Grove, El Dorado, Fall River, and Marion drainages. In all 

drainages where execution was successful, features absent in the NHD dataset were identified, 

with an average of new features comprising 1.75% of the NHD count on average. The scaling 

issues may reside in file sizes, feature numbers, and/or processing limitations of ArcGIS tools 

included in the script. However, based on successful execution in smaller drainages and lack of a 

clear remedy, the current results were deemed sufficient to draw conclusions for the purposes of 

this study.  

ZS Results 

Results of the Zero Slope approach are summarized in Table 3. Failure of TWIP 

execution for Perry and John Redmond drainages prevented comparison of ZS and TWIP for 

those drainages. Percentage of NHD features identified through ZS ranged from 11.69% 

(Toronto) to 58.22% (El Dorado) with a mean of 30.31%. Features absent in the NHD were 

identified in all drainages, ranging from 12 (Fall River & Toronto) to 246 (John Redmond). 

Identification of new features relative to the NHD resulted in an average increase of 2.09% in 

impoundment number across all drainages. The Zero Slope approach successfully identified 99% 

or greater of all TWIP features for all drainages.  
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Combined Data 

The Combined datasets are summarized in Table 4. Merging the TWIP, ZS, and NHD 

data resulted in an increase in water features relative to the NHD data for all drainage areas. The 

percentage increase relative to NHD count ranged from 0.28% (Toronto) – 3.97% (Marion) with 

a mean of 2.10%. El Dorado is the only drainage where the NHD does not provide the majority 

of geometries for the final dataset (41.03%). NHD data comprise the highest percentages of the 

final dataset features for Toronto (88%) and Fall River (85.13%). The percentage of TWIP 

features in final datasets ranges from 0% for Perry and John Redmond to 55.28% for El Dorado 

with a mean of 19.57%. Since TWIP feature geometries were favored over ZS geometries in 

appending order, ZS features comprise a mean of 11.98% of features included in final datasets. 

ZS features make up the highest percentages for datasets where TWIP processing was 

unsuccessful: Perry (30.03%), John Redmond (36.23%), and Clinton (25.74%). Since TWIP and 

ZS geometries supplanted intersecting NHD geometries, certain water bodies represented as 

fragmented or continuous by the NHD were replaced by contiguous or divided geometries (e.g., 

Figure 11). The summed change in NHD count is noted in the NHD Div/Join column, with 

positive values indicating an overall increase attributed to division of features, and a negative 

value indicating an overall decrease in NHD count due to joining.  

Surface Area Difference 

Table 5 contains the cumulative NHD and Combined water body surface areas for each 

drainage. Eight of the reservoir drainages experienced an increase in cumulative drainage area 

due to additional features and altered geometries of the Combined data relative to the NHD. Fall 

River and Toronto were the exceptions, showing a decrease in cumulative feature surface area of 
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16.28% and 14.50%, respectively. The maximum increase in water feature surface area was 

48.41% (Marion) and the mean 8.37%. Change in density, or count per km2, relative to the NHD 

was marginal across all drainages and was therefore omitted. 

Accuracy Assessment 

Summary statistics are provided for the geometric accuracy indices in Table 6. NHD 

accuracy indices exhibit the greatest range and deviation of the three datasets, with a minimum 

of 0.3064, a maximum of 0.9677, and a standard deviation of 0.1544. The mean NHD index, 

79.22, is the lowest of the three datasets. The TWIP and ZS accuracy results are closely similar 

on all summary statistics, exhibiting mean index values of 0.9119 (TWIP) and 0.9111 (ZS) with 

minimal standard deviation (0.0437 – TWIP; 0.459 – ZS). Disregarding overlap and positional 

accuracy, percentage of total Verified surface area (% Verified SA) was calculated from 

summing surface areas for each dataset. NHD features totaled to 82% of Verified surface area 

and TWIP and ZS features totaled to 94.90% and 94.14%, respectively.  

 

Discussion 

TWIP accuracy and limitations 

TWIP-derived features held the greatest geometric and positional accuracy as determined 

by a mean index value of 0.9119 (Table 6). Additionally, it demonstrated the greatest 

consistency, with an index standard deviation of 0.0437, when compared to the NHD (0.1544) 

and ZS (0.0459). These results supported prioritization of TWIP-derived water features when 

merging the three datasets.  
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Noise removal was largely achieved through removal of all features less than 250 m2, but 

manual validation of features not intersecting NHD data was required. Overall, the manual 

geoprocessing required to remove false positives was minimal. However, required execution 

time far exceeded that for the ZS tool. For example, the smallest drainage, Marion (535 km2), 

took approximately 2 hours for the TWIP tool to finish, while the ZS tool completed water 

feature identification in under 3 minutes. The largest drainage area successfully completed, 

Toronto (1855 km2), required over 10 hours to execute the TWIP tool. The substantial time 

required for execution is likely attributed to the iteration of multiple map algebra operations and 

sink filling, which can be particularly time-consuming with high resolution elevation data and a 

large processing extent.  

 The approach was most effective in smaller drainages. For drainage areas that the tool 

executed successfully, percentage of NHD features identified ranged from 10.37% for Toronto to 

55.87% for El Dorado (Table 2). The greatest percentages of NHD features identified occurred in 

the smallest drainage areas: Marion (32.71%), El Dorado (55.87%), and Council Grove 

(35.64%). The percentage of ZS features identified through the TWIP exceeded 90% for the 

three smallest drainages as well as Fall River. In all drainage areas that TWIP completed, 

features absent in the NHD were identified. As drainage area increased, the TWIP feature count 

did not increase. In fact, feature number ranged from 391 to 440 for reservoirs exceeding the size 

of the three smallest without correlation to drainage size. This tendency to identify a limited 

number of features may be due to limitations of feature number or file size for certain 

geoprocessing steps in the TWIP process. 

 Running TWIP on the Clinton drainage area resulted in a unique outcome. Features were 

only identified for the southwest portion of the drainage area. While the TWIP tool ran 
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successfully for some larger drainage areas (i.e., Fall River and Toronto), Clinton has the highest 

density of water bodies of all areas analyzed (Table 1). Halting of TWIP identification may have 

been related to inherent ArcGIS tool limitations when processing such large files or feature 

numbers. This may also have been the cause of the tool’s failure to complete processing for 

Perry. While the precise cause of error in the procedure is unknown, the issue in DEM 

preparation for John Redmond’s drainage area is clear. When attempting to use the extract-

values-to-points tool of the spatial analyst toolbox, the tool completed processing but assigned 

elevation values of zero to 29% of the points.  The tool was assigned to extract elevation values 

to 8.9 million points, which proved to exceed the tool’s limitations. There are inherent and often 

undocumented limitations to ArcGIS tools, which may be unknown to the user and seldom 

encountered. However, processing high resolution elevation data (i.e., LiDAR-derived DEMs) 

over a substantial area may illuminate these limitations, and drawing attention to specific cases 

such as this can help others to avoid these problems and encourage programmers to develop 

remedies. A simple solution to these issues would be dividing up drainage areas and performing 

TWIP water feature identification for the subdivided areas. However, determining an appropriate 

parcel area to maximize efficiency of TWIP would be necessary, and time constraints, the 

objectives of this study, and ZS tool success discouraged further investigation.  

Zero slope effectiveness and efficiency 

 Accuracy assessment results showed ZS geometric and positional accuracy to be 

comparable, although slightly less favorable, to TWIP accuracy. The ZS approach resulted in a 

mean accuracy index of 0.9111, representing higher accuracy than NHD features (mean index = 

0.7922), and coming close to TWIP’s mean index of 0.9119 (Table 6). Even with the single cell 

buffer incorporated into the ZS process, surface areas were consistently smaller for ZS compared 
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to TWIP results. This is likely due to heterogeneous alignment on stretches of hydro-flattened 

patch perimeter cells, particularly around inlet areas (e.g., Figure 8), and a resulting greater loss 

of pixels through selection of 0 slope values than pixel gain from a uniform buffer. In turn, 49 of 

the 50 features sampled showed a greater TWIP surface area than ZS surface area, and TWIP 

features averaged a 1.38% increase in surface area compared to corresponding ZS features. In 

terms of index variance, ZS samples had a standard deviation of 0.0459, reflecting greater 

consistency than the NHD (0.1544) and slightly less than the TWIP (0.0437). Accuracy 

assessment results favored ZS features over NHD but not TWIP when merging the datasets.  

 Smaller false positives were removed through deletion of any features less than 250 m2, 

as was done with the raw TWIP data. Hydro-flattened rivers produced the majority of larger false 

positives and were manually removed. While intersecting the ZS features with NHD stream data 

to identify hydro-flattened stream segments was considered, this could lead to removing 

impoundments intersecting streamlines, and the clustering tendencies of hydro-flattened stream 

polygons allowed efficient manual removal. Due to the required manual removal of hydro-

flattened lotic features, manual geoprocessing took slightly more time than with the TWIP 

dataset. However, execution of the tool was markedly quicker than the TWIP, taking at most two 

hours for the largest drainage (John Redmond), which the TWIP tool was unable to process 

successfully. The more time-efficient character of the ZS tool is attributed to its single iteration 

process and absence of sink filling and multiple map algebra operations. Generating a slope 

raster is the most time-consuming aspect of the script, but it requires far less time than TWIP’s 

sink fill. Furthermore, removal of roads and railroads is unnecessary for the ZS approach, as it is 

not subject to the false dams created by those features. In summary, the ZS approach is far less 

time-consuming in terms of pre-processing and execution than the TWIP method. 
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 In all reservoir drainages analyzed, ZS identified more features than the TWIP and a 

greater percentage of NHD features. ZS identified 99% or more of all features identified through 

the TWIP method. ZS identified 11.69% (Toronto) to 58.22% (El Dorado) of NHD water bodies, 

with a mean of 30.31% (Table 3). The mean percentage of increase in water bodies due to ZS 

results relative to NHD data was 2.09%. In contrast to TWIP results, there was a general increase 

in numbers of features identified with increasing drainage area, with the exceptions of Council 

Grove, Fall River, and Toronto, which all produced fewer features than some smaller drainage 

areas. Also in contrast to the TWIP approach, the ZS tool was successfully applied to the largest 

drainage areas, Perry and John Redmond, identifying 28.22% and 34.48% of NHD features, 

respectively.  

Summary and Significance of Combined Dataset 

 Based on results of the accuracy assessment, TWIP and ZS–derived features exhibit 

superior surface area accuracy to NHD data. While TWIP results were not collected for John 

Redmond and Perry, ZS accuracy was comparable to TWIP, and the successful execution of the 

ZS method in those drainages led to their inclusion in the Combined datasets despite having only 

NHD data and ZS results to draw from. Since the geometries of TWIP and ZS results have been 

shown to be more valid than NHD features and new water bodies were identified for all 

drainages, merged datasets may be considered more accurate and complete compared to 

inventory approaches relying solely on the NHD.  

 As a consequence of new geometries, many previously segmented or continuous NHD 

water bodies were joined or divided based on TWIP and ZS depictions (e.g., Figure 11). In turn, 

the count of Combined bodies may be different from the sum of the NHD and the 
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nonintersecting TWIP and ZS features. The overall change in NHD feature count due to division 

or joining is shown in Table 4 (“Div/Join”). Half of the drainages experienced reduced feature 

count due to conjoining of features (negative values) and half experienced an increase in feature 

count due to fragmenting (positive values) with a mean increase in 1.3 features. In turn, no trend 

of NHD representing exclusive features as fragmented or fragmented features as joined was 

observed. TWIP results occasionally joined fragmented ZS features into singular features, 

resulting in new feature counts of the Combined dataset being less than new feature counts of the 

ZS for Toronto, El Dorado, Pomona, and Melvern drainages (Figure 12). Additionally, the TWIP 

method identified two water bodies absent in the NHD and ZS results, one in El Dorado and one 

in Melvern. Conversely, ZS identified all other TWIP features absent in the NHD as well as 5 

additional water bodies for Melvern, 10 for Pomona, 1 for Toronto, 176 for Perry, and 246 for 

John Redmond.  

 Findings indicate the NHD underestimates cumulative water body surface area due to 

missing features and imprecise geometries. Comparison of the Combined surface areas and NHD 

surface areas shows a mean increase of 8.37% in total surface area relative to the NHD (Table 5). 

Additionally, surface area increase would likely be greater for Clinton, John Redmond, and Perry 

if the TWIP tool had executed properly since TWIP features tend to have slightly greater surface 

areas than ZS features. Omitting surface area supplied by features absent in the NHD and 

positional accuracy, total surface area of NHD features used in the accuracy assessment only 

summed to 82% of the totaled Verified feature surface area. Even without the addition of new 

features to the NHD, the NHD should be regarded as an underrepresentation of regional standing 

water.  
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 Two drainage areas stand out due to low percentages of NHD features identified through 

ZS and reduced surface areas resulting from the Combined dataset. Fall River and Toronto have 

drainage areas of 1,434 km2 and 1,855 km2, respectively. According to the NHD, Fall River has 

2,828 water bodies and Toronto has 3,943, yet ZS analysis only identified 415 features for Fall 

River (intersecting 14.41% of NHD water bodies) and 479 features for Toronto (intersecting 

11.69% of NHD water bodies). TWIP results were fewer still, and interestingly, replacing this 

percentage of NHD geometries with TWIP or ZS results and appending additional water bodies 

resulted in substantial decreases in cumulative surface areas for both drainages (Table 5). Fall 

River and Toronto are adjacent drainages with the majority of their drainage areas in Greenwood 

County, Kansas. Elevation data used in this study was mosaicked from elevation tiles developed 

by different vendors from 2010 – 2016. While it is possible this region’s tile may have 

experienced less thorough hydro-flattening compared to tiles created by other vendors, the time 

the LiDAR data was collected may offer another explanation. While the DEM for the 

Greenwood County and other southeast counties was produced in 2013, the source LiDAR data 

was collected in the winter of 2012, towards the end of a severe two year drought. Water levels 

may have been low, and there may have been a disproportional number of desiccated ponds the 

year of data collection. In turn, there were likely greater returns and fewer voids in the point 

cloud. This would result in the reduction in the number of hydro-flattened features, smaller 

geometries for hydro-flattened features, and underestimation of surface areas by elevation-based 

water body identification. However, precise collection date and conditions are needed to verify 

this possibility. 
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Conclusions 

ZS and TWIP approaches improved NHD geometries overall and identified features 

absent in the NHD using automated geoprocessing and hydro-flattened 2-m elevation data. 

TWIP and ZS demonstrated greater accuracy and consistency when features were recognized 

compared to the NHD. However, the NHD includes substantially more lentic features than the 

ZS or TWIP produced, and the approaches should not be treated as stand-alone methods of 

inventorying. While both approaches required some manual post-processing and false positive 

removal, the TWIP requires substantially greater pre-processing and execution time than the ZS. 

The TWIP approach produced the most favorable geometries but identified few features missed 

by the ZS. Overall, the ZS identified more features included and absent in the NHD than the 

TWIP. 

The ZS approach proved more reliable in large drainages relative to the TWIP. ArcGIS 

tools included in the TWIP script likely have inherent limitations regarding file size or feature 

number, preventing identification of increasing numbers of features delineated with increasing 

drainage area and successful script execution altogether in certain drainages. In effect, the ZS 

should be favored in large extent processing. Subdividing large processing extents is one 

possibility to improve TWIP performance. LiDAR data collected during periods of drought may 

result in substantially fewer and smaller voids, which results in fewer and smaller hydro-

flattened patches. 

The NHD underestimates water feature surface area in the study region. While this may 

be attributed in part to the absence of water bodies constructed post-NHD, the geometries of the 

NHD dataset tend to underestimate actual water surface areas. Therefore, inventories using the 
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NHD, such as those of McDonald (2012) and Callihan (2013) may be conservative in estimates 

of cumulative surface area.  

The methods applied in this study are aimed at improving accuracy of current water body 

inventories through efficient automated approaches. The hydrological, geochemical, and 

ecological ramifications of impoundments are significant anthropogenic alterations of natural 

processes, and constitute sufficient justification for surveying, research, and management for 

water resources and conservation purposes. With new impoundments continuing to be 

constructed, efficient methods of updating water body distribution data have value in 

impoundment research and management. The methods demonstrated and resulting datasets 

provide a novel example in updating and improving water body inventories for eastern Kansas.   

 

 

References 

 

Bosch, N. S. (2008). The influence of impoundments on riverine nutrient transport: An 

evaluation using the Soil and Water Assessment Tool. Journal of Hydrology 355(1), 131 

147. 

 

Buddemeier, R. W. (2004). Detection and characterization of small water bodies A Final 

Technical Report for the NASA-EPSCoR/KTech- funded project: Kansas Geological 

Survey. 

 

Callihan, R. A. (2013). Distribution, proliferation and significance of small impoundments in 

Kansas. (M.S.), University of Kansas, Lawrence, KS. 

 

Carpenter, L., Stone, J., & Griffin, C. (2011) Accuracy of aerial photography for locating 

seasonal (vernal) pools in Massachusetts. Wetlands 31, 573–581. 

 

Churchill, M.A. 1948: Discussion of analyses and use of reservoir sedimentation data by L.C. 

Gottschalk. Proceedings of the Federal Interagency Sedimentation Conference, Denver, 

Colorado. US Geological Survey, 139–40. 

 



61 

 

Deacon, J. E. (1961). Fish populations, following drought, in the Neosho and Marais des Cygnes 

rivers of Kansas. Univ. Kansas Mus. Nat. Hist., Publ. 13(9), 359-427. 

 

DeCoursey, D. G. (1975). Implications of floodwater retarding structures. Transactions of the 

American Society of Agricultural Engineers, 18(5), 897–904. 

