Paleobiogeography of the North American Late Cretaceous Western Interior Seaway: the impact of abiotic vs. biotic factors on macroevolutionary patterns of marine vertebrates and invertebrates by Copyright 2013 Corinne Emanuelle Myers B.S., Cornell University, 2004 M.S., Brown University, 2008 Submitted to the graduate degree program in Geology and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy. ________________________________ Chairperson: Bruce S. Lieberman ________________________________ Paul Selden ________________________________ Luis A. Gonzalez ________________________________ Edward O. Wiley ________________________________ Xingong Li Date Defended: April 18, 2013 ii The Dissertation Committee for Corinne E. Myers certifies that this is the approved version of the following dissertation: Paleobiogeography of the North American Late Cretaceous Western Interior Seaway: the impact of abiotic vs. biotic factors on macroevolutionary patterns of marine vertebrates and invertebrates ________________________________ Chairperson: Bruce S. Lieberman Date approved: April 18, 2013 iii Abstract My research investigates the relationship between ecology, evolution, and the environment in the fossil record. I hypothesize that abiotic environmental factors (e.g., climate, sea-level, ocean chemistry, and paleogeography) play a greater role in speciation, extinction, and distribution patterns than biotic factors (e.g., competition, mutualism). The effects of these factors can be observed in the fossil record as changes in species distributions, range sizes, and niche dimensions through time. Using GIS, paleoenvironmental reconstruction, and ecological niche modeling (ENM), I quantitatively investigated hypotheses of the relative influence of abiotic vs. biotic factors on macroevolution in three main studies of marine taxa from the Late Cretaceous Western Interior Seaway (WIS) of North America. The Late Cretaceous was a period of prolonged extreme and equable warmth; thus, this research has potential implications for species biology and biogeography in a projected future warmer world. The first study examined the influence of biotic interactions on patterns of extinction by competitive exclusion in marine vertebrates. Results indicated that competitive replacement was not a mechanism mediating extinctions. Instead other factors, such as environmental changes, likely controlled extinction patterns. The second study investigated the effect of large range size on survivorship and invasion potential in marine mollusks. No relationship between large range size and extinction resistance was recovered, however, endemic species with small range sizes were more likely to become invasive. These results suggest that some biogeographic “rules” (e.g., large range size confers extinction resistance and increased invasion potential) may not prevail under conditions of prolonged and equable global warmth. The last part of my research focused on improving methods for the application of ENM in the fossil record (paleo-ENM). In order to use ENM in the fossil record, detailed iv environmental layers must be reconstructed from sedimentological and geochemical proxies. Additionally, paleo-ENM requires high-resolution stratigraphic correlations of fossil-bearing formations and collection of large species’ occurrence datasets that represent the full temporal and spatial extent of the species modeled. In order to produce high fidelity models, a standardized framework for paleoenvironmental reconstruction is required. Best practices are outlined for paleoenvironmental reconstruction, in addition to the contextual framework and important considerations necessary to appropriately apply paleo-ENM. v Acknowledgements I have been incredibly lucky throughout my academic career to be supported by many people, institutions, and funding agencies. Consequently, though I will attempt to acknowledge them here, these few words will neither do them true justice, nor fully express my incredible gratitude and appreciation. I am indebted to the museum curators and collections managers who allowed me to root through their collections and kindly dealt with my persistent questions: Daniel Brinkman, Susan Butts, Bill Cobban, George Corner, Tonia Culver, Michael Everhart, Leslie Galyas, Bushra Hussaini, Susan Klofak, Neil Landman, Neal Larson, Larry Martin, Casey McKinney, Desui Miao, Anne Mollineaux, Kallie Moore, Lyndon Murray, Daniel Williams, and Laura Wilson. I am further indebted to Rich MacKenzie III for his enthusiastic collaboration. Together we have compiled a fierce Late Cretaceous WIS marine database that will provide excellent research opportunities to many scientists and students for years to come! I have had the pleasure of working with the best field crew that a WIS ammonite girl could ask for. MUCH thanks to Neil Landman, Matt Garb, Remy Rovelli, Susan Klofak, Katya Larina, and Caitlin Boas. Thanks especially to Neil Landman and Matt Garb for their guidance and patience in helping me learn the ropes of collecting, mapping AND translating those data into something useable! Thanks also to Neal Larson, who has opened up his heart and home with each trip – Neal your passion and knowledge of the WIS are inspiring! My research and fieldwork have been supported by a number of agencies and institutions – thanks to the KU Department of Geology, KU Biodiversity Institute Panorama Society, Yale Peabody Museum Schuchert and Dunbar Grants in Aid Program, Richard Gilder Graduate School Collection Study Grant Program, Geological Society of America, Association for Women vi Geoscientists, Paleontological Society, and the Association of Earth Science Clubs of Greater Kansas City, for numerous grants and scholarships over the years. Two major fellowships supported my livelihood during my tenure at KU: the Madison and Lila Self Graduate Fellowship Program provided me four years of professional development – from leadership and management training to communicating science and public policy – and the NSF-funded GK-12 Fellowship Program allowed me to sharpen my teaching and skills to engage and inspire future citizen scientists. Science does not occur in a vacuum, and I have only succeeded through the help, encouragement, and patience of MANY colleagues, lab-mates, and friends. Many thanks to my advisor Bruce Lieberman for helping me build a dissertation project as far from Paleozoic trilobites as one could get