 

deNoyelles, F. & Jakubauskus, M. (2008). Current state, trend, and spatial variability of sediment 

in Kansas reservoirs. Sedimentation in Our Reservoirs: Causes and Solutions, 9-23. 

 

deNoyelles, F. & Kastens, J. H. (2016) Reservoir sedimentation challenges in Kansas. 

Transactions of the Kansas Academy of Science, 119(1), 69-81. 

 

Downing, J. A., Cole, J. J., Middleburg, J. J., Striegl, R. G., Duarte, C. M., Kortelainen, P., 

Prairie, Y. T., & Laube, K. A. (2008). Sediment organic carbon burial in agriculturally 

eutrophic impoundments over the last century. Global Biogeochemical Cycles 22(1). 

 

Falke, J. A. & Gido, K. B. (2006). Spatial effects of reservoirs on fish assemblages in Great 

Plains streams in Kansas, USA. River Research and Applications 22 (1), 55-68. 

 

Gordon, N. D., McMahon, T. A., & Finlayson, B. L. (1992). Stream Hydrology: an Introduction 

for Ecologists 1st Edition. 

 

Harbeck, G. E. (1962). A practical field technique for measuring reservoir evaporation utilizing 

mass-transfer theory. Professional Paper 272-E, US Geological Survey. 

 

Heidemann, H. K. (2014). LiDAR Base Specification Version 1.2. US Geological Survey 

Standards Book 11, Collection and Delineation of Spatial Data. 

 

Hudman, S. P. & Gido, K. B. (2013). Multi‐scale effects of impoundments on genetic structure 

of creek chub (Semotilus atromaculatus) in the Kansas River basin. Freshwater Biology 

58(2), 441-453 

 

Johnson, P. T., Olden, J. D., & Zanden, M. J. V. (2008). Dam invaders: impoundments 

facilitate biological invasions into freshwaters. Frontiers in Ecology and the Environment 

6(7), 357-363. 

 

Kansas Department of Health and Environment (KDHE). (1981) The impact of floodwater 

retarding impoundments on the biota and water quality of ephemeral Kansas streams. Soil 

Cons. Serv. and Kansas Dept. Health Environ. Cooperative Project, Final Report. 

 

Kastens, J. H., Baker, D. S., Peterson, D. L. & Huggins, D. G. (2016) Wetland Program 

Development Grant (WPDG) FFY 2013 – Playa Mapping and Assessment. KBS Report 

186.  

 

Kinsolving, A. D. & Bain. M. B. (1993). Fish assemblage recovery along a riverine disturbance 

gradient. Ecological Applications 3(1), 531-544. 



62 

 

 

Leonard, P. B., Baldwin, R. F., Homyack, J. A., & Wigley, T. B. (2012). Remote detection of 

small wetlands in the Atlantic coastal plain of North America: Local relief models, 

ground validation, and high-throughput computing. Forest Ecology and Management 

284, 107-115. 

 

LiDAR Implementation Plan. (2011). State of Kansas GIS Policy Board. 

 

Mammoliti, C. S. 2002. The effects of small watershed impoundments on native stream fishes: a 

focus on the Topeka shiner and hornyhead chub. Transactions of the Kansas Academy of 

Science, 105(3), 219-231. 

 

Mammoliti, C. 2004. Recovery plan for the Topeka shiner (Notropis topeka) in Kansas. Kansas 

Department of Wildlife and Parks. 

 

Martinko, E., deNoyelles, F., Bosnak, K., Jakubauskas, M., Huggins, D., Kastens, J.,  Shreders, 

A., Baker, D., Blackwood, A., Campbell, S., & Rogers, C. (2014). Atlas of Kansas Lakes: 

A resource for communities, policy makers and planners. 

 

McDonald, C. P., Rover, J. A., Stets, E. G., & Striegel, R. G. (2012). The regional abundance 

and size distribution of lakes and reservoirs in the United States and implications for 

estimates of global lake extent. Limnology and Oceanography, 57(2), 597-606. 

 

Menge, B. A. & Sutherland, J. P. (1976). Species diversity gradients: synthesis of the roles of 

predation, competition, and temporal heterogeneity. American Naturalist 110(973), 351–

369. 

 

Moore, C. M. (1969). Effects of small structures on peak flow. Effects of watershed changes on 

streamflow. Univ. Texas Press, Austin. 101-117. 

 

Power, M. E., Matthews W. J., & Stewart, A. J. (1985) Grazing minnows, piscivorous bass, and 

stream algae: dynamics of a strong interaction. Ecology 66(5), 1448–1456. 

 

Rahmani, V., Kastens, J., deNoyelles, F., Jakubauskus, M., Martinko, E., Huggins, D., Gnau, C., 

Liechti, P., Campbell, S., Callihan, R., Blackwood, A. (2017). Examining storage loss 

and sedimentation rate of large reservoirs in the U. S. Great Plains. Unpublished article. 

 

Renwick, W. H., Smith, S. V., Bartley, J. D., & Buddemeier, R. W. (2005). The role of 

impoundments in the sediment budget of the conterminous United States. 

Geomorphology 71(1), 99-111. 

 

Rice, C. W. (2002). Storing carbon in soil: why and how? Geotimes 47, 14–17. 

 

Schrank, S., Guy, C., Whiles, M., & Brock, B. (2001). Influence of instream and landscape-level 

factors on the distribution of Topeka shiners Notropis topeka in Kansas streams. Copeia 

2, 413-421. 



63 

 

 

Smith, S. V., Renwick, W. H., Bartley, J. D., & Buddemeier, R. W. (2002) Distribution and 

significance of small, artificial water bodies across the United States landscape. Science 

of the Total Environment 299(1), 21-36. 

 

Stearman, L. & Lynch, D. (2013). Patterns of assemblage change in prairie stream fishes in 

relation to urban stormwater impoundments. Hydrobiologia 718(1), 221-235. 

 

Tiner, R. (1989). Current status and recent trends in Pennsylvania's wetlands. In Majumdar, S.K., 

Brooks, R.P., Brenner, F.J. and R.W. Tiner eds. Wetlands Ecology and Conservation: 

Emphasis in Pennsylvania. The Pennsylvania Academy of Science, Easton, PA, 368-387. 

 

USGS, (2009). National Hydrology Dataset Feature Catalog. URL [http://nhd.usgs.gov/]. Date 

accessed [October 2016] 

 

Vaughn, C. C. & Taylor, C. M. (1999). Impoundments and the decline of freshwater mussels: 

a case study of an extinction gradient. Conservation Biology 13(4), 912-920. 

 

Verstraeten, G. & Poesen, J. (2000) Estimating trap efficiency of small reservoirs and ponds: 

methods and implications for the assessment of sediment yield. Progress in Physical 

Geography 24(2), 219-251. 

 

Wetter, L. H. (1980). The effects of small watershed dams on streamflow. Transactions of the 

Kansas Academy of Science, 83(4), 237–238. 

 

Wu, Q., Lane, C., & Liu, H. (2014). An effective method for detecting potential woodland vernal 

pools using high resolution LiDAR data and aerial imagery. Remote Sensing 6(11), 

11444-11467. 

 

Zale, A. V., Leslie, D. M., Fisher W. L., & Merrifield, S. G. (1989). The physicochemistry, 

flora, and fauna of intermittent prairie streams: a review of the literature. United States 

Fish and Wildlife Service. Biological Report 89, 51-44. 

 

 

 

 

 

 

 

 

 



64 

 

Figures 

 

Figure 1: Reservoir Drainage Areas  
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Figure 2: John Redmond Reservoir Drainage Boundary  

 

 

Boundaries of John Redmond’s drainage end at the dams of Council Grove Reservoir and  

Marion Reservoir. This delineation is guided by the methodology of Rahmani et al. (2017). 
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Figure 3: Overview of Processing. Steps detailed in additional figures are marked (*). Parts A and B are 

shown below, and Part C along with a key are shown on the following page. 

A) Drainage DEM preparation and drainage NHD data extraction. Reservoir polygons were extracted from the 

NHD and used as pour points for drainage delineation using 30-m resolution elevation data (NED).  Resulting 

drainage polygons were used to clip NHD water body data and 2-m elevation data for each drainage. To conclude 

preliminary DEM processing, 2-m drainage DEMs were subjected to a median filter and road and railroad removal 

in accordance to methodologies of Kastens et al. (2016).   

 

 

 

 

 

 

 

 

 

 

B) TWIP and ZS processing prior to comparison with drainage NHD data. TWIP and ZS methodologies were 

carried out, and resulting features under 250 m2 were removed. Reservoirs and their potentially connected features 

were removed by identifying features intersecting the reservoir or its buffer, and aerial imagery was used to identify 

any of the intersecting features actually connecting to the reservoir. 
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C) Validation of remaining features and merging into Combined dataset. Remaining features were validated via 

intersection with the NHD and manual review of nonintersecting features using aerial imagery. Finally, TWIP, ZS, 

and NHD results were compiled into the final dataset. 
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Figure 4: Drainage DEM Extraction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

Figure 5: Extraction of NHD Data for Individual Reservoir Drainages  
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Figure 6: Road and Railroad Removal. TIGER roads, TIGER railroads, and K-DOT Non-state roads 

were first clipped, dissolved, and merged to create a single feature for removal from drainage DEMs. After various 

lengths were tested, a buffer radius of 30 meters was found sufficient for eliminating false dams caused by roads and 

railroads. A raster of the roads and railroads buffer was created for later application in raster calculator. The buffered 

feature was densified, and vertices converted to points, for which elevation values were extracted using the filtered 

2-m DEM. Any points without elevation values (-9999) were removed, and a TIN was created from the remaining 

points. The TIN was then rasterized for use in raster calculator. With the raster calculator, values from the rasterized 

TIN were burned into the buffered road and railroad extent of the filtered DEM to produce the final drainage DEMs.  
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Figure 7: TWIP 

A) Aerial imagery of an 

impoundment from Pomona 

drainage.  

B) Sink depth map taken from 

subtracting the filled DEM from the 

original DEM. 

C) TWIP feature resulting from a 

0.3 meter depth threshold. A 

B C 
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         Figure 8: Effect of Zero Slope Buffer 
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Figure 9: Accuracy Assessment for Zero Slope 
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Figure 10: Accuracy Assessment Equation.  

 

 

Accuracy Index =        2A 

  (B + C) 

 

 
 

 

 

 

 

 

 

 

 

B represents the verified water body geometry; C represents the NHD, TWIP, or ZS geometry; A represents the 

overlap between B and C or the overlap between the verified surface area and the NHD, TWIP, or ZS surface area. 

Accuracy Index values range from 0 – 1.00. Values approaching 0 signify little geometric agreement, and values 

approaching 1.00 show strong geometric agreement. 



74 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Joining NHD Feature 

Fragments 

A) Example of discontinuous water 

features of the NHD from El Dorado 

drainage.  

B) Single water body represented as 

disjointed polygons by NHD 

C) Features from the TWIP dataset 

resulting in the joining of NHD features 

B 

A 

C 
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Figure 12: Fragmented Zero Slope Feature Joined by TWIP Procedure 

 

 

 

Narrow stretches of hydro-flattened cells connecting broader patches can lead to fragmentation in the ZS approach. 

In turn, intersecting TWIP features may result in more continuous geometries than the ZS approach. 
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Tables 

 

Table 1: NHD Results 

Reservoir Area (km2) Ct SA (km2) NHD Only %  NHD Only Ct/ km2 

Marion 535 584 1.4104 370 63.36 1.09 

El Dorado 634 766 6.1141 320 41.78 1.21 

Council Grove 677 1142 4.5877 728 63.75 1.69 

Pomona 836 2290 5.7711 1730 75.55 2.74 

Melvern 870 2048 6.6397 1423 69.48 2.35 

Clinton 951 2828 10.2670 2039 72.10 2.97 

Fall River 1434 2776 12.4129 2375 85.55 1.94 

Toronto 1855 3943 16.0943 3482 88.31 2.13 

Perry 2928 7694 31.1691 5523 71.78 2.63 

John Redmond 6645 10861 37.5025 7073 65.12 1.63 

Min 535 584 1.4104 320 41.78 1.09 

Max 6645 10861 37.5025 7073 88.31 2.97 

Mean 1736.5 3493.2 13.1969 2506.3 69.68 2.04 

 

Includes drainage area sizes derived from 30 meter NED catchment delineation, NHD clipping, and intersecting 

results for ten selected reservoir drainages. Reservoirs and potentially connected water bodies were removed prior to 

calculations. Area represents drainage area in km2; Ct is the number of NHD water body polygons with boundaries 

inside the drainage area; SA is the cumulative surface area of NHD features in km2; NHD Only is the number of 

NHD features not intersecting TWIP or Zero Slope results; % NHD Only is the percentage of NHD features not 

intersecting TWIP or Zero Slope results; Ct/km2 is the average count of NHD features per square kilometer drainage 

area. 
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Table 2: TWIP Results 

Reservoir 

Area 

(km2) Ct 

Intrsct 

NHD % NHD 

Intrsct 

ZS % ZS New 

% Inc 

NHD 

Marion 535 210 187 32.71 210 90.60 23 3.94 

El Dorado 634 439 414 55.87 438 94.19 25 3.26 

Council Grove 677 417 401 35.64 416 97.88 16 1.40 

Pomona 836 440 403 17.69 440 72.70 37 1.62 

Melvern 870 420 393 19.29 419 63.69 27 1.32 

Clinton 951 * * * * * * * 

Fall River 1434 391 379 13.58 390 94.22 12 0.43 

Toronto 1855 420 410 10.40 420 88.73 10 0.25 

Perry 2928 ** ** ** ** ** ** ** 

John Redmond 6645 *** *** *** *** *** *** *** 

Min 535 210 187 10.40 210 63.69 10 0.25 

Max 6645 440 414 55.87 440 97.88 37 3.94 

Mean 1736.5 391 369.57 26.26 359 86.00 21.43 1.75 

 

Table 2 shows the results of the TWIP procedure following removal of false positives, removal of the reservoir and 

potentially connected features, and results of intersection with the NHD and Zero Slope features. Area represents 

drainage area in km2; Ct is the count of TWIP features produced for each drainage; Intrsct NHD is the number of 

TWIP features intersecting with NHD features; % NHD is the percentage of NHD features identified through the 

TWIP approach; Intrsct ZS is the number of TWIP features intersecting with ZS features; % ZS is the percentage of 

Zero Slope features identified through the TWIP approach; New is the number of TWIP features absent in the NHD 

data; % Inc NHD is the percentage of increase in NHD count should the New features be appended to the NHD.  

*Execution of TWIP tool in the Clinton Reservoir drainage area resulted in water body identification for only the 

southwest portion. 

**Data not obtained for Perry Reservoir due to failure of TWIP script. 

***TWIP could not be carried out for John Redmond due to failure of required roads and railroads removal 

procedure.   

 

 

 

 

 

 

 

 



78 

 

Table 3: Zero Slope Results 

Reservoir 

Area 

(km2) Ct 

Intrsct 

NHD % NHD 

Intrsct 

TWIP % TWIP New 

% Inc 

NHD 

Marion 535 234 211 36.64 212 100.00 23 3.94 

El Dorado 634 465 439 58.22 444 99.77 26 3.39 

Council Grove 677 425 409 36.16 416 99.76 16 1.40 

Pomona 836 608 560 24.45 442 100.00 48 2.10 

Melvern 870 661 627 30.52 421 99.76 34 1.66 

Clinton 951 894 806 27.90 139 100.00 88 3.11 

Fall River 1434 415 403 14.41 391 99.74 12 0.43 

Toronto 1855 479 467 11.69 425 100.00 12 0.30 

Perry 2928 2370 2194 28.22 * * 176 2.29 

John Redmond 6645 4019 3773 34.48 * * 246 2.26 

Min 535 234 211 11.69 139 99.74 12 0.30 

Max 6645 4019 3773 58.22 444 100.00 246 3.94 

Mean 1736.5 1057 988.9 30.31 361.25 99.88 68.1 2.09 

 

Table 3 shows the results of the ZS procedure following removal of false positives, removal of the reservoir and 

potentially connected features, and results of intersection with the NHD and TWIP features. Area represents 

drainage area in km2; Ct is the count of ZS features produced for each drainage; Intrsct NHD is the number of ZS 

features intersecting with NHD features; % NHD is the percentage of NHD features identified through the ZS 

approach; Intrsct TWIP is the number of ZS features intersecting with TWIP features; % TWIP is the percentage of 

TWIP features identified through the ZS approach; New is the number of ZS features absent in the NHD data; % Inc 

NHD is the percentage of increase in NHD count should the New features be appended to the NHD.  

* Data not obtained due to failure of TWIP script. 
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Table 4: Combined Dataset Results 

Reservoir 

Area 

(km2) Ct New 

% Inc 

NHD % NHD % TWIP % ZS 

NHD 

Div/Join 

Marion 535 602 23 3.97 61.46 34.88 3.65 -5 

El Dorado 634 780 27 3.56 41.03 56.28 2.96 -7 

Council Grove 677 1152 16 1.41 63.19 36.20 0.61 -6 

Pomona 836 2336 47 2.05 74.06 18.84 7.11 -1 

Melvern 870 2083 33 1.61 68.31 20.16 11.52 2 

Clinton 951 2930 88 3.09 69.59 4.74 25.67 17 

Fall River 1434 2790 12 0.43 85.13 14.01 0.86 2 

Toronto 1855 3957 11 0.28 88.00 10.61 1.39 3 

Perry 2928 7893 176 2.29 69.97 0.00 30.03 23 

John Redmond 6645 11092 246 2.27 63.77 0.00 36.23 -15 

Min 535 602 11 0.28 41.03 0.00 0.61 -15 

Max 6645 11092 246 3.97 88.00 56.28 36.23 23 

Mean 1736.5 3561.5 67.9 2.10 68.45 19.57 11.98 1.3 

 

Table 4 show the results of the final dataset. Area represents drainage area in km2; Ct is the count of features; New is 

the number of features in the Combined dataset absent in the NHD; % Inc NHD is the percentage of increase in 

NHD count should the New features be appended to the NHD; % NHD is the percentage of the Combined count 

composed of NHD geometries; % TWIP is the percentage of Combined count composed of TWIP-derived 

geometries; % ZS is the percentage of Combined features composed of ZS-derived geometries; NHD Div/Join is the 

overall change in NHD count due to polygon division or joining resulting from TWIP or ZS geometries.  
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Table 5: Surface Area 

Reservoir Area (km2) 

Combined SA 

(km2) NHD SA (km2) 

Change in SA 

(km2) 

% Change in 

SA 

Marion 535 2.0931 1.4104 0.6828 48.41 

El Dorado 634 7.3882 6.1141 1.2741 20.84 

Council Grove 677 5.0248 4.5877 0.4371 9.53 

Pomona 836 6.1205 5.7711 0.3493 6.05 

Melvern 870 7.3099 6.6397 0.6703 10.09 

Clinton 951 10.7420 10.2670 0.4751 4.63 

Fall River 1434 10.3923 12.4129 -2.0206 -16.28 

Toronto 1855 13.7606 16.0943 -2.3337 -14.50 

Perry 2928 35.1882 31.1691 4.0191 12.89 

John Redmond 6645 38.2476 37.5025 0.7451 1.99 

Minimum 535 2.0931 1.4104 -2.3337 -16.28 

Maximum 6645 38.2476 37.5025 4.0191 48.41 

Mean 1736.5 13.6267 13.1969 0.4298 8.37 

 

Table 5 compares cumulative surface area between NHD datasets and Combined datasets. Area represents drainage 

area in km2; Combined SA is the cumulative surface area of features included in the Combined dataset in km2; NHD 

SA is the cumulative surface area of features included in the NHD dataset in km2; Change in SA is the difference in 

cumulative surface area in km2 after subtracting NHD SA from Combined SA; % Change in NHD SA is the increase 

or decrease in surface area of the Combined datasets relative to the NHD datasets ((Merged SA – NHD SA)/NHD 

SA)
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Table 6: Accuracy Assessment Results 

Statistics NHD TWIP ZS 

Index Mean 0.7922 0.9119 0.9111 

Index Min 0.3064 0.7136 0.7084 

Index Max 0.9677 0.9736 0.9742 

Index Std dev 0.1544 0.0437 0.0459 

Total SA (km2) 556007 643478 638364 

%Total Verified SA 82.00 94.90 94.14 

   

Table 6 shows summary statistics for NHD, TWIP, and Zero Slope accuracy indices ranging from 0 – 1 and total 

surface area comparison with total Verified surface area. An index value approaching 0 indicates poor geometric 

and/or positional accuracy. An index approaching 1 indicates strong geometric and/or positional accuracy. Total SA 

presents cumulative surface area of sampled features in m2; % Total Verified SA presents the percentage of 

cumulative Verified surface area resulting from the sum of sampled feature areas
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Chapter III 

 

Comparing Impoundment Abundance, Distribution, and Catchment Traits 

among Eastern Kansas Reservoir Drainages 

 

 

Introduction 

 

The decline of water resources is a global concern, with region-specific issues reflecting 

local geography and history of land use practices. Eastern Kansas is largely dependent on 

reservoirs for water services, reservoirs which are approaching the end of their usable lives as 

they infill with sediment. Current management strategies for imminent reservoir restoration focus 

dredging, which will require considerable costs and treats a symptom but fails to address the 

causes of reservoir sedimentation. Lack of natural lentic features and widespread agricultural 

land use have led to an abundance of artificial water bodies, which are also infilling and in the 

process potentially reducing rates of sedimentation in downstream reservoirs. Precise 

measurement of impoundment sediment sink effects and resulting reduction in downstream 

sediment load is challenging, particularly on the scale of a federal reservoir drainage in Kansas, 

but it is accepted that impoundments have the potential to serve as significant sinks of sediment. 

Using new high-resolution elevation data for the region, this study delineates catchments of 

upstream water bodies within infilling reservoir drainages of eastern Kansas. Additionally, 

erosion-related traits are characterized for subcatchment and unimpeded runoff areas to better 

describe potential sink services of upstream impoundments in connection with Kansas reservoir 
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sedimentation. The methods and results of this study provide an example of exploratory research 

into the relationship between upstream impoundments and reservoir sediment yields and provide 

a new resource for decision-making related to reservoir drainage management in Kansas. 

 

Reservoir Fill Concerns in Kansas  

As is this case with other declining resources, population growth and climate change have 

been identified as stressors in water resources loss, and Kansas is vulnerable to these effects due 

to the regional geography. Kansas has experienced a population increase of 164,000 people 

between 2000 and 2010 (U.S. Census Bureau, 2015), which represents an increased demand of 

nearly 1.8 Mm3 of drinking water per year (Rahmani et al., 2017). Additionally, the region is 

dominated by cropland (43% statewide) with 47% of the land use within federal reservoir 

drainages constituting cropland (Homer et al., 2015). Cropland is considered a source of higher 

erosion potential and sediment runoff relative to other common land cover types such as 

woodland and grassland (Bedient et al., 2013). In terms of climate change, a significant 

consequence is increased weather extremes such as drought and flooding (Hurd et al., 1999; 

Miley et al., 2005; Rahmani et al., 2015). For regions where flooding and drought are inherent in 

weather patterns (i.e., the United States Midwest), more severe flooding and drought may lead to 

greater sedimentation in reservoirs and increased surface area evaporation, respectively. With the 

exception of playas and relatively few natural lakes, Kansas demonstrates a water resources 

infrastructure partially dependent on man-made reservoirs (Martinko et al., 2014), which 

experience disproportionately high amounts of infill during high flow events brought about by 

intense storms (Meade & Parker, 1985). With prolific agricultural land use, an increasing local 
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and global population, and a regional climate prone to drought and flooding events, Kansas may 

experience increased agricultural and municipal demand for water within a water resources 

infrastructure susceptible to climate-induced stress. 

Much of Kansas relies on aging reservoirs for flood control and drinking water services, 

and as these water bodies reach the end of their usable lifetimes, restoration through dredging 

will require significant costs. Kansas has over 200 reservoirs, mostly state or federally owned, 

with surface areas exceeding 20 hectares (deNoyelles & Kastens, 2016; NHD, 2014). Eighty of 

these provide primary or backup drinking water for 60% of the state’s population and provide 

flood control services, which was the primary purpose for construction of the state’s 24 federal 

reservoirs (deNoyelles & Jakubauskas, 2008). The 24 federal reservoirs were constructed from 

1948 to 1981, are estimated to hold more water than all the other state’s water bodies combined, 

and were constructed with a usable life expectancy of 50 years (deNoyelles & Kastens, 2016). 

As these reservoirs approach the end of their usable lives, they lose storage capacity to 

sedimentation, shallow zones expand, and the relatively young and unstable biotic communities 

can shift towards excess cyanobacteria growth, which can be detrimental to water quality 

(deNoyelles & Jakubauskus, 2008). By 2030, the first three federal reservoirs in Kansas – Tuttle 

Creek, Toronto, and John Redmond – will reach 50% infilled, the approximate percentage at 

which functionalities are expected to be impaired, and will require restoration measures 

(deNoyelles & Kastens, 2016). If current fill rates remain constant, another 8 of the state’s 24 

federal reservoirs will be half in-filled by 2105, and 44% of the total storage will be lost for the 

combined 24 (deNoyelles & Kastens, 2016). As the state plans dredging action to recover 

reservoir capacity, projected costs are substantial. At a present-day cost of roughly $6 for 

removal of one cubic yard of sediment, restoring the 24 federal reservoirs to their original 
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volume by the end of the century would cost $13.8 billion (deNoyelles & Kastens, 2016). 

Furthermore, 1.4 million acres of one foot deep sediment would have to be disposed of, and costs 

and methods of disposal are difficult to ascertain (deNoyelles & Kastens, 2016). These estimates 

are based on current rates and costs, and they do not consider possible exacerbation induced by 

climate change. In turn, these projections can be considered conservative in terms of 

expenditures and fill rates. 

Given the impending restoration costs to maintain the state’s reservoir infrastructure, new 

management approaches and related research may be highly valuable if they help to prolong 

reservoir usability and reduce the need for restoration efforts. Dredging treats the symptom of 

reservoir sedimentation but is temporary, costly, and fails to address the source of the problem. 

Additionally, previous reservoir development has occurred in optimal locations for flood control 

and water supply, which makes choosing new sites in proximity challenging (Kondolf et al., 

2014). Without constructing new reservoirs, constructional and operational modifications to 

increase storage or allow high sediment load bypass have been suggested (deNoyelles & 

Kastens, 2016). Redesigning reservoirs accordingly would likely extend usable lives of the 

reservoirs and has done so in the case of John Redmond (deNoyelles & Kastens, 2016) but does 

little to address the causes of sedimentation. Reservoir management may benefit from 

comprehensive characterization of reservoir drainages, which investigates the sources and 

processes of sedimentation. By better understanding contributing and mitigating factors of 

reservoir sediment yield on the scale of drainage area, management decisions may be better 

equipped to address causes of sedimentation instead of its consequences.  
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Kansas Landscape Factors Related to Erosion and Sedimentation 

Erosion-related factors 

Several landscape factors influence runoff and erosion potential, and in turn, can be 

determinate of sediment load. Streamflow is the main source of sediment for reservoirs, and 

higher rates of sedimentation correlate with drainage areas experiencing greater precipitation 

(Langbein & Schumm, 1958). Increased runoff results in greater discharge and sediment carrying 

capacity, and potential runoff and sediment load are largely dependent on drainage area, 

gradient, soil type and permeability, and land use (deNoyelles & Jakubauskus, 2008; Bedient et 

al., 2013).  Bedient et al. (2013) describe the significance of these factors in runoff modeling: 

drainage area determines the volume of water generated by a precipitation event; watershed 

slope reflects the change in elevation with distance in an overland flow area and influences 

overland flow velocity; soil type determines infiltration rate and water-holding capacity of the 

landscape; and finally, land use and land cover have significant effects on watershed response by 

influencing overland flow velocity, infiltration, and susceptibility to erosion (Bedient et al., 

2013).  Under the “Rational Method” common in hydrological modeling, land cover types 

ranking from least to greatest runoff potential are as follows: woodland or forest, meadow or 

grassland, pasture or range land, cultivated land, and urban areas with increasing percent 

imperviousness (Bedient et al., 2013).  

The landscape of Kansas reflects widespread land cover alteration and increased 

susceptibility to erosion relative to natural conditions due to agriculture. Euro-American 

settlement beginning 125 – 150 years ago spread intensive row crop production to the region, 

which accelerated erosion rates (deNoyelles & Kastens, 2016). Settlers found the nutrient rich 
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and highly erodible mollisols dominating the area highly favorable for crop production, and these 

soils have since provided the source material for overland eroded sediment. In recent decades, 

more conservative agricultural practices have been implemented in the Midwest (e.g., cropland 

terracing and no-till farming). However, erosion rates greater than pre-settlement conditions 

remain, and agriculture persists as the major land cover of Kansas. Presently, 43% of the land 

cover of Kansas is cropland, and of the non-agricultural land cover, warm season grasses 

compose the majority of the undeveloped land or 34.78% of the state, cool season grasses 

occupy 7.16%, Conservation Reserve Programs (primarily grasses) 5.38%, woodlands 4.07%, 

and urban areas cover 1.73%  (Peterson et al., 2010).  

 Catchment areas for reservoirs in Kansas experience the greatest land cover variation in 

terms of grassland and agriculture. While Tuttle Creek’s catchment area is composed of 24.4% 

grassland and 70.5% cropland, Fall River Reservoir’s contains 86.5% grassland and 4.7% 

cropland (Martinko et al., 2014). Woodland cover ranges from 0.4% of the catchment area for 

Kanapolis Reservoir to 18.6% for Clinton Reservoir (Martinko et al., 2014). Urban land use is 

minimal in all reservoir catchments and shows the least variation among reservoirs included in 

the Kansas Atlas of Lakes (Martinko et al., 2014). Given that precipitation rates are highest in 

the eastern third of the state, it is unsurprising that surface runoff-derived erosion tends to be 

greatest in that region (Peterson et al., 2010).  Considering the range of grassland and cropland 

coverage among reservoir catchment areas, erosion rates and sediment loads likely vary among 

eastern Kansas catchments in response to land use differences.  

Human-engineered fluvial systems have further altered erosion processes. Prior to Euro-

American settlement, Kansas watersheds were dominated by native grasslands, and riparian 

vegetation effectively stabilized soil and slowed runoff (deNoyelles & Kastens, 2016). Drainage 
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modifications have been implemented in the form of straightened stream channels and 

constructed bank levees. While the purpose for these modifications is founded on channel 

position stabilization and local flooding mitigation, the changes have resulted in “high water 

flows, reduced residence time, increased in-channel erosion, and increased sediment carrying 

capacity compared to pre-European settlement conditions” (deNoyelles & Kastens, 2016). 

Research has indicated that the majority of sediment currently infilling reservoirs originated from 

channel-bank sources (Juracek & Zeigler, 2007). 

Impoundments as sinks 

Small impoundments have been recognized as significant sinks for sediment and related 

particulates, but are not well understood in connection to large reservoir sedimentation reduction. 

Dams have been described as “significant features of every river and watershed of the nation” 

(Gaff, 1999). While the effects of sediment and particulate trapping in impounded rivers is well 

documented (Trimble and Bube, 1990; Meade, 1990), the effects of upstream sediment trapping 

by smaller impoundments have often been overlooked (Mulholland & Elwood, 1982; Stallard, 

1998; Smith et al., 2001; Smith et al., 2002). Of the few studies estimating cumulative sediment 

yield of smaller impounded features (surface area < 1 ha) in the conterminous United States, 

water feature density-based modeling has suggested annual sediment yield of small 

impoundments to be comparable to large reservoirs (Smith et al., 2002; Renwick et al., 2005). 

Two thirds of annual sediment loads are believed to be deposited in lentic systems (Smith et al., 

2001), and Smith et al. (2002) thought this accumulation to be split fairly evenly between small 

and large water bodies. In a similar study by Renwick et al. (2005), three separate density-based 

models were employed to compare sedimentation of small and large artificial lentic bodies in the 

United States. Findings from the study estimate 25% of total sheet and rill erosion settling in 



89 

 

small impoundments, capturing 21% of the total watershed areas for the subcontinental United 

States, and total sedimentation for small impoundments range from 0.43 – 1.78 x 109m3yr-1, 

potentially matching or exceeding estimated total reservoir accumulation of 1.67 x 109m3yr-1 

(Renwick et al., 2005). This wide range in small impoundment sediment yield estimates is due to 

limitations in data resolution and processing resources inherent in a large area of interest with 

minute features as the focus. Due to these caveats, these studies rely on water body density 

without precise subcatchment delineations and largely omit landscape variables related to 

erosion potential. 

At a smaller scale, impoundment size and positioning have been recognized as significant 

factors influencing downstream reservoir nutrient loads. Impoundments are considered most 

effective at reducing total phosphorus and nitrogen transport when positioned at the mouth of the 

river or in nutrient source areas, and multiple small impoundments may result in a greater 

reduction in suspended nutrient load than a single large reservoir (Bosch, 2008).  Small 

impoundments have also been observed trapping disproportionate amounts of organic carbon 

within a drainage area (Downing et al., 2008). The high burial rates of nutrients and organic 

carbon occurring in small impoundments have been attributed to heavier sedimentation and 

sediment aggregate transport relative to large reservoirs, the tendency for rapid vertical accretion, 

and frequent adjacency to human and agricultural sources of nutrient loading (Downing et al., 

2008; Smith et al., 2002; Bosch, 2008). In a region with widespread agriculture, a dependence on 

man-made reservoirs, and an abundance of farm ponds, small impoundments likely play a role in 

regulating reservoir infill and nutrient overloading occurrence. 

 Kansas exemplifies the agricultural industry’s tendency towards constructing small 

impoundments. In the United States, portions of the Midwest have both the smallest mean 
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surface areas and highest densities of impoundments due to agricultural water supply purposes, 

and the eastern portion of the Great Plains exhibits the greatest water body abundance (Smith et 

al., 2002). Kansas alone boasts over 200,000 impoundments under 40 hectares, most with surface 

areas less than or equal to one acre, which combined cover approximately 288 square miles and 

store an estimated 1,299,000 acre/feet of water (NHD, 2016; Huggins et al., 2011; Callihan, 

2013). The density gradient of small impoundments as estimated by Smith and others (2002) 

ranges from less than 0.03 impoundments per km2 in western portions of the state to an average 

of 1-3 water bodies per km2 in the eastern third. The greater occurrence of impoundments in 

eastern Kansas is owed to its higher precipitation and greater surface flows, while the semi-arid 

western part of the state relies largely on subsurface water (deNoyelles & Kastens, 2016). 

Research quantifying the sediment yields of Kansas’s small impoundments is limited (e.g., 

Foster, 2011), but their abundance and ties to the agricultural industry suggest significant 

sediment trapping potential in eastern Kansas and favorable placement for intercepting 

agriculture-derived nutrients.   