and for having the patience to let me muddle through it! Thanks also for connecting me with great fieldwork colleagues, for financial support, and unswerving advocacy and confidence in me, even when I had very little confidence in myself! Thanks also to the rest of my dissertation committee: Luis Gonzalez, Xingong Li, Paul Selden, and Ed Wiley for their encouragement and support. Thanks to the KU-ENM working group for giving me depth in ENM – I am grateful to have worked with all of you in pushing back the frontiers of ENM knowledge and theory! Thanks to my lab and graduate student support group at KU – you guys have kept me sane and from quitting! Special thanks to Erin Saupe – the better half of the Shiva entity – for fantastic friendship, lengthy scientific conversations, and MEGA-emotional support over the years. Thanks to Jon Hendricks for a decade of conversations and advice about science and life – without you Jon, I would never have gotten into graduate school! Many thanks also to my unofficial undergraduate advisor Warren Allmon – your class is the reason I got excited about vii paleontology and your advice, both spiritual and academic, has seen me through this dissertation – thank you for believing in me! I am extremely grateful for my family – their unswerving support emotionally and financially through the years has made it possible for me to finish this degree. To my Mom, Bill, and Dad: thank you for always encouraging me to reach farther and supporting me even when I faltered; to Cami and Billy: although questionably supportive since you refuse to believe that I’ve been in graduate school these past years, thanks for your laughter that reminded me about the happy parts of life; and to Kio: seeing you grow into the beautiful woman that you are has given me hope and strength throughout these sometimes tough years. Alison Koleszar you are family to me! Thanks for your steadfast friendship, laughter, adventures, schemes, and general awesome-ness over the years. Joe may be the real twin, but I’d share a womb with you any day! Finally, to my husband Mike – thank you from the bottom of my heart. Thank you for your patience, encouragement, giggles, and unconditional love. You are my rock and my good sense; you remind me that there is still beauty and mystery in the world and time to explore it together. There is no one I’d rather adventure with or save the world. viii Table of Contents Abstract ......................................................................................................................................... iii Acknowledgements ....................................................................................................................... v List of Figures ................................................................................................................................ x List of Tables ................................................................................................................................ xi List of Appendices ....................................................................................................................... xii Chapter 1. Introduction ............................................................................................................... 1 Geological Setting: the Late Cretaceous Western Interior Seaway (WIS) ........................................ 2 Research Chapters and Species Database ............................................................................................ 5 Literature Cited .................................................................................................................................... 11 Chapter 2. Sharks That Pass In The Night: Using GIS to Investigate Competition in the Cretaceous Western Interior Seaway ........................................................................................ 16 Abstract ................................................................................................................................................. 16 Introduction ........................................................................................................................................... 17 Historical Perspective ......................................................................................................................... 17 Geological Setting .............................................................................................................................. 19 Materials and Methods ......................................................................................................................... 20 Data Collection ................................................................................................................................... 20 Range Reconstructions ....................................................................................................................... 23 Identifying Competition ..................................................................................................................... 25 Analysis of Bias .................................................................................................................................. 26 Results .................................................................................................................................................... 27 Competition in the WIS ...................................................................................................................... 27 Analysis of Bias .................................................................................................................................. 32 Discussion .............................................................................................................................................. 35 Literature Cited .................................................................................................................................... 37 Chapter 3. Greenhouse biogeography: the relationship of geographic range to invasion and extinction in the Cretaceous Western Interior Seaway ........................................................... 45 Abstract ................................................................................................................................................. 45 Introduction ........................................................................................................................................... 