For a state with natural lentic systems limited to ephemeral playas predominately in 

western Kansas and relatively few oxbow and sinkhole lakes statewide (Martinko et al., 2014), 

extensive impoundment construction has substantially altered hydrological and physical 

processes. The majority of sediment currently depositing in Kansas reservoirs is believed to 

originate from channel-bank eroded material (Juracek & Zeigler, 2007). Impoundments, which 

are placed in the path of channel-bank eroded material, often proximal to agricultural sources of 

nutrient unloading, and densely distributed in eastern Kansas, are relatively understudied on a 

reservoir catchment scale and may be important mitigators of Kansas reservoir sedimentation 

and nutrient overloading. Furthermore, small impoundments have been increasing an average of 
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1-3% annually in Kansas since the 1930s (Callihan, 2013). As their abundance increases and 

they garner recognition as sinks of sediment and nutrients, better characterizing their influence 

on downstream reservoir infill could be valuable to reservoir and drainage management.  

 

Obstacles to incorporating small water features into reservoir drainage modeling 

Various erosion models have been applied to study areas comparable to reservoir 

drainages, but integration of small impoundment sink effects has been largely neglected. The 

Universal Soil Loss Equation (USLE) set the precedent in incorporating soil erodibility, slope 

length, slope steepness, cover management, and rainfall runoff erosivity into a relatively simple 

and widely used model to predict average annual soil runoff (Wischmeier & Smith, 1978). Many 

models employing similar parameters have been developed since (e.g., Renard et al., 1991; 

Flanagan & Nearing, 1995; Arnold et al., 1998; Morgan et al., 1998). However, these models 

target rill and interrill erosion and do not account for gulley and channel erosion (Lim et al., 

2005). In turn, model emphasis on overland erosion has resulted in small impoundment sink 

effects being ignored in most regional sediment yield studies. This neglect may be partially 

attributed to data limitations and the potentially time-consuming geoprocessing required should 

sufficiently high resolution data be available to address small impoundment catchment. For 

example, studies using the revised USLE or similar models often use a flow accumulation 

algorithm or tool to calculate the slope length factor (Jain & Kothyari, 2000; Fernandez et al., 

2003; Lim et al., 2005). Should the study extent remain constant but elevation data pixel size be 

reduced to accurately delineate small impoundment drainages, flow accumulation calculation 

time may substantially increase, and total geoprocessing time would be compounded if the model 
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were iterated for each water feature within the study area. Additionally, other parameter data 

would need to match the resolution of the elevation data, which may require resampling or 

conversion and in turn reduced accuracy. Furthermore, water body datasets have historically 

underestimated small features (e.g., Smith et al., 2002; Buddemeier, 2004; Renwick et al., 2005), 

which limits accuracy of total cumulative impoundment sediment trapping estimates.  

Due to lack of data, insufficient resolution, or limited geoprocessing resources, studies of 

small impoundment sedimentation in the conterminous United States have opted for density-

based sedimentation yield estimation of sub regions and extrapolation via simpler models (Smith 

et al., 2002; Renwick et al., 2005). When estimating annual small impoundment sediment yield 

for the conterminous United States, projections by Renwick and others (2005) varied from 0.43 – 

1.78 x 109m3yr-1, reflecting the difficulty of measuring large–scale accumulation with exactness.  

Beyond data quality and geoprocessing, an additional encumbrance to measuring small 

impoundment sediment trapping on a regional scale lies in the complexity of trap efficiency 

models and their bias towards larger water features. Trap efficiency (TE) is the proportion of 

inflowing sediment that is deposited in a lentic feature (Verstraeten & Poesen, 2000). Various 

empirical models have been developed centering TE estimation around a capacity–to–watershed 

ratio, capacity–to–annual–inflow ratio, or a sedimentation index (Bowen, 1943; Churchill, 1948; 

Brune, 1953; Heinemann, 1981). These models differ in index values and source data, but all 

derive TE from characteristics of inflowing sediment and retention time, which are controlled by 

pond geometry and various runoff variables (Verstraeten & Poesen, 2000). Empirical TE models 

have been based on limited data for large reservoirs in select areas, and in turn, TE curves can be 

misleading if used for small features with runoff traits differing from those developed for large 

reservoirs (Chen, 1975; Verstraeten & Poesen, 2000). While theoretical models have been 
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suggested to be more applicable for TE modeling of small impoundments, they often require 

detailed data on water feature and runoff traits (e.g., in- and out-flowing discharge), which is 

often lacking (Verstraeten & Poesen, 2000). Additionally, estimating cumulative sediment 

trapping in multiply–impounded stretches is further complicated by dynamic sediment particle 

size distribution. Sediments having passed through an impoundment are finer and less likely to 

deposit in the next impoundment, resulting in reduced TE by downstream impoundments 

(Churchill, 1948).   

 Trap efficiency of small impoundments is more unstable and sensitive to deposition and 

discharge fluctuation than larger water features, adding further difficulty to small impoundment 

sedimentation modeling. Farm ponds are expected to infill more rapidly than large reservoirs due 

to lower capacity–to–catchment–area ratios (Verstraeten & Poesen, 2000). This results in shorter 

usable lives in small impoundments. While age and percentage infilled may be well known for 

large reservoirs in Kansas (e.g., Martinko et al., 2014), similar information for small 

impoundments is not as well understood for the region. Additionally, records of dredging or 

restoration efforts conducted by private landowners are absent in regional water body 

inventories. As impoundments infill, they lose capacity, trap efficiency lessens, and 

impoundments revert to “pass through” systems similar to pre-impoundment conditions 

(deNoyelles & Kastens, 2016). The 50% infill benchmark for large reservoirs is not as 

determinate of functionality loss for small impoundments, since small impoundment response to 

suspended sediment is more sensitive to variation in discharge. Just as yearly precipitation 

patterns are dynamic, small impoundments may oscillate among sediment trapping, pass through, 

and flushing based on discharge intensity and frequency. Foster (2011), for example, found 

storm intervals determinate of sediment deposition trends in small impoundments in Kansas. 
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Suspended sediment loads in Kansas are comprised mostly of silts and clays, which require 

longer suspension times for deposition, and in cases of short intervals between storm events, 

small impoundments can experience significant flushing due to residence times too brief for 

deposition (Foster, 2011). The varying response of impoundments to inflowing sediment and 

lack of current infill knowledge make quantifying their influence on downstream sediment yield 

tenuous, and pursuit of descriptive research regarding their relationship on reservoir 

sedimentation may be more practical than quantitative modeling.  

 Possibly the most conspicuous caveat surrounding small impoundment regional 

modeling, is that their gross abundance makes sedimentation modeling especially challenging. 

Field surveying and validation of water body and drainage details necessary for most erosion and 

TE models is currently unfeasible on the scale of major Kansas reservoir drainages and their 

associated small impoundments. While sampling and interpolation using simple models have 

been somewhat successful (e.g., Smith et al, 2002), accuracy is lost when applied at other regions 

or scales. Furthermore, newly constructed or infilled impoundments can alter the distribution 

yearly, making aggregative modeling even more haphazard.   

 Impoundments have been shown to be significant sinks of sediment within watersheds 

(e.g., Smith et al, 2002; Renwick et al., 2005; Foster, 2011), but accounting for their collective 

influence on downstream sediment yields is challenging due to their dynamic response to 

inflowing sediment, the complex and large reservoir-oriented nature of most models, and various 

data limitations. However, a few traits fundamental to erosion and trap efficiency modeling can 

be characterized for impoundments and corresponding drainages. Capacity–to–catchment–area 

measurement has been the center of most trap efficiency models, and using surface area to 

represent capacity has been done in the past (i.e., Camp, 1946). With high resolution elevation 
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data, comprehensive small water body data, and novel processing and analysis methods, capacity 

to catchment area can be characterized for small impoundments within reservoir drainages. 

Furthermore, erosion-related traits of land use, soil type, and gradient can be calculated for small 

impoundment catchment areas. Characterizing key erosive and trap efficiency traits within a 

selected Kansas reservoir drainage in the context of subcatchment versus “direct” runoff can 

provide insight into potential reservoir infill mitigation attributed to upstream impoundments and 

an exploratory example in small impoundment sedimentation research.   

 

High Resolution Subcatchment Delineation and Data Availability for Kansas 

Use of LiDAR-derived digital elevation data in drainage delineation has been shown to 

increase accuracy in minor water feature catchment delineation relative to traditional elevation 

data (Liu et al., 2005). Light detection and ranging (LiDAR) elevation is collected via laser 

pulses dispersed from LiDAR-equipped aircraft. As the reflected pulses return to their source, 

the data are collected in a raw point cloud composed of multiple pulses per square meter of land, 

and elevation data points are determined from return time and data recorded in unison with GPS 

data (Heidemann, 2014). Vendors then process the raw LiDAR data and convert it to digital 

elevation models (DEMs), an efficient means to represent ground surface and a useful tool from 

which to extract hydrologic features within a geographic information system (GIS). Common 

horizontal resolutions of LiDAR-derived DEMs include 1 and 2 meters. This enhanced spatial 

resolution allows a new precision for hydrological modeling and has initiated various 

hydrographic network studies (Liu et al., 2005 Colson et al., 2006; Jones et al., 2008; Li and 

Wong, 2010; Petroselli, 2012; Tang et al., 2014). Noteworthy among these, Liu et al. (2005) 
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demonstrated LiDAR-derived DEMs’ superior accuracy in delineation and extraction of 

subcatchments relative to commonly used 20-meter resolution elevation data. While improved 

detail of small-scale features may be expected with the improved resolution offered by LiDAR, 

Petroselli (2012) also found LiDAR-derived elevation data to be preferable for hydrogeomorphic 

characterization on a basin scale, providing more detail than commonly used 20 – 30-meter 

DEMs. In western Kansas, Kastens et al. (2016) developed automated methods for playa 

identification and delineation of playa catchments using 2-meter resolution DEMs, tasks 

previously impossible without sufficiently high-resolution elevation data.  

 High resolution elevation data are now available for Kansas and can be applied towards 

subcatchment delineation of impoundments within reservoir drainages. The LiDAR 

Implementation Plan beginning in 2011 led to production of 2-meter LiDAR-derived DEM 

mosaics collectively covering the entirety of Kansas (completed 2016). By using these elevation 

data and applying methods such as those demonstrated by Kastens et al. (2016), subcatchments 

from small impoundments within infilling reservoir drainages can be delineated with adequate 

detail. As high-resolution elevation data have only become available for most reservoir drainages 

within the past few years, a major study characterizing and comparing subcatchment traits 

among reservoirs has yet to be conducted.  

 

Project Summary 

Reservoir sedimentation is an imminent concern for Kansas, with most federal reservoirs 

expected to reach or approach the end of their usable lives by the end of the century. Current 

management strategies are costly and address the symptoms but do little to address the causes of 
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infill. Most sediment yield modeling incorporates overland erosion-related factors such as land 

use, soil characteristics, and gradient, but fails to account for small impoundment sediment 

trapping, which has the potential to capture sediment from both overland and channel-bank 

sources. The landscape of Kansas is one of widespread agricultural land use and significant 

manipulation of hydrological systems reflected by an abundance of small impoundments. It is 

accepted that impoundments have the potential to be significant sinks for sediment, but their 

relationship with downstream reservoir sediment yield in Kansas is not well understood. While 

there are many issues in quantifying sediment yields of small impoundments on a regional or 

reservoir drainage scale, characterizing impoundment distribution and subcatchment traits tied to 

erosion potential may provide new insight into the influences of impoundments on downstream 

reservoir sedimentation in Kansas. LiDAR-derived DEMs offer the means to delineate small 

impoundment catchments and investigate a little studied dynamic of reservoir infill rates for the 

region. A detailed characterization of impoundment distribution, subcatchment traits, and 

possible influences on reservoir sediment yields will contribute to the body of research 

surrounding reservoir infill for the region and could provide useful information for reservoir and 

reservoir watershed management decisions.  

This research uses high-resolution LiDAR-derived elevation data to delineate 

subcatchment areas attributed to upstream water bodies within 9 Kansas reservoir drainages and 

calculates fundamental traits related to erosion and sediment trapping within the context of 

subcatchment and direct runoff areas. The primary objectives of this chapter are to: 1) 

Summarize water body distribution, water body catchment areas, and surface–area–to–

catchment–area ratios for select reservoir drainages, 2) Delineate and characterize subcatchment 

and unimpeded runoff areas in terms of land use, soil traits, and gradient for select reservoir 
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drainages, 3) Compare the results of objectives 1 and 2 among reservoir drainages to investigate 

potential influences of upstream water bodies on downstream reservoir sediment yield. In doing 

so, this project addresses the questions: “How might the potential sink services of impoundments 

be studied by delineating and characterizing impoundment catchments?” and “How might small 

impoundment sink effects differ among Kansas reservoirs in connection to downstream sediment 

yield?” 

 

Methods 

Study Area & Data Sources 

Reservoir drainages selected for this study include Perry, Clinton, Pomona, Council 

Grove, Melvern, Marion, El Dorado, Toronto, and Fall River (Figure 1). Drainages were selected 

in part due to their common precipitation patterns, which reduces the likelihood of precipitation 

differences influencing sediment yield rates among drainages. With the exception of portions of 

the Perry, Melvern, and Toronto drainages, all drainages have annual precipitation rates of 850-

1000 mm (Figure 2). Reservoir catchments cover portions of the following 20 counties: 

Atchison, Butler, Brown, Chase, Coffey, Douglass, Elk, Greenwood, Harvey, Jackson, Jefferson, 

Lyon, Marion, McPherson, Morris, Nemaha, Osage, Shawnee, Wabaunsee, and Woodson. Perry 

and Clinton reside in the Lower Republican basin; Pomona & Melvern in the Marias Des Cygnes 

basin; Marion and Council Grove in the Neosho basin; Fall River and Toronto in the Verdigris 

basin; and El Dorado in the Walnut River basin.  

Reservoirs selection was conducted to purposefully form a sample group with a range of 

drainage sizes, capacities, and sedimentation rates. By doing so, findings may be relatable to 
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many regional reservoirs and not to select categories (e.g., reservoirs projected to infill rapidly or 

much more slowly). Reservoir drainage size, age, capacity, percentage infill, and specific 

sediment yield are displayed in Table 1. Drainages range from 535 km2 (Marion) to 29,928 km2 

(Perry) and have a mean size of 1,191 km2. Ages range from 69 years (Fall River) to 38 years (El 

Dorado), and the average age is 51 years. Original capacities range from 34 million m3 (Toronto) 

to 300 million m3 Perry, and percentage infill as of 2015 ranges from 3.6% (Melvern) to 43.4% 

(Toronto). Annual specific sediment yields, cubic meters of sediment per km2 drainage area, 

range from 135 (Fall River) to 487 (Pomona) with an average of 306 m3km2yr-1.  

Drainage water body datasets were produced as described in Chapter 2 (Combined 

dataset). 30-year normals precipitation data was retrieved from the PRISM Climate Group of 

Oregon State University. Road and railroad datasets were retrieved from the Kansas Data Access 

& Support Center (DASC), including the 2002 KDOT non-state road system shapefile produced 

by the Kansas Department of Transportation, the TIGER 2014 center-line roads shapefile 

produced by the U.S. Census Bureau, and the TIGER 2010 railroads shapefile produced by the 

U.S. Census Bureau. Additionally, 30-meter DEM tiles from the USGS National Elevation 

Dataset (NED) were retrieved from DASC. LiDAR-derived 2-meter DEMs were provided by 

faculty at the Kansas Biological Survey, a research center affiliated with the University of 

Kansas. DEM tiles were produced from 2010 – 2016 by separate vendors under the 2011 LiDAR 

Implementation Plan. 30-m 2005 Land Cover Patterns data were obtained from the Kansas 

Applied Remote Sensing Program of the Kansas Biological Survey. Gridded Soil Survey 

Geographic Data were retrieved from the USDA NRCS. Geoprocessing was conducted using 

ESRI ArcGIS, scripting and tool packages were coded in Python, and spreadsheet and statistical 

analysis was conducted in Microsoft Excel. 
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Preliminary Processing 

 Drainage delineation methods, drainage elevation data extraction, and 2-m DEM 

preliminary processing are detailed in Chapter 2. Road and railroad removal has been found 

necessary for accurate catchment delineation of minor water bodies by previous studies 

(Poppenga et al., 2010; Kastens et al., 2016). Poppenga et al. (2010), for example, found that 

without removing roads from high resolution DEMs, “the filling of depressions to create 

continuous surface flow can cause the flow to spill over an obstruction in the wrong direction.” 

To avoid such occurrences, roads and railroads were removed following procedures in Kastens et 

al. (2016), which are detailed in Chapter 2.  

 

Water Body Size Distribution and Catchment Calculations  

 Water features from the Combined dataset of Chapter 2 were grouped according to size 

and counted for each drainage. Size categories include less than 0.05 ha, 0.05 – 0.2 ha, 0.2 – 0.5 

ha, 0.5 – 1 ha, and greater than 1 ha. Percentages for each size class were determined based on 

count, and summary statistics were calculated for impoundment size distribution comparison 

among reservoirs.  

Water bodies from the Combined datasets served as pour points for subcatchment 

delineation in reservoir drainages (Figure 3). Water body catchments were converted to polygons 

for area calculation. Converting catchment raster data to polygon format can result in 

fragmentation (Figure 7).  To account for this, water feature catchment area was calculated by 

summing all catchment polygons generated from the same raster value (water body FID 

number). These catchment size measurements were added as a new attribute in the water body 
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dataset and titled “CA”. Water body surface–area–to–catchment–area ratios were then calculated 

using CA values. The CA and surface–area–to–catchment–area ratios ratio calculations tool is 

documented in the Appendix.  

 

Erosion-related Landscape Traits 

 Land use and soil data were extracted for subcatchment area and unimpeded flow area 

through similar procedures (Figures 4 & 5). 30-meter land use raster data from KARS and 10-

meter SSURGO data were clipped to drainage extent and resampled to match the cell size of the 

DEM used for subcatchment delineation (2 meters). Catchments were dissolved into a single 

feature to extract erosion-related traits for cumulative drainage subcatchment. Land use and soil 

data were extracted using subcatchment area masks, and the raster calculator was used to extract 

data for drainage area not included in the subcatchment (direct runoff area). Land use attribute 

tables for subcatchment, direct runoff area, and the entire reservoir drainage were imported into 

Excel for percentage calculations and comparison among drainages. Soil erosion class and runoff 

information were incorporated into soil attribute tables by joining the component table from 

SSURGO. Soil attribute information for subcatchment, direct runoff, and drainage areas was 

imported into Excel for percentage calculations and comparison among reservoir drainages.  

 The procedure for obtaining slope summary statistics is represented in Figure 6. Slope 

cell values were calculated from a filled DEM following road and railroad removal. To include 

only the overland gradient, all pixels with a slope value of zero (hydro-flattened) were removed. 

Zonal statistics were calculated using subcatchment, direct runoff area, and drainage area as 
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zones. Results for the three categories were imported into Excel for comparison among reservoir 

drainages.  

 

Results 

Individual drainage summaries 

 Results per reservoir drainage are summarized in Figures 8 – 16. Section A provides a 

visualization of subcatchment coverage, which is shaded in purple, and lists the percentage of 

drainage area covered by subcatchment as well as the number of impoundments inventoried. As 

percentage subcatchment increases, the portion of drainage runoff passing through 

impoundments increases. In turn, higher subcatchment percentages indicate higher percentages 

of runoff passing through impoundments and potentially releasing sediment.   

Section B shows land use distribution in pie charts for the reservoir drainage, direct 

runoff area, and subcatchment. Percentage values are displayed within the figures for the most 

abundant land use types (typically grassland and cultivated cropland), and as urban, other, and 

occasionally woodland occurred in minute percentages, those percentages can be found above 

each chart. Land use resulting in least to greatest runoff potential are as follows: woodland, 

grassland, cultivated cropland, and urban (Bedient et al., 2013).  

Section C includes drainage area, specific sediment yield, subcatchment area, and 

impoundment density information. Drainage area is provided in km2. Sediment yield from 

Rahmani et al. (2017) is listed in cubic meters per km2 per year. Subcatchment area (“Subcatch”) 

is listed in km2. Percentage subcatchment (%Subcatch) and number of impoundments (Ct) are 
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also listed, followed by impoundment density (Density), and number of impoundments per km2 

of drainage area.  

Section D displays impoundment size distribution for the drainage by count and 

percentage. Size classes include less than 0.05 ha, 0.05 – 0.2 ha, 0.2 – 0.5 ha, 0.5 – 1 ha, and 

greater than 1 ha. Percentage is calculated from the total number (Ct) of impoundments in the 

drainage.  

Section E summarizes impoundment catchment sizes and water body surface–area–to–

catchment–area ratios. Catchment size results are listed in ha with a median value provided to 

represent central tendency. Average surface–area–to–catchment–area ratio is taken from the 

median ratio value. 

Combined results 

Water body surface area distributions, cumulative water surface areas, and impoundment 

density for select reservoir drainages are displayed in Table 2. 24,523 water bodies in total were 

included in the analysis.  Of all surface areas analyzed, 15.24 % are under 1/20 ha, 60.27% under 

1/5 ha, and 85.32 % under 1/2 ha. The greatest portion of features were within the 1/20 -1/5 ha 

size class (45.03%). 8.60% of features constituted the 1/2 – 1 ha group, and 6.09% of surface 

areas exceeded 1 ha. Densities ranged from 1.13 impoundments per km2 (Marion) to 3.08 per 

km2 (Clinton), with an overall density of 2.29 per km2. 

Water body catchment summary statistics are shown in Table 3, water body surface–

area–to–catchment–area ratio results are shown in Table 4, and percentage subcatchment is 

included in Table 5. Median catchment size for all catchments is 4.55 ha, and catchment sizes 

range from 0.005 ha – 11273 ha. The combined area of the catchments for all nine drainages is 



104 

 

394,846 ha or 3,948 km2. Median surface–area–to–catchment–area ranged from 1:23.7 (Perry) to 

1:43.3 (Marion), with an overall average of 1:26.3. Highest ratios were due to National 

Hydrography Dataset (NHD) source material. These water bodies were not derived from 

elevation data, so polygon contours do not adhere to the DEM cells comprising catchment areas, 

and pour points could be off center in the DEM. As a result, it was possible for surface–area–to–

catchment–area ratio to exceed 1.00. Furthermore, water features may have filled in since NHD 

completion, which can result in the delineated catchment simply covering the area of the false 

water body (Figure 17). All ratios exceeding 0.90 were produced from NHD source data with the 

single exception of a Zero Slope-derived water body. In terms of cumulative catchment, drainage 

subcatchment coverage ranged from 26.22% (Council Grove) to 58.72% (El Dorado), with 

combined subcatchments covering 36.83% of the total study area.   

Land use percentages for drainages, subcatchments, and direct runoff areas are provided 

in Table 6.  Water coverage was excluded in percentage calculations. Urban, cultivated cropland, 

grassland, woodland, and “other” (bare rock, sand and gravel pits, and sandbars) land use 

classifications are included.  

Soil erosion class and runoff category percentages for drainages, subcatchments, and 

direct runoff areas are provided in Tables 7 and 8. Soil erosion classes found in this study area 

include Class 1, Class 2, and areas of deposition. Class 1 are soils considered to have lost less 

than 25% of the original A and/or E horizons, Class 2 are soils considered to have lost 25 – 75% 

of the original A and/or E horizons, and deposition areas are areas where deposition currently 

exceeds erosion (SSURGO). Runoff is the loss of water from an area by overland flow. Runoff 

categories range from negligible to very high based on soil permeability and topography. 

Negligible runoff areas include concave areas, which are assumed not to produce runoff 
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(SSURGO). Data for both soil traits were unavailable for large portions of several drainages, and 

percentage area without soil data is included under “NoData”. 

Slope summary statistics for drainages, subcatchments, and direct runoff areas are 

provided in Table 8. Values are listed in degrees. Mean slope for drainages ranges from 1.56° (El 

Dorado) to 4.01° (Perry). With the exception of Marion reservoir, where subcatchment and direct 

runoff slope averages are equal, all drainages have lower average slope in subcatchments than in 

direct runoff areas. 

 

Discussion 

Similarities and differences in erosion-related traits 

The reservoirs and sedimentation index used in this study were purposefully selected to 

limit potential variables responsible for reservoir sedimentation differences. By selecting 

reservoir drainages with similar precipitation patterns (Figure 2), differences in precipitation can 

be relatively overlooked when considering the factors responsible for the contrasting 

sedimentation rates. Using a per unit drainage area sedimentation index – specific sediment yield 

– as opposed to other reservoir-specific measurements of sedimentation (e.g., percentage 

infilled), allowed this study to be drainage-oriented in its analysis of factors responsible for 

sedimentation and to avoid including reservoir specific traits. Specific sediment yield serves as a 

dependent variable that results entirely from drainage traits and is independent of reservoir traits 

(i.e., original capacity and age), which allowed for a more limited set of factors in the 

comparison of sedimentation variables. 
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Certain reservoir drainages with similar specific sediment yields are found to share 

common landscape traits. For example, the four reservoirs having the lowest yields – Fall River, 

Toronto, Melvern, and Marion – have the highest percentages of negligible soil runoff, and Fall 

River has both the lowest sediment yield (135 m3km2yr-1) and highest negligible runoff 

percentage (41.36%). This indicates that these drainages have large portions of area where 

overland flow velocity slows or travels at a rate unconducive to topsoil erosion. Conversely, the 

two drainages with the highest sediment yields, Clinton and Pomona, contain large percentages 

of medium, high, and very high runoff areas, and each have less than 5% negligible runoff. 

Pomona, which has the highest specific sediment yield (487 m3km2yr-1), also has the lowest 

percentage of water bodies over 1 ha (3.0%) and over 1/2 ha (8.9%). Clinton has the second 

lowest percentage of water bodies over 1/2 ha (11.7%). On the other hand, the Fall River 

drainage has the lowest percentage of water bodies under 1/20 ha (< 10%). Since trap efficiency 

is related to capacity, having lower percentages of large water bodies may reflect reduced 

occurrence of efficient sediment sinks, while an abundance of larger water bodies provides more 

opportunities to effectively trap sediment.  

Land use in the Pomona and Clinton drainages is 27% cropland and 17.4% cropland, 

respectively, while the Fall River drainage has the lowest percentage of cropland (< 5%). 

Toronto, which has the second lowest sediment yield (140 m3km2yr-1) also has a relatively low 

percentage of cropland in its drainage (7.5%). In turn, Fall River and Toronto receive less eroded 

material attributed to agriculture than Pomona and Clinton. Additionally, Fall River and Toronto 

both have high percentages of subcatchment, 41.4% and 39.5%, while Pomona has the third 

lowest at 28.4%. This indicates a greater proportion of drainage runoff passing through 

impoundments and potentially releasing sediment in the Fall River and Toronto drainages. 
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However, the highest percentage of subcatchment is in the El Dorado drainage (58.7%), which 

also has the third highest sediment yield (410 m3km2yr-1). Furthermore, the El Dorado drainage 

is predominately grassland with less than 6% agriculture and has the highest percentage of large 

water bodies and lowest percentage of small water bodies of all drainages – more than 36% over 

1/2 ha and less than 3% under 1/20 ha. When looking for potential causes for the drainage’s high 

sediment yield, two traits draw attention. First, the El Dorado drainage has the lowest percentage 

of depositional area of all the drainages. This suggests that very little eroded material is settling 

in the landscape. Second, El Dorado has the second smallest drainage area and exhibits a 

relatively rounded shape. Larger, more elongated drainages tend to have a higher sediment 

delivery ratio, portion of the total erosion in a drainage making it to the reservoir (Walling, 

1983). Essentially, if sediment has further to travel to reach the reservoir, it is more likely to 

deposit elsewhere before reaching the reservoir. For example, the Melvern drainage is 15.3% 

cropland and 27.5% subcatchment, yet is has the third lowest specific sediment yield (182 

m3km2yr-1). A reason for this low yield may be that the drainage shape is protracted, and 

sediment in certain areas would have to travel over 40 km to reach the reservoir. In effect, the El 

Dorado drainage has fewer areas suitable for deposition, a shorter distance for sediment to travel, 

and is likely experiencing a higher delivery ratio.  

When looking at the remaining reservoir drainages and their sediment yields – Marion 

(243 m3km2yr-1-), Council Grove (341 m3km2yr-1-), and Perry (384 m3km2yr-1-) – all three have 

lower than average subcatchment coverage and substantial cultivated agriculture. Marion has 

34.5% subcatchment, Council Grove 26.2%t, and Perry 34.6%. The Perry drainage, which has 

the fourth highest sediment yield, is 32% cropland and has the highest percentage of water 

bodies under 1/20 ha (21.4%). This may indicate a large portion of sediment originating from 
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agricultural sources and an abundance of impoundments with small capacities and potentially 

low trap efficiencies. The Council Grove drainage is 28.2% cropland and has the lowest 

subcatchment coverage (26.2%), which suggests that there are fewer instances of runoff passing 

through impoundments and potentially depositing eroded material relative to all other drainages. 

Finally, the Marion drainage has the highest percentage of cropland (52.5%), relatively average 

subcatchment coverage, and lowest density of impoundments (1.13 per km2), yet it has the fourth 

lowest sediment yield. Possible reasons for its lower than expected yield include its percentage 

deposition area and impoundment size distribution. 24.4% of its drainage is classified as 

depositional area, the second highest after Perry (40.7%). However, unlike Perry, fewer than 

10% of impoundments in Marion’s drainage are less than 1/20 ha and over 52% are greater than 

1/5 ha. El Dorado is the only drainage with a greater percentage of large impoundments. In 

effect, the larger water bodies in Marion’s drainage may be offsetting reservoir sediment yield 

through more effective sediment trapping relative to most other drainages.  

Cumulative data, subcatchment, and direct runoff area trends 

  Of the 24,523 impoundments included in the analysis, over 60% are under 1/5 ha in 

surface area, and over 85% are under 1/2 ha. This size distribution highlights the region’s 

tendency towards small impoundment construction. Drainage densities of 1.13 – 3.08 per km2 

support previous estimates (Smith et al., 2002) and represent some of the highest impoundment 

densities in the conterminous United States. Smith et al. (2002) estimated small impoundment 

catchments to be less than 1 km2 on average for the region. This estimation can be considered 

conservative when compared to the median catchment area of 0.05 km2 or mean catchment area 

of 0.16 km2 resulting from the 24,523 catchments delineated in this study. By distinguishing 

catchment area of individual impoundments from larger reservoirs, small impoundment 
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catchments areas are much smaller on average than previously estimated by density-based 

calculations (i.e., Smith et al., 2002).  

 Soil trait differences between subcatchment and direct runoff area reflect impoundments’ 

tendency to occur in higher reaches of a watershed. With the exception of Marion, areas 

classified as depositional comprise a greater percentage of direct runoff areas than do 

corresponding subcatchments, which suggests that impoundments are less likely to occur in 

lowland depositional areas. Furthermore, Class 1 soils, which have lost less than 25% of their 

topsoil, are more abundant in subcatchment areas for all drainages except Perry, which indicates 

that impoundments are more abundant in areas that have experienced less erosion, such as 

upland regions. Additionally, the exceptions of Marion and Perry can likely be discounted since 

the percentage difference in Class 1 between subcatchment and direct runoff area is less than 

0.5% for Perry, and soil class data is unavailable for 22% of Marion’s direct runoff area.  

 Land use differences in subcatchment and direct runoff area reflect the tendency of 

impoundments to occur in lower abundance where surface and ground water may be needed for 

agriculture. With the exception of the Clinton Reservoir drainage, cultivated cropland is 

consistently more abundant in direct runoff areas than subcatchments, and grassland is more 

abundant in subcatchment areas across all drainages. Given the higher percentage of grassland 

occurring in subcatchment areas and the tendency of impoundments to occur in upland areas, this 

underscores the connection between their placement in the landscape and their service in cattle 

watering, specifically in upland regions where water availability is otherwise periodic and the 

conditions unsuitable for crop production.  
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 Contrary to other results, slope summary statistics do not suggest that impoundments tend 

to be more abundant in upland areas. In fact, all subcatchments have lower average slope values 

with the exception of the Marion Reservoir drainage, which has equivalent average slope values 

for subcatchment and direct runoff area. The reason behind this unexpected data trend likely lies 

in the methodology. Average slope was calculated for drainage, subcatchment, and direct runoff 

area after excluding hydro-flattened areas. However, streams and riparian areas were 

unaddressed and remained in the DEM. It is possible that riparian areas of larger order streams, 

which would be more likely to occur in proximity to reservoirs and in direct runoff areas, 

exhibited substantial slopes relative to overland areas. In turn, failing to exclude these riparian 

areas may have skewed average slope values for direct runoff areas, causing them to exceed 

average slope values for subcatchments.  

 

Conclusions 

 Several trends in erosion-related traits were observed for drainages with similar specific 

sediment yields. Drainages with the highest percentages of negligible runoff area tend to have 

the lowest sediment yields, and drainages with low percentages of soils classified as depositional 

may be experiencing less overland deposition and more efficient sediment transport. 

Additionally, drainage geometry and size influences transport efficiency, and may be a 

significant cause for the high specific sediment yield exhibited by El Dorado Reservoir and 

lower specific sediment yield of Melvern Reservoir. Lower percentages of cultivated agriculture 

can be tied to lower drainage sediment yields, and two of the three lowest cropland percentages 

are found in the two lowest yield drainages (Fall River and Toronto). While percentage 
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subcatchment may be an influence on sediment yield, water body size distribution should be 

emphasized when considering potential sediment trapping by impoundments. The Fall River 

drainage, for example, has the lowest specific sediment yield and the lowest percentage of 

smaller impoundments (< 1/20 ha), while Clinton and Perry have the highest specific sediment 

yields and the lowest percentages of larger impoundments (< 1 ha).  

 While surface area to catchment area ratio results did not clearly appear connected to 

sedimentation trends, the concept should not be discarded. If further research were carried out, 

such as a quantifying the relationship between surface area and capacity through field sampling, 

a trap efficiency metric based on surface–area–to–catchment–area ratio could be developed. 

Interestingly, an unplanned result of the surface–area–to–catchment–area ratio tool suggests a 

unique application. If false water bodies are positioned on level topography, delineating their 

catchments can produce catchment areas similar in size to the water body surface areas (Figure 

17). The resulting surface–area–to–catchment–area ratio will be close to 1.00. In effect, the script 

could be applied towards identifying erroneous water bodies in a dataset (e.g., NHD) by 

identifying disproportionate surface area to catchment area ratios. 

 Soil runoff, erosion, and land use trait differences between subcatchments and direct 

runoff areas indicate a greater abundance of impoundments in grassland headwater areas relative 

to agricultural areas and areas in closer proximity to reservoirs. Class 1 soils are more common 

in subcatchments, and depositional areas are more common in direct runoff areas, which 

indicates a tendency of impoundments to occur in higher reaches of the watershed where erosion 

is less severe and deposition less common. Additionally, direct runoff areas have greater 

percentages of cultivated agricultural land use, while subcatchments have greater percentages of 

grassland. As surface water is applied towards crop production, surface water storage in the form 
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of impoundments is less common. Furthermore, upland areas less suitable for crop production 

but suitable for grazing may promote impoundment construction for cattle watering where water 

availability would otherwise be periodic. 