46 Methods ................................................................................................................................................. 48 Data Collection ................................................................................................................................... 48 Range Reconstructions ....................................................................................................................... 50 Survivorship ....................................................................................................................................... 53 Invasion Potential ............................................................................................................................... 56 Results .................................................................................................................................................... 58 Survivorship and Invasion Potential ................................................................................................... 58 Assessing External Bias ..................................................................................................................... 62 Discussion .............................................................................................................................................. 65 Survivorship and Geographic Range .................................................................................................. 65 Invasion Potential and Geographic Range ......................................................................................... 67 Concluding Remarks .......................................................................................................................... 69 Literature Cited .................................................................................................................................... 71 ix Chapter 4. Developing methods for application of ecological niche modeling in the fossil record. .......................................................................................................................................... 85 Abstract ................................................................................................................................................. 85 Introduction ........................................................................................................................................... 85 ENM: Basic Methods and Theory ....................................................................................................... 87 Statistical approaches to ENM ........................................................................................................... 89 Paleoenvironmental Reconstruction ................................................................................................... 91 Determining Model Extent ................................................................................................................. 92 Selecting environmental layers for paleo-ENM ................................................................................. 93 Methods for paleoenvironmental reconstruction: an example from the Late Cretaceous ................ 100 ENM in the Fossil Record: case study of the Late Cretaceous WIS .............................................. 110 Occurrence data and stratigraphic correlation .................................................................................. 110 ENM applications in the fossil record .............................................................................................. 112 Conclusions .......................................................................................................................................... 115 Literature Cited .................................................................................................................................. 174 Chapter 5. Conclusion .............................................................................................................. 191 Literature Cited .................................................................................................................................. 194 Appendices ................................................................................................................................. 198 x List of Figures Figure 1-1. Late Cretaceous sedimentary geologic record, biotic sub-provinces, and endemic center in the Western Interior Seaway…………………………………………………….3 Figure 2-1. Geographic occurrences of Late Cretaceous marine vertebrates and Late Cretaceous sedimentary geologic record....…………………………………………………………..22 Figure 2-2. Modern versus Coniacian tectonic plate reconstruction using PaleoGIS…………..24 Figure 2-3. Paleobiogeographic two-taxon comparison of Tylosaurus sp. and Platecarpus sp…………………………………………………………………………………………30 Figure 2-4. Paleobiogeographic two-taxon comparison of Squalicorax falcatus and S. kaupi……………………………………………………………………………………...31 Figure 3-1. Modern versus Santonian tectonic plate reconstruction using PaleoGIS…………...51 Figure 3-2. Reconstructed range area of Baculites codyensis during the Santonian, including Western Interior Seaway biotic sub-provinces, endemic center, and Late Cretaceous sedimentary geologic record………………………………………………………...…...55 Figure 3-3. Invasive versus non-invasive behavior of Baculites codyensis and B. thomi during the Santonian and Campanian……………………………………………………….…...57 Figure 4-1. Lithostratigraphic reconstruction using an example stratigraphic column………..106 xi List of Tables Table 1-1. List of marine taxa and their geologic duration in the Late Cretaceous Western Interior Seaway……………………………………………………………………………8 Table 2-1. Intrageneric range area correlations……………………………………………….....29 Table 2-2. Range area correlations of taxa with similar inferred paleoecology………………...29 Table 2-3. Correlation results comparing number of geographically unique species occurrences and reconstructed range area……………………………………………………………..34 Table 3-1. Mann-Whitney U comparisons of range area and latitudinal extent with survivorship and invasion potential during each stage of the Late Cretaceous………………………..59 Table 3-2. Contingency table analysis comparing biotic sub-provinces and endemism with survivorship and invasion potential……………………………………………………...61 Table 3-3. Contingency table analysis comparing benthic versus pelagic adult lifestyle and clade membership with survivorship and invasion potential…………………………………..61 Table 3-4. Correlation results testing for sampling, outcrop, and stage duration biases………..64 Table 4-1. Paleoenvironmental layers reconstructed for ENM analysis in the Late Cretaceous Western Interior Seaway…………………………………………………………………96 Table 4-2. Coding rule-set for evaluating paleoenvironmental information from literature survey…………………………………………………………………………………...102 Table 4-3. Stratigraphic correlation of fossil-bearing formations in the Late Cretaceous Western Interior Seaway…………………………………………………………………………117 xii List of Appendices Appendix 1-1. Reconstructed range area each marine vertebrate species during each stage of the Late Cretaceous………………………………………....