Reservoirs are a major component of infrastructure in Kansas, and many are approaching 

the end of their usable lives. As they approach 50% infill, dredging is required to restore 

reservoir capacity and services. Projected costs of dredging are substantial, and to avoid 

excessive costs of restoration, changes in management practices will be necessary to extend 

reservoir usable lives and delay restoration need. By applying new methodologies and enhanced 

data, better characterizations of the sources of reservoir sedimentation can be carried out. This 

study uses newly available high-resolution elevation data, novel analysis methods, and 

incorporates a significant potential mitigator of reservoir sedimentation, small impoundments, in 

an investigation into the causes of reservoir sediment yield. When exploring potential causes of 

difference in reservoir sedimentation, the various traits analyzed in this study should not be 

investigated in isolation, but instead should be studied in connection with each other. By better 

understanding not only the factors determinant of erosion but also the relationships among 

erosion-related factors, we can better understand the overall processes responsible for reservoir 

sedimentation rate. The factors addressed in this study are the primary determinants of reservoir 

sediment yield, and these are the factors that should guide reservoir drainage management 

decisions.  
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Figures 

 

Figure 1: Reservoir Drainage Areas 
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Figure 2: Annual Precipitation for Kansas. Reservoir drainages are outlined to show placement in 

precipitation gradient. Drainages of Perry(1), Melvern(2), and Toronto(3) extend just beyond the 850 – 1000 mm 

boundaries. The six other drainages are within the 850 – 1000 mm annual precipitation range.  
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Figure 3: Catchment Delineation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Land Use Extraction for Drainage, Subcatchment, and Direct Runoff Area.  
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Figure 5: Soil Data Extraction for Drainage, Subcatchment, and Direct Runoff Area.  
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Figure 6: Slope Summary Statistics 
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Figure 7: Catchment Fragmentation during Conversion from Raster to Polygon 

 

 

 

Following water body catchment delineation using the watershed tool in ArcGIS, catchments were converted to 

polygons for area calculation. Conversion leads to fragmenting of catchments if cells are connected at corners. 
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Figure 8: Results for Marion Reservoir Drainage   B) Land use distribution. 

A) Subcatchment area (shown in purple). 

 

 

Area Yield Subcatch %Subcatch Ct Density 

535 km2 243 m3 184.5  km2 34.49% 602 1.13 Ct/km2 

C) Drainage, yield, subcatchment, and water body density. 

Water Bodies < 1/20 ha 1/20 -1/5 ha 1/5 - 1/2 ha 1/2 - 1 ha > 1 ha 

Count 57 231 194 81 39 

Percentage 9.47% 38.37% 32.23% 13.46% 6.48% 
D) Water body surface area distribution. 

Catchment Areas (ha) Surface Area: Catchment Area 

Min Q1 Median Q3 Max Min Max Median Avg. Ratio 

4.32E-02 2.99 11.14 30.50 958.59 1.08E-04 0.97 2.31E-02 1:43.3 
E) Catchment size statistics and surface area to catchment area ratio summary. 

               34.5%  
Subcatchment 

602 Water 
Bodies 
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Figure 9: Results for El Dorado Reservoir Drainage         B) Land use distribution. 

 A) Subcatchment area (shown in purple). 

 

 

Area Yield Subcatch %Subcatch Ct Density 

634 km2 410 m3 372.3  km2 58.72% 780 1.23 Ct/km2 

C) Drainage, yield, subcatchment, and water body density. 

Water Bodies < 1/20 ha 1/20 -1/5 ha 1/5 - 1/2 ha 1/2 - 1 ha > 1 ha 

Count 23 227 245 132 153 

Percentage 2.95% 29.10% 31.41% 16.92% 19.62% 
D) Water body surface area distribution. 

Catchment Areas (ha) Surface Area: Catchment Area 

Min Q1 Median Q3 Max Min Max Median Avg. Ratio 

4.96E-02 4.73 13.46 33.38 2629.27 9.86E-05 0.83 3.16E-02 1:31.7 
E) Catchment size statistics and surface area to catchment area ratio summary. 

58.7% Subcatchment 
780 Water Bodies 
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Figure 10: Results for Council Grove Reservoir Drainage    B) Land use distribution. 

 

A) Subcatchment area (shown in purple). 

 

 

 

 

 

 

 

 

          

 

 

 

 

 

 

 

 

Area Yield Subcatch %Subcatch Ct Density 

677 km2 341 m3 177.5  km2 26.22% 1152 1.70 Ct/km2 

C) Drainage, yield, subcatchment, and water body density. 

Water Bodies < 1/20 ha 1/20 -1/5 ha 1/5 - 1/2 ha 1/2 - 1 ha > 1 ha 

Count 126 516 343 121 46 

Percentage 10.94% 44.79% 29.77% 10.50% 3.99% 
D) Water body surface area distribution. 

Catchment Areas (ha) Surface Area: Catchment Area 

Min Q1 Median Q3 Max Min Max Median Avg. Ratio 

1.59E-02 1.89 6.32 14.60 1779.96 4.68E-05 0.83 3.19E-02 1:31.4 
E) Catchment size statistics and surface area to catchment area ratio summary. 

26.2% Subcatchment 
1152 Water Bodies 
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Figure 11: Results for Pomona Reservoir Drainage  B) Land use distribution. 

 

A) Subcatchment area. 

 

 

 

Area Yield Subcatch %Subcatch Ct Density 

836 km2  487 m3 237.6 km2 28.42% 2336 2.79 Ct/km2 

C) Drainage, yield, subcatchment, and water body density. 

Water Bodies < 1/20 ha 1/20 -1/5 ha 1/5 - 1/2 ha 1/2 - 1 ha > 1 ha 

Count 338 1193 597 138 70 

Percentage 14.47% 51.07% 25.56% 5.91% 3.00% 
D) Water body surface area distribution. 

Catchment Areas (ha) Surface Area: Catchment Area 

Min Q1 Median Q3 Max Min Max Median Avg. Ratio 

4.91E-03 1.22 4.05 10.12 873.08 4.83E-04 1.00 3.58E-02 1:27.9 
E) Catchment size statistics and surface area to catchment area ratio summary. 

               28.4%  
Subcatchment 

2336 Water 
Bodies 
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Figure 12: Results for Melvern Reservoir Drainage          B) Land use distribution. 

A) Subcatchment area. 

 

 

Area Yield Subcatch %Subcatch Ct Density 

870 km2  182 m3 238.9 km2 27.46% 2083 2.39 Ct/km2 

C) Drainage, yield, subcatchment, and water body density. 

Water Bodies < 1/20 ha 1/20 -1/5 ha 1/5 - 1/2 ha 1/2 - 1 ha > 1 ha 

Count 263 969 546 198 107 

Percentage 12.63% 46.52% 26.21% 9.51% 5.14% 
D) Water body surface area distribution. 

Catchment Areas (ha) Surface Area: Catchment Area 

Min Q1 Median Q3 Max Min Max Median Avg. Ratio 

1.38E-02 1.37 4.71 11.49 887.26 4.77E-04 1.00 4.09E-02 1:24.4 
E) Catchment size statistics and surface area to catchment area ratio summary. 

               27.5%  
Subcatchment 

2083 Water 
Bodies 



129 

 

Figure 13: Results for Clinton Reservoir Drainage     B) Land use distribution. 

 

               

A) Subcatchment area (shown in purple). 

 

 

 

Area Yield Subcatch %Subcatch Ct Density 

951 km2  432 m3 401.0 km2 42.16% 2930 3.08 Ct/km2 

C) Drainage, yield, subcatchment, and water body density. 

Water Bodies < 1/20 ha 1/20 -1/5 ha 1/5 - 1/2 ha 1/2 - 1 ha > 1 ha 

Count 459 1462 666 187 156 

Percentage 15.67% 49.90% 22.73% 6.38% 5.32% 
D) Water body surface area distribution. 

Catchment Areas (ha) Surface Area: Catchment Area 

Min Q1 Median Q3 Max Min Max Median Avg. Ratio 

1.56E-02 1.20 4.14 10.90 1974.2 5.48E-05 1.00 3.62E-02 1:27.6 
E) Catchment size statistics and surface area to catchment area ratio summary. 

 

 

42.4% Subcatchment 

2930 Water Bodies 
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Figure 14: Results for Fall River Reservoir Drainage             B) Land use distribution. 

A) Subcatchment area (shown in purple). 

 

 

Area Yield Subcatch %Subcatch Ct Density 

1434 km2 135 m3 592.6  km2 41.36% 2790 1.95 Ct/km2 

C) Drainage, yield, subcatchment, and water body density. 

Water Bodies < 1/20 ha 1/20 -1/5 ha 1/5 - 1/2 ha 1/2 - 1 ha > 1 ha 

Count 269 1294 881 235 111 

Percentage 9.64% 46.38% 31.58% 8.42% 3.98% 
D) Water body surface area distribution. 

Catchment Areas (ha) Surface Area: Catchment Area 

Min Q1 Median Q3 Max Min Max Median Avg. Ratio 

1.38E-02 1.55 5.42 13.98 11273.0 1.06E-05 0.86 3.39E-02 1:29.5 
E) Catchment size statistics and surface area to catchment area ratio summary. 

              41.4%  
Subcatchment 

2790 Water 
Bodies 
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Figure 15: Results for Toronto Reservoir Drainage         B) Land use distribution.         

A) Subcatchment area (shown in purple).              

 

Area Yield Subcatch %Subcatch Ct Density 

1855 km2 140 m3 732.5  km2 38.49% 3957 2.13 Ct/km2 

C) Drainage, yield, subcatchment, and water body density. 

Water Bodies < 1/20 ha 1/20 -1/5 ha 1/5 - 1/2 ha 1/2 - 1 ha > 1 ha 

Count 512 1855 1149 303 138 

Percentage 12.94% 46.88% 29.04% 7.66% 3.49% 
D) Water body surface area distribution. 

Catchment Areas (ha) Surface Area: Catchment Area 

Min Q1 Median Q3 Max Min Max Median Avg. Ratio 

9.76E-03 1.26 4.03 10.53 4196.09 1.82E-04 0.92 4.02E-02 1:24.9 
E) Catchment size statistics and surface area to catchment area ratio summary. 

              38.5%  
Subcatchment 

3950 Water 
Bodies 
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Figure 16: Results of Perry Reservoir Drainage          B) Land use distribution. 

A) Subcatchment area (shown in purple). 

 

Area Yield Subcatch %Subcatch Ct Density 

2928 km2 384 m3 1011.6  km2 34.55% 7893 2.70 Ct/km2 

C) Drainage, yield, subcatchment, and water body density. 

Water Bodies < 1/20 ha 1/20 -1/5 ha 1/5 - 1/2 ha 1/2 - 1 ha > 1 ha 

Count 1691 3295 1521 713 673 

Percentage 21.42% 41.75% 19.27% 9.03% 8.53% 
D) Water body surface area distribution. 

Catchment Areas (ha) Surface Area: Catchment Area 

Min Q1 Median Q3 Max Min Max Median Avg. Ratio 

7.74E-03 1.02 3.95 11.21 3536.29 7.10E-05 1.03 4.22E-02 1:23.7 
E) Catchment size statistics and surface area to catchment area ratio summary. 

              34.6%  
Subcatchment 

7893 Water 
Bodies 
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Figure 17: Surface–Area–to–

Catchment–Area Ratio of Absent 

NHD Feature 

A) Aerial imagery of a former pond. 

B) Representation of the feature in the 

National Hydrography Dataset 

C) Result of catchment delineation using NHD 

feature as pour point. Surface area to 

catchment area calculation resulted in a ratio 

of 1.03, which signaled an issue with this 

particular water body. 

A 

B C 
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Tables 

 

Table 1: Reservoir Sedimentation Summary 

 

Reservoir 

Drainage 

Area Year-0 

V-0 

(Mm3) 

V-2015 

(Mm3) 

Cap. 

Loss 

SSY 

(m3) 

Marion 535 1967 105 99 5.9% 243 

El Dorado 634 1979 202 193 4.6% 410 

Council Grove 677 1963 65 53 18.5% 341 

Pomona 836 1963 87 66 24.2% 487 

Melvern 870 1972 190 184 3.6% 182 

Clinton 951 1977 159 144 9.7% 432 

Fall River 1434 1948 37 25 34.5% 135 

Toronto 1855 1959 34 19 43.4% 140 

Perry 2928 1962 300 240 20% 384 

       Min 535 1948 34 19 3.6% 135 

Max 2928 1979 300 240 43.4% 487 

Mean 1191 1966 131 114 18.3% 306 

 

Drainage area, age, original capacity, capacity loss, and specific sediment yield for 9 reservoirs 

included in study. Data taken from Rahmani et al. (2017). Drainage area is given in square kilometers; 

Year-0 is the year reservoir operation began; V-0 is the original reservoir capacity in million cubic 

meters; V-2015 is the remaining reservoir capacity in the year 2015 in million cubic meters; Cap. 

Loss is the percentage capacity loss as of 2015; SSY is the annual sediment yield in cubic meters per 

square kilometer of drainage area. 
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Table 2: Water Body Surface Area Distribution 

 

Reservoir N <1/20 ha 1/20 - 1/5 ha 1/5 - 1/2 ha 1/2 - 1 ha > 1 ha Ct/km2 

Marion 602 57 231 194 81 39 1.13 

El Dorado 780 23 227 245 132 153 1.23 

Council Grove 1152 126 516 343 121 46 1.70 

Pomona 2336 338 1193 597 138 70 2.79 

Melvern 2083 263 969 546 198 107 2.39 

Clinton 2930 459 1462 666 187 156 3.08 

Fall River 2790 269 1294 881 235 111 1.95 

Toronto 3957 512 1855 1149 303 138 2.13 

Perry 7893 1691 3295 1521 713 673 2.70 

TOTAL 24523 3738 11042 6142 2108 1493 2.29 

 

N % % % % % *SSY 

Marion 602 9.47 38.37 32.23 13.46 6.48 243 

El Dorado 780 2.95 29.10 31.41 16.92 19.62 410 

Council Grove 1152 10.94 44.79 29.77 10.50 3.99 341 

Pomona 2336 14.47 51.07 25.56 5.91 3.00 487 

Melvern 2083 12.63 46.52 26.21 9.51 5.14 182 

Clinton 2930 15.67 49.90 22.73 6.38 5.32 432 

Fall River 2790 9.64 46.38 31.58 8.42 3.98 135 

Toronto 3957 12.94 46.88 29.04 7.66 3.49 140 

Perry 7893 21.42 41.75 19.27 9.03 8.53 384 

TOTAL 24523 15.24 45.03 25.05 8.60 6.09 **306 

*Specific sediment yield in cubic meters per square kilometer drainage per year taken from Rahmani et al., 2017. 

**Mean specific sediment yield of nine reservoirs. 

 

Table 3: Water Body Catchment Sizes Summary (in Hectares) 

 

Reservoir N Min Q1 Median Q3 Max Total 

Marion 602 4.32E-02 2.99 11.14 30.50 958.59 18454 

El Dorado 780 4.96E-02 4.73 13.46 33.38 2629.27 37230 

Council Grove 1152 1.59E-02 1.89 6.32 14.60 1779.96 17749 

Pomona 2336 4.91E-03 1.22 4.05 10.12 873.08 23755 

Melvern 2083 1.38E-02 1.37 4.71 11.49 887.26 23892 

Clinton 2930 1.56E-02 1.20 4.14 10.90 1974.17 40096 

Fall River 2790 1.38E-02 1.55 5.42 13.98 11273.00 59256 

Toronto 3957 9.76E-03 1.26 4.03 10.53 4196.09 73252 

Perry 7893 7.74E-03 1.02 3.95 11.21 3536.29 101162 

Total 24523 4.91E-03 1.30 4.55 12.19 11273.00 394846 
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Table 4: Surface–Area–to–Catchment–Area Ratios 

 

Reservoir Min Max Median Avg Ratio 

Marion 1.08E-04 0.97 2.31E-02 1:43.3 

El Dorado 9.86E-05 0.83 3.16E-02 1:31.7 

Council Grove 4.68E-05 0.83 3.19E-02 1:31.4 

Pomona 4.83E-04 1.00 3.58E-02 1:27.9 

Melvern 4.77E-04 1.00 4.09E-02 1:24.4 

Clinton 5.48E-05 1.00 3.62E-02 1:27.6 

Fall River 1.06E-05 0.86 3.39E-02 1:29.5 

Toronto 1.82E-04 0.92 4.02E-02 1:24.9 

Perry 7.10E-05 1.03 4.22E-02 1:23.7 

Total 1.06E-05 1.03 3.81E-02 1:26.3 

 

 

 

Table 5: Percentage Subcatchment  

 

Reservoir 

Drainage 

Area (km2) 

Subcatch 

Area (km2) % Subcatch Avg Ratio *SSY 

Marion 535 184.5 34.49% 1:43.3 243 

El Dorado 634 372.3 58.72% 1:31.7 410 

Council Grove 677 177.5 26.22% 1:31.4 341 

Pomona 837 237.6 28.42% 1:27.9 487 

Melvern 870 238.9 27.46% 1:24.4 182 

Clinton 951 401 42.16% 1:27.6 432 

Fall River 1434 592.6 41.36% 1:29.5 135 

Toronto 1855 732.5 39.49% 1:24.9 140 

Perry 2928 1011.6 34.55% 1:23.7 384 

Total 10720 3948.5 36.83% 1:26.3 **306 

*Specific sediment yield in cubic meters per square kilometer drainage per year taken  

from Rahmani et al., 2017.  

**Mean specific sediment yield of nine reservoirs. 
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Table 6: Land Use Distribution 

 

Marion Area Urban Cultivated Cropland Grassland Woodland Other 

 

Drainage 0.44% 52.46% 44.00% 3.09% 0.01% 

 

Direct Runoff 0.48% 55.66% 39.55% 4.30% 0.01% 

 

Subcatchment 0.36% 46.82% 51.84% 0.97% 0.01% 

El Dorado Area Urban Cultivated Cropland Grassland Woodland Other 

 

Drainage 0.26% 5.39% 90.90% 3.45% 0.00% 

 

Direct Runoff 0.04% 9.05% 84.01% 6.90% 0.00% 

 

Subcatchment 0.40% 3.09% 95.21% 1.30% 0.00% 

Council Grove Area Urban Cultivated Cropland Grassland Woodland Other 

 

Drainage 0.36% 27.61% 67.71% 4.30% 0.02% 

 

Direct Runoff 0.36% 28.20% 66.20% 5.23% 0.00% 

 

Subcatchment 0.35% 25.94% 71.94% 1.69% 0.08% 

Pomona Area Urban Cultivated Cropland Grassland Woodland Other 

 

Drainage 1.49% 26.96% 62.03% 9.43% 0.10% 

 

Direct Runoff 1.86% 28.59% 58.56% 10.95% 0.04% 

 

Subcatchment 0.58% 22.99% 70.48% 5.71% 0.24% 

Melvern Area Urban Cultivated Cropland Grassland Woodland Other 

 

Drainage 0.61% 15.30% 77.28% 6.78% 0.03% 

 

Direct Runoff 0.52% 17.54% 73.66% 8.26% 0.03% 

 

Subcatchment 0.83% 9.57% 86.58% 2.97% 0.04% 

Clinton  Area Urban Cultivated Cropland Grassland Woodland Other 

 

Drainage 1.28% 17.43% 61.77% 19.34% 0.19% 

 

Direct Runoff 0.95% 17.23% 57.76% 23.87% 0.19% 

 

Subcatchment 1.71% 17.69% 67.04% 13.39% 0.18% 

Fall River Area Urban Cultivated Cropland Grassland Woodland Other 

 

Drainage 0.58% 4.78% 88.42% 6.21% 0.01% 

 

Direct Runoff 0.90% 6.85% 83.37% 8.87% 0.01% 

 

Subcatchment 0.12% 1.84% 95.63% 2.41% 0.00% 

Toronto Area Urban Cultivated Cropland Grassland Woodland Other 

 

Drainage 0.31% 7.51% 87.39% 4.78% 0.00% 

 

Direct Runoff 0.42% 9.78% 83.25% 6.54% 0.01% 

 

Subcatchment 0.14% 4.02% 93.78% 2.05% 0.00% 

Perry Area Urban Cultivated Cropland Grassland Woodland Other 

 

Drainage 0.96% 32.11% 54.18% 12.73% 0.03% 

 

Direct Runoff 0.95% 33.12% 50.78% 15.12% 0.03% 

 

Subcatchment 0.96% 30.20% 60.61% 8.20% 0.02% 
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Table 7: Soil Erosion Class Distribution 

 

Marion Area Deposition Class 1 Class 2 NoData 

 

Drainage 24.23% 58.68% 0% 17.20% 

 

Direct Runoff 23.64% 54.33% 0% 22.02% 

 

Subcatchment 25.32% 66.91% 0% 7.77% 

El Dorado Area Deposition Class 1 Class 2 NoData 

 

Drainage 5.34% 74.23% 0.79% 19.64% 

 

Direct Runoff 9.21% 64.51% 1.06% 25.23% 

 

Subcatchment 3.17% 79.68% 0.64% 16.51% 

Council Grove Area Deposition Class 1 Class 2 NoData 

 

Drainage 9.76% 65.02% 18.00% 7.22% 

 

Direct Runoff 11.55% 63.70% 18.07% 6.68% 

 

Subcatchment 4.72% 68.74% 17.79% 8.75% 

Pomona Area Deposition Class 1 Class 2 NoData 

 

Drainage 11.36% 57.49% 0.31% 30.84% 

 

Direct Runoff 15.15% 55.15% 0.33% 29.36% 

 

Subcatchment 1.96% 63.28% 0.26% 34.50% 

Melvern Area Deposition Class 1 Class 2 NoData 

 

Drainage 10.04% 50.47% 3.53% 35.96% 

 

Direct Runoff 12.67% 47.98% 3.53% 35.82% 

 

Subcatchment 3.07% 57.05% 3.54% 36.33% 

Clinton  Area Deposition Class 1 Class 2 NoData 

 

Drainage 9.11% 54.38% 5.81% 30.70% 

 

Direct Runoff 12.86% 51.44% 5.56% 30.14% 

 

Subcatchment 3.96% 58.42% 6.15% 31.47% 

Fall River Area Deposition Class 1 Class 2 NoData 

 

Drainage 14.76% 32.48% 0.19% 52.57% 

 

Direct Runoff 17.21% 31.57% 0.26% 50.96% 

 

Subcatchment 11.27% 33.77% 0.09% 54.86% 

Toronto Area Deposition Class 1 Class 2 NoData 

 

Drainage 12.76% 41.50% 0.76% 44.97% 

 

Direct Runoff 15.33% 38.22% 0.66% 45.79% 

 

Subcatchment 8.82% 46.55% 0.91% 43.73% 

Perry Area Deposition Class 1 Class 2 NoData 

 

Drainage 40.67% 19.24% 28.35% 11.75% 

 

Direct Runoff 42.04% 19.36% 24.36% 14.25% 

 

Subcatchment 38.07% 19.00% 35.90% 7.02% 
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Table 8: Soil Runoff Classification Distribution 

 

Marion Area Negligible Low Medium High Very High NoData 

 

Drainage *33.42% 9.55% 2.65% 49.59% 0.00% 4.80% 

 

Direct Runoff *35.47% 11.70% 2.86% 42.66% 0.00% 7.31% 

 

Subcatchment *29.54% 5.48% 2.24% 62.70% 0.00% 0.04% 

El Dorado Area Negligible Low Medium High Very High NoData 

 

Drainage 8.19% 8.68% 48.56% 28.62% 0.26% 5.68% 

 

Direct Runoff 15.51% 14.66% 38.05% 30.71% 0.58% 0.49% 

 

Subcatchment 4.10% 5.33% 54.44% 27.45% 0.09% 8.59% 

Council Grove Area Negligible Low Medium High Very High NoData 

 

Drainage 3.87% 10.66% 35.44% 43.53% 4.30% 2.20% 

 

Direct Runoff 3.04% 13.75% 34.30% 42.73% 3.53% 2.65% 

 

Subcatchment 6.19% 1.97% 38.63% 45.78% 6.48% 0.94% 

Pomona Area Negligible Low Medium High Very High NoData 

 

Drainage 4.30% 1.95% 1.96% 24.41% 13.04% 54.34% 

 

Direct Runoff 4.42% 2.67% 1.97% 23.46% 12.16% 55.31% 

 

Subcatchment 3.99% 0.17% 1.94% 26.75% 15.19% 51.96% 

Melvern Area Negligible Low Medium High Very High NoData 

 

Drainage 12.78% 9.30% 2.99% 25.33% 11.15% 38.46% 

 

Direct Runoff 12.29% 11.26% 2.82% 25.08% 10.27% 38.27% 

 

Subcatchment 14.05% 4.13% 3.43% 25.98% 13.46% 38.96% 

Clinton Area Negligible Low Medium High Very High NoData 

 

Drainage 4.86% 4.60% 18.95% 37.56% 10.69% 23.34% 

 

Direct Runoff 3.34% 6.50% 22.18% 36.77% 8.87% 22.33% 

 

Subcatchment 6.96% 1.99% 14.52% 38.65% 13.17% 24.71% 

Fall River Area Negligible Low Medium High Very High NoData 

 

Drainage 43.20% 9.67% 17.30% 5.45% 11.49% 12.89% 

 

Direct Runoff 40.10% 13.27% 14.92% 4.97% 12.92% 13.82% 

 

Subcatchment 47.59% 4.57% 20.69% 6.13% 9.45% 11.57% 

Toronto Area Negligible Low Medium High Very High NoData 

 

Drainage 26.31% 9.41% 11.69% 8.61% 21.09% 22.88% 

 

Direct Runoff 25.04% 12.41% 10.79% 5.71% 22.76% 23.30% 

 

Subcatchment 28.26% 4.82% 13.08% 13.08% 18.53% 22.23% 

Perry Area Negligible Low Medium High Very High NoData 

 

Drainage 2.34% 8.88% 34.67% 9.36% 5.97% 38.79% 

 

Direct Runoff 2.09% 9.78% 32.60% 9.73% 6.90% 38.89% 

 

Subcatchment 2.08% 7.16% 38.60% 8.64% 4.21% 38.58% 

*Marion was the only drainage which contained the “Very Low” soil runoff classification, and those areas were 

incorporated into the negligible category. Approximately 27% of negligible data is actually classified as Very Low. 
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Table 9: Slope Summary Statistics (Degrees) 

 

Marion Area Min Max Range Mean STD 

 Drainage 1.53E-4 59.16 59.16 1.95 2.19 

 Direct Runoff 1.53E-4 59.16 59.16 1.95 2.34 

 Subcatchment 1.53E-4 48.09 48.09 1.95 1.88 

El Dorado Area Min Max Range Mean STD 

 Drainage 1.53E-4 60.37 60.37 1.56 1.69 

 Direct Runoff 1.53E-4 60.37 60.37 1.86 2.11 

 Subcatchment 1.53E-4 53.83 53.83 1.35 1.25 

Council Grove Area Min Max Range Mean STD 

 Drainage 1.53E-4 66.30 66.30 2.60 3.10 

 Direct Runoff 1.53E-4 66.30 66.30 2.74 3.32 

 Subcatchment 1.53E-4 63.90 63.90 2.19 2.30 

Pomona Area Min Max Range Mean STD 

 Drainage 1 69.32 68.32 3.39 3.05 

 Direct Runoff 1 69.32 68.32 3.52 3.27 

 Subcatchment 1 54.32 53.32 3.03 2.31 

Melvern Area Min Max Range Mean STD 

 Drainage 1.53E-4 65.08 65.08 2.78 3.00 

 Direct Runoff 1.53E-4 65.08 65.08 2.87 3.22 

 Subcatchment 1.53E-4 60.61 60.61 2.50 2.22 

Clinton Area Min Max Range Mean STD 

 Drainage 1.53E-4 73.75 73.75 3.66 4.01 

 Direct Runoff 1.53E-4 73.75 73.75 3.99 4.49 

 Subcatchment 1.53E-4 67.68 67.68 3.21 3.19 

Fall River Area Min Max Range Mean STD 

 Drainage 1.53E-4 68.23 68.23 3.70 4.05 

 Direct Runoff 1.53E-4 68.23 68.23 3.76 4.23 

 Subcatchment 1.53E-4 64.61 64.61 3.58 3.71 

Toronto Area Min Max Range Mean STD 

 Drainage 1.53E-4 84.11 84.11 3.21 3.59 

 Direct Runoff 1.53E-4 84.11 84.11 3.30 3.83 

 Subcatchment 1.53E-4 79.96 79.96 3.07 3.09 

Perry Area Min Max Range Mean STD 

 Drainage 1.53E-4 72.08 72.08 4.01 3.96 

 Direct Runoff 1.53E-4 72.08 72.08 4.21 4.36 

 Subcatchment 1.53E-4 69.81 69.81 3.63 2.98 

 

 



141 

 

 

 

Chapter IV 

Conclusions 

 

Summary 

 Historically deficient of lentic features, eastern Kansas now exhibits one of the most 

densely impounded regions of the United States (Smith et al., 2002), which reflects major 

anthropogenic alteration of natural processes. A consequence of this alteration is the infilling of 

artificial water bodies, which Kansans are dependent on for agricultural and municipal services. 

Federal reservoirs are integral to the state’s infrastructure, and many are approaching the end of 

their usable lives. With need for capacity restoration on the horizon, projected costs of dredging 

are substantial. In order to prolong usable lives and delay the need for restoration, alternative 

management practices for reservoirs are needed, and a better understanding of the causes of 

sedimentation in reservoir drainages could benefit management decision-making.  

Given the dense distribution of small impoundments in eastern Kansas and the potential 

sink services they provide (Smith et al. 2002; Renwick et al., 2005), small impoundments are 

likely influencing federal reservoir sediment yields. With newly developed high-resolution 

elevation data, it is now possible to delineate and characterize impoundment catchment within 

reservoir drainages to better visualize and measure how impoundment distribution may be 

related to reservoir sediment yield. Additionally, current high-resolution elevation data can be 

used to identify recently constructed impoundments and potentially improve geometries of 

popular inventories, which may have inaccuracies due to dated source material and manual 

delineation methods. In effect, a more complete and accurate inventory of impoundments can be 
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generated and incorporated into an investigation of drainage traits responsible for reservoir 

sediment yields.  

 Chapter 2 tested and evaluated two automated elevation data-based methods of 

identifying and extracting water features in ten Kansas reservoir drainages. The primary goals 

were to identify newly constructed impoundments and improve geometries relative to the 

National Hydrography Dataset (NHD). Using 2-m LiDAR-derived digital elevation models 

(DEMs) created between 2011 – 2016, the Topographic Wetland Identification Process model 

(TWIP) from Kastens et al. (2016) and the Zero Slope approach (ZS) successfully identified new 

water bodies and improved geometric accuracies of duplicated features of the NHD. While 

geometric accuracy assessment results were comparable for both methods, the ZS was favorable 

for larger drainage processing due to its shorter processing time, greater number of features 

identified, lack of scaling issues, and ability to execute successfully without first removing roads 

and railroads from the DEM. The TWIP experienced scaling issues due to inherent processing 

limitations of certain ArcGIS tool(s) included in its script and only identified limited numbers of 

features or failed to run for larger drainages Therefore, the TWIP is not recommended for Kansas 

reservoir drainage scale processing of 2-m elevation data. The Combined dataset resulting from 

the TWIP, ZS, and NHD and the verified feature areas from the accuracy assessment indicated a 

tendency for the NHD to underrepresent cumulative surface area. This trend of underestimating 

water surface area should be noted in future regional inventories involving the NHD.  

 The study in Chapter 3 used high-resolution LiDAR-derived DEMs to delineate 

subcatchment areas of water body datasets produced in Chapter 2 for nine Kansas federal 

reservoir drainages and investigated potential sources of difference in reservoir sediment yield. 

This research calculated landscape traits related to erosion and sediment trapping for drainages, 
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subcatchments, and direct runoff areas. Specific sediment yield was used to compare drainage 

sediment delivery among reservoirs and omit drainage area as a causal variable for differences in 

sediment yield. Reservoir drainages included in the study were selected in part due to their 

similar precipitation patterns, which generally eliminated precipitation as a causal variable for 

sediment yield. The drainage traits analyzed in this study included: water body size distribution, 

water body catchment areas, water body surface area to catchment area ratios, percentage 

subcatchment, and land use, soil erosion class, soil runoff, and average slope for drainage area, 

subcatchment, and direct runoff area.  

 Trends were observed in erosion-related traits for drainages with similar specific 

sediment yields. Percentages of negligible runoff area were highest in the four drainages 

experiencing the lowest yields, suggesting a trend of less suitable sediment transport conditions 

relating to lower sediment yields. Additionally, lower percentages of cropland can be tied to 

lower drainage sediment yields, with two of the three lowest cropland percentages found in the 

drainages with the lowest sediment yields.  Drainage geometry and size influences sediment 

transport efficiency, and smaller, more rounded watersheds may experience higher delivery 

ratios than larger, more elongated drainages (Walling, 1983). This could be the primary reason 

for the stark sediment yield differences between Melvern Reservoir and El Dorado Reservoir.  

The two drainages with the lowest percentages of large impoundments (> 1 ha) had the highest 

sediment yields, and the drainage having the lowest sediment yield also had the lowest 

percentage of small impoundments (< 1/20 ha). In effect, percentage subcatchment coverage 

alone may not be the most appropriate indicator of small impoundment sediment trapping 

effects. Water body size distribution should be emphasized in addition to subcatchment coverage 

when considering potential sediment trapping impacts.  Comparison between subcatchments and 
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direct runoff areas suggested a trend of greater impoundment occurrence in upland grassland 

areas than lowland agricultural areas. 

 

Further Research 

 The scripts demonstrated in Chapter 2 can be applied to any areas where high-resolution 

elevation data is available. For example, now that 2-m DEMs are available for all of Kansas, the 

ZS tool in conjunction with the NHD could be applied throughout the state to create a statewide 

enhanced water body dataset. Additionally, the ZS could be run for western Kansas and 

compared with the TWIP in playa identification suitability. Since LiDAR sampling occurs 

during winter months (Heidemann, 2014), water is more likely to have been present in playas 

during data collection, which could result in their hydro-flattening and recognition by the ZS 

tool.  

 Toronto and Fall River drainages were exceptions to the trend of increased cumulative 

water body surface area in the Combined dataset relative to the NHD. The Greenwood County 

elevation data, which both drainages partially cover, was produced in 2013 and collected over 

the 2012 – 2013 winter. Kansas experienced a severe drought from 2010 – 2012, but it is 

considered to have ended by 2013. If the sampling occurred before surface water conditions were 

restored, desiccated water bodies may have been represented as bare ground and the hydro-

flattening may underrepresent typical surface water storage conditions. That may explain why 

fewer features and smaller surface areas were produced from both elevation data-based 

approaches. Pinpointing the dates of LiDAR collection and investigating surface water 

conditions at the time of sampling may provide insight into the cause of these inconsistent 

results.  
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 Results of chapter 3 provide novel summaries of erosion-related drainage traits for 

Kansas reservoirs by incorporating upstream catchment. Analysis was conducted in a region with 

widespread agriculture exhibiting an exceptionally high density of small impoundments. It would 

be interesting to apply these same methodologies to summarize a drainage containing 

predominately natural lentic bodies. Would certain factors found to be important in connection to 

reservoir sediment yield in the heavily cropped study area also hold significance in drainages 

with contrasting land cover conditions? Given the trend of greater impoundment abundance in 

headwater areas due to surface water demand by agriculture in floodplains, how might a drainage 

with more naturally positioned water bodies compare in terms of subcatchment and erosion-

related traits? Perhaps, comparison with contrasting drainages might provide additional insight 

into what causes sediment yields to be so high in the study region.  

 In this study impoundments were largely discussed under the assumption that they are 

acting as sinks. This may not always be the case. Foster (2011) found Kansas impoundments to 

revert to a pass–through system when intervals between precipitation events were minimal. 

Additionally, impoundments eventually infill and may shift to sources of sediment, which could 

increase downstream sediment load. More research is needed to understand how and when 

impoundments shift from sinks to sources in order to better understand their influence on 

downstream sediment load. While this study delineates catchments and measures surface areas, 

data on individual impoundment age could be useful in distinguishing their status as sinks or 

sources for sediment. Age data tell how long the impoundment has been infilling, and with 

catchment area delineated, the amount of sediment deposited could be roughly estimated. Should 

capacity data be available, such as in the form of a surface area to volume metric determined 

from field surveying, the percentage infilled could be estimated. With percentage infill, capacity, 
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and drainage area, we could begin to understand the trap efficiencies of small impoundments, 

and apply that knowledge towards better understanding small impoundment sink services in 

reservoir drainages.   

 An interesting observation discussed in Chapter 3 is the potential application of the 

surface area to catchment area ratio towards identifying false water bodies in a dataset. Should 

false water bodies, such as those that have infilled or were incorrectly added, occur in relatively 

flat topographic areas, the resulting catchment could approach or match the size of the water 

feature. In turn, the surface area to catchment area ratio may be disproportionately high. This tool 

could be used to search for erroneous water features in datasets according to high ratio values 

and remove them in an effort to improve the dataset.  

To calculate slope summary statistics for drainages, subcatchments, and direct runoff 

areas, slope statistics were calculated after excluding hydro-flattened areas. However, streams 

and riparian areas were unaddressed and remained in the DEM. It is possible that riparian areas 

of larger order streams, which would be more likely to occur in proximity to reservoirs and in 

direct runoff areas, exhibited substantial slopes relative to overland areas. In turn, failing to 

exclude these riparian areas may have skewed average slope values for direct runoff areas, 

causing them to exceed average slope values for subcatchments. To remedy this, a buffer might 

be applied to stream data taken from the NHD, and cells removed from the slope raster according 

to buffer coverage. This might result in a more accurate representation of overland slope.  

 

Significance 

 This project demonstrated automated methods which enhance the accuracy and 

completeness of the NHD with high-resolution elevation data. As LiDAR-derived DEMs become 
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increasingly common, projects such as this are especially useful since the water feature 

identification and extraction procedures are scripted and available for use in regions with newly 

available high-resolution elevation data. Furthermore, it demonstrates inaccuracies in the NHD 

while offering a means of improving the data, which encourages others to conduct more accurate 

inventories rather than rely solely on the NHD. 

This project used newly available high-resolution elevation data and novel methods to 

focus on significant potential mitigator of reservoir sedimentation, impoundments, in an 

investigation into the causes of reservoir sediment yield. When exploring potential causes of 

difference in reservoir sedimentation, the various traits analyzed should not be investigated 

independently, but instead should be studied in connection. By better understanding not only the 

factors determinant of erosion but also the relationships among erosion-related factors, we can 

better understand the overall processes responsible for reservoir sedimentation rate.  
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Appendix 1 

 

Script 1: Median Filter 

#Median Filter Script 

 

#Applies a 3X3 median filter to raw DEM to remove noise. 

#This script works for elevation values measured to 1000th of a meter. 

#(Hence, the raw data is multiplied by a thousand before conversion to integer) 

#Conversion to integer is necessary to perform focal median analysis 

 

#Parameters 

#DEM - 2 meter raw DEM 

    #Set as raster layer in tool properties 

#Output DEM - Filtered DEM 

    #Set as string in tool properties 

#Workspace - workspace 

    #Set as folder in tool properties 

 

#Set workspace and processing extent 

import arcpy 

from arcpy.sa import * 

from arcpy import env 

arcpy.CheckOutExtension("Spatial") 

env.overwriteOutput = True 

 

#get input parameters from Arc toolbox 

DEM = arcpy.GetParameterAsText(0) 

Output_DEM = arcpy.GetParameterAsText(1) 

Workspace = arcpy.GetParameterAsText(2) 

 

def Median_Filter(DEM, Output_DEM, Workspace): 

    env.workspace = Workspace 

    env.overwriteOutput = True 

    env.extent = Raster(DEM) 

    env.snapRaster = Raster(DEM) 

 

    Raw = Raster(DEM) 

    Int_DEM = Int(Raw * 1000) 

    Focal_DEM = FocalStatistics(Int_DEM, "", "MEDIAN","") 

    Out_DEM = (Float(Focal_DEM)/1000) 

    Out_DEM.save(str(Output_DEM)) 

 

#Execute Script 

Median_Filter(DEM, Output_DEM, Workspace) 
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Script 2: Topographic Wetland Identification Process (TWIP) 

 

Courtesy of Jude Kastens 

 

# This script implements the Sinkhole Identification procedure. Original model by Jude Kastens. 

Interpreted in python by Ryan Callihan. 

# Version 1.0.0 

import arcpy, os 

from arcpy import env 

from arcpy.sa import * 

arcpy.CheckOutExtension("Spatial") 

arcpy.env.overwriteOutput = True 

#get input parameters from Arc toolbox 

DEM = arcpy.GetParameterAsText(0) 

d = arcpy.GetParameterAsText(1) 

HOLV = arcpy.GetParameterAsText(2) 

workspace = arcpy.GetParameterAsText(3) 

 

def sinkhole_indentifier(DEM, d, HOLV): 

 global workspace 

 

 arcpy.AddMessage("======================================") 

 arcpy.AddMessage("Starting Sinkhole Identification Tool") 

 arcpy.AddMessage("======================================")  

 

 #setting environment variables from input DEM 

 arcpy.env.snapRaster = DEM 

 arcpy.env.extent = DEM 

 DEM_sr = arcpy.Describe(DEM).spatialReference #get spatial reference from DEM 

 #setting temp workspace in HOLV path 

 HOLV_path = os.path.dirname(HOLV) 

 workspace = HOLV_path + r"\temp_sinkhole_workspace" 

 HOLV_basename = os.path.basename(HOLV) #takes filename from the HOLV path 

 #if temp workspace exists, remove previous and create new directory 

 if os.path.exists(workspace): 

  arcpy.AddMessage("Removing previous temp workspace...") 

  cleanup() 

  os.mkdir(workspace) 

 else: 

  os.mkdir(workspace) 

 

 # set workspace 

 arcpy.env.workspace = workspace 

  

 # print input and derived parameters 

 arcpy.AddMessage("======================================") 
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 arcpy.AddMessage("Input parameters:") 

 arcpy.AddMessage("DEM: %s" % DEM) 

 arcpy.AddMessage("Minimum depth threshold (d): %s" % d)  

 arcpy.AddMessage("Output shapefile: %s" % HOLV_basename) 

 arcpy.AddMessage("Temp workspace: %s" % workspace) 

 

 # create empty polygon layer in DEM projection 

 arcpy.CreateFeatureclass_management(HOLV_path, HOLV_basename, "POLYGON", 

"", "", "", DEM_sr, "", "", "", "") 

 

 loop_num = 1 

 flag = True 

 while flag:   

  arcpy.AddMessage("==============Iteration #%s============" % 

loop_num) 

 

  # 1) [Fill Sinks] Fill sinks (DEM â€ ¡FIL) 

  arcpy.AddMessage("Step 1: Filling sinks...") 

  outFill = Fill(DEM) 

  outFill.save("filled_dem") 

 

  # 2) [Raster Calculator] Create a sink depth map (snk) 

  arcpy.AddMessage("Step 2: Creating a sink depth map...") 

  sink = Raster("filled_dem") - Raster(DEM) 

  sink.save("sink") 

  SNK = Con(("sink") > 0, "sink") 

  SNK.save("snk") 

 

  # 3) [Raster Calculator] Create mask layer of ones (MSK) for SNK 

  arcpy.AddMessage("Step 3: Creating mask layer of ones for SNK") 

  MSK = Con(SNK > 0, 1) 

  MSK.save("msk") 

 

#4) [Raster to Polygon] Convert MSK to polygon (MSKV). Do not use 

â�œSimplify Polygonsâ€ • option. 

  arcpy.AddMessage("Step 4: Raster MSK to polygon MSKV...") 

  arcpy.RasterToPolygon_conversion("msk", "mskv.shp", "NO_SIMPLIFY") 

 

# 5) [Zonal Statistics] Create a zone maximum raster (MAX), where MSKV 

polygons are the zones  

arcpy.AddMessage("Step 5: Creating zonal MAX of SNK where zones = 

MSKV.shp...") 

zonalmax = ZonalStatistics("mskv.shp", "ID", "snk", "MAXIMUM", 

"NODATA") 

  zonalmax.save("MAX") 
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# 6) [Raster Calculator] Create hole indicator raster (HOL) for sinks having at 

least the minimum.  

  arcpy.AddMessage("Step 6: Creating hole indicator raster (HOL) for sinks with 

the specified min depth (d)...") 

  HOL = Con(Raster("snk") >= float(d), Con(Raster("snk") == Raster("MAX"), 1)) 

  HOL.save("HOL") 

 

  # If the HOL raster is empty, terminate script.  

  nodata = arcpy.GetRasterProperties_management("hol", "ALLNODATA") 

  isnodata = nodata.getOutput(0) 

  if int(isnodata) == 1: 

   arcpy.AddMessage(" No data in raster \"hol\". Process stopped.") 

        

arcpy.AddMessage("======================================

") 

   arcpy.AddMessage("Sinkhole identifiation complete.") 

   

arcpy.AddMessage("======================================

") 

   break 

 

# 7) [Raster to Polygon] Convert HOL to polygon (HOLV1). Do not use 

â�œSimplify Polygonsâ�� option. 

  arcpy.AddMessage("Step 7: Converting HOL to polygon (HOLV1)...") 

  arcpy.RasterToPolygon_conversion("HOL", "HOLV1.shp", "NO_SIMPLIFY") 

 

  # 8)  

  arcpy.AddMessage("Step 8: Checking number of polygons in HOLV1...") 

  num_records = int(arcpy.GetCount_management("HOLV1.shp").getOutput(0)) 

  arcpy.AddMessage(" Number of records: %s" % (num_records)) 

 

  # 9) Append HOLV1.shp to HOLV.shp 

  arcpy.AddMessage("Step 9: Appending HOLV to %s..." % HOLV_basename) 

  arcpy.Append_management("HOLV1.shp", HOLV, "NO_TEST") 

 

  # 10) [Raster Calculator] Create inverted sink depth raster with holes removed 

(DEM2): 

  arcpy.AddMessage("Step 10: Inverting sink depth raster and remove holes 

removed...") 

DEM2 = Con(Raster("MAX") >= float(d), Con(Raster("snk") != Raster("MAX"), 

Raster("MAX") - Raster("snk"))) 

  DEM2.save("DEM2") 

 

  # 11) Set DEM = DEM2 and go back to Step 1 

  DEM = "DEM2" 

  loop_num += 1 
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  arcpy.AddMessage("======================================") 

   

def cleanup(): 

 global workspace 

 arcpy.AddMessage("Cleaning up intermediate files...") 

for filename in ["filled_DEM", "sink", "snk", "MAX", "msk", "DEM", "DEM2", 

"mskv.shp", "hol", "HOLV1.shp", "log", "info"]: 

  if arcpy.Exists(filename): 

   arcpy.Delete_management(filename) 

 arcpy.AddMessage("workspace is: %s" % workspace)  

 os.rmdir(workspace) 

 

# execute script 

sinkhole_indentifier(DEM, d, HOLV) 

cleanup() 
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Script 3: Zero Slope Procedure (ZS) 

 

#Zero_Slope tool 

 

#Extracts hydro-flattened water bodies from LiDAR-derived DEM 

#Extracts all cell patches with slope = 0 and converts patches to polygons 

#Applies a cell length buffer to adjust for perimeter cell loss 

 

#Set workspace and processing extent 

import arcpy 

from arcpy.sa import * 

from arcpy import env 

arcpy.CheckOutExtension("Spatial") 

env.overwriteOutput = True 

 

#Parameters 

#DEM - 2 meter filtered DEM  

    #Set as raster layer in tool properties 

#Output_shp - Zero Slope results shapefile 

    #Set as string in tool properties 

#Workspace - workspace 

    #Set as folder in string properties 

#Buffer_dist - buffer distance = cell size (2 Meters) 

    #Set as string in tool properties 

 

#get input parameters from Arc toolbox 

DEM = arcpy.GetParameterAsText(0) 

Output_shp = arcpy.GetParameterAsText(1) 

Workspace = arcpy.GetParameterAsText(2) 

Buffer_dist = arcpy.GetParameterAsText(3) 

 

def Zero_Slope(DEM, Output_shp, Workspace): 

    env.workspace = Workspace 

    env.overwriteOutput = True 

    env.extent = Raster(DEM) 

    env.snapRaster = Raster(DEM) 

 

    Raw = Raster(DEM) 

    slope_dem = Slope(Raw) 

    Out_DEM = SetNull(slope_dem  >  0,1) 

    arcpy.RasterToPolygon_conversion(Out_DEM, "ZS_raw.shp", "NO_SIMPLIFY", "VALUE") 

    arcpy.Buffer_analysis("ZS_raw.shp", Output_shp, Buffer_dist, "","","NONE") 

     

     

#Execute Script 

Zero_Slope(DEM, Output_shp, Workspace) 
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Script 4: Random Sampling for AA  

#Function for random sampling of features for accuracy assessment 

#Randomly selects a sample based on FID number and sorts in ascending order 

#This operation is preceded by:  

#1)Selecting features that occur in all three datasets with ArcGIS select by location/ 

intersect 

#2)Exporting the intersecting features from either NHD, TWIP, or ZS into a separate 

dataset 

#3)Identifying the maximum FID from the resulting dataset 

#A sample size of 10 was chosen for each of the 5 drainages sampled 

 

import random 

 

def random_imps(fidMax, sampleSize): 

    imp_IDs = random.sample(xrange(0, fidMax+1), sampleSize) 

    imp_IDs.sort() 

    return imp_IDs 
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Script 5: Total Catchment Area and Surface Area to Catchment Area Ratios  

 

#SA:CA 

 

#Calculates total catchment for each waterbody following the 

 #dataset's use as pour points in watershed delineation 

#This is necessary for accurate area measurement since catchments 

 #can become fragmented if converted from raster to polygon 

#Creates two new fields for the water body dataset 

    #The first provides the total catchment area for each water body/ pour point 

    #The second calculates a water body surface area to catchment area ratio 

#This tool requires that the watersheds first be converted to polygons 

 #and area calculated with the calculate areas tool of the spatial statistics toolbox 

 #(this produces the "F_AREA" attribute for the catchments layer) 

#This tool also requires that "F_AREA" has been calculated for the waterbodies 

 #("F_AREA" for the value layer allows surface area to catchment area calculation) 

#Matches water bodies to catchments based on FID and GRIDCODE 

 

 

#Parameters 

#focusLayer = water body dataset 

    #Set as shapefile in tool properties  

#valueLayer = watershed or catchment dataset 

    #Set as shapefile in tool properties 

#newFields = Catchment area and SA:CA fields 

    #Set as string in tool properties 

    #Script splits the string. E.g. "CA SA2CA"  ---> ["CA", "SA2CA"]         

#workspace = workspace 

    #Set as folder in tool properties 

 

import arcpy 

focusLayer = arcpy.GetParameterAsText(0) 

valueLayer = arcpy.GetParameterAsText(1) 

newFields = arcpy.GetParameterAsText(2) 

workspace = arcpy.GetParameterAsText(3) 

 

def SA2CA(focusLayer, valueLayer, newFields, workspace): 

 

    #Set workspace 

     

    from arcpy import env 

    env.overwriteOutput = True 

    env.workspace = workspace 

 

    #add fields for CA and SA:CA ratio 

    newFields = newFields.split()           #e.g., CA SA2CA -> ['CA', 'SA2CA'] with split() 
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    arcpy.AddField_management(focusLayer, newFields[0],"FLOAT","","",10) 

    arcpy.AddField_management(focusLayer, newFields[1],"FLOAT","","",10) 

 

    #create a feature layer for valueFC 

    valLayer=arcpy.MakeFeatureLayer_management(valueLayer,"Value Layer") 

 

    #Create new field list to include "FID" 

    #fields = fieldInValueLayer.append(fieldInFocusLayer) 

    fields = [newFields[0], newFields[1], "FID", "F_AREA"]           

 

    #Select FID value 

    fieldInValueLayer = ["F_AREA", "GRIDCODE"]       

    cursorUpdate = arcpy.da.UpdateCursor(focusLayer, fields) 

    for Row in cursorUpdate: 

        FID = Row[2] 

        #Select catchment fragments based on GRIDCODE = FID and sum CA Values 

        statcursor = arcpy.da.SearchCursor(valLayer,fieldInValueLayer) 

        for statrow in statcursor: 

            if statrow[1] == FID: 

                Row[0] = Row[0] + statrow[0] 

                cursorUpdate.updateRow(Row) 

            del statrow 

        del statcursor 

    del cursorUpdate 

 

    #Calculate SA:CA ratio     

    cursorUpdate = arcpy.da.UpdateCursor(focusLayer, fields) 

    for Row in cursorUpdate: 

        Row[1] = float(Row[3])/float(Row[0]) 

        cursorUpdate.updateRow(Row) 

        del Row 

    del cursorUpdate 

 

 

#Execute Script 

SA2CA(focusLayer, valueLayer, newFields, workspace) 

 

 

 

 

 

 