………………………………198 Appendix 1-2. Correlation results from all pairwise taxon comparisons using raw reconstructed range area……………………………………………………………………………….201 Appendix 1-3. Correlation results of all pairwise comparisons using resampled mean range area……………………………………………………………………………………...203 Appendix 1-4. Correlation results comparing number of geographically unique species occurrences and resampled mean range area…………………………………………...205 Appendix 1-5 to 1-47. All pairwise paleobiogeographic comparisons………………………...206 Appendix 1-48. PaleoGIS reconstructions illustrating approximate WIS boundaries during the Late Cretaceous…………………………………………………………………………249 Appendix 2-1. Reconstructed range size, latitudinal extent, and survivorship and invasion coding for marine species………………………………………………………………………250 Appendix 2-2. Histogram of log(geographic range) for all species’ reconstructed ranges……254 Appendix 3. References cited in Late Cretaceous stratigraphic correlation (Table 4-4)………255 1 Chapter 1. Introduction The over-arching goal of my research is to understand the relationship between ecology, evolution, and the environment. Specifically, my research utilizes cross-disciplinary techniques to investigate the role that biotic vs. abiotic changes play in mediating macroevolutionary patterns such as speciation, extinction, and distribution change in the fossil record. This approach integrates Earth and evolutionary history to address questions relevant to society today. 21st century environmental changes (e.g., climate warming, habitat degradation and fragmentation, changes in ocean chemistry, human-mediated introduction of new species) are projected to accelerate in our short- and long-term future. Significantly, the magnitude of biodiversity loss associated with these changes is predicted to be large enough to constitute a sixth mass extinction event, rivaling the five large mass extinctions observed in the fossil record (Leakey and Lewin 1995; McElwain and Punyasena 2007; Wake and Vredenburg 2008; Barnosky et al. 2011). While modern biological inquiry can look in detail at how species respond to these changes, biologists are limited in temporal scope; i.e., studies may span decades, but species persist for 2–10 Myrs. The Phanerozoic fossil record provides a 544-Myr history that illustrates how species have responded to similar extreme environmental changes across their lifetimes. Thus, using the fossil record, I can test in unique ways hypotheses of species’ responses to some of these factors, which is informative for modern predictions and policy-making decisions (Wiens and Graham 2005; Peterson and Lieberman 2012). 2 Geological Setting: the Late Cretaceous Western Interior Seaway (WIS) The Late Cretaceous WIS (Figure 1-1) is an ideal time in which to investigate the impact of biotic vs. abiotic changes on species’ paleobiogeographic and macroevolutionary patterns. The WIS was a shallow (i.e., < 300 m depth) epicontinental sea connected both to the Arctic Ocean in the north and the Proto-Gulf of Mexico and Tethys Sea in the south for the 35 Myr duration of the Late Cretaceous (Hancock and Kauffman 1979; Hattin 1982; Kauffman 1984; Glancy et al. 1993; Kauffman and Caldwell 1993; Schroder-Adams et al. 1996; Kennedy et al. 1998). It is further exceptionally well-characterized both paleobiologically and geologically from over 100 years of intensive study, which minimizes the effects of systematic biases in sampling (e.g., Hancock and Kauffman 1979; Hattin 1982; Barron 1983; Kauffman 1984; Jablonski 1987; Glancy et al. 1993; Kauffman and Caldwell 1993; Schroder-Adams et al. 1996; Sageman et al. 1997; Fatherree et al. 1998; Kennedy et al. 1998; Tsujita and Westermann 1998; Poulsen et al. 2001; Huber et al. 1995, 2002; Harries 2003; Jenkyns et al. 2004; Keller et al. 2004; Cobban et al. 2006; Landman et al. 2012; Ufnar et al. 2008). From a biotic perspective, the WIS was composed of four biotic sub-provinces (from north to south: Northern Interior sub-province, Central Interior sub-province, Southern Interior sub-province, and Gulf and Atlantic Coast sub-province) (Figure 1-1). These biotic sub-provinces (BSPs) were defined by 10-25% species endemism and are approximately analogous to modern biogeographic zones ranging from a cool temperate zone in the Northern Interior sub-province, to a subtropical zone in the southern Gulf and Atlantic coast (Kauffman 1984). Due to changing environmental conditions (e.g., sea level fluctuations), BSP boundaries in the WIS were fairly fluid providing ample opportunities for species interactions throughout the seaway. 3 Figure 1-1. Late Cretaceous geologic outcrop record (grey). Black lines outline WIS biotic sub- province boundaries, and the WIS Endemic Center (hatched) as modified from Kauffman 1984. From north to south, biotic sub-provinces are: Northern Interior Sub-province, Central Interior Sub-province, Southern Interior Sub-province, and Gulf/Atlantic Coast Sub-province. 4 Periods of extreme, rapid environmental change in Earth history have the potential to be informative for making predictions about future events, and improve our general understanding of how species respond to climate extremes. Although the nature of the Late Cretaceous environment is unlikely to be a direct analogue to the climatic and oceanographic changes expected in our future, it may resemble the long-term regime into which the planet is headed (Spicer and Corfield 1992; Barron 1995; Covey et al. 1996; Haywood et al. 2011). Uniquely, the Late Cretaceous was a time of both extreme global warmth and geologically rapid environmental changes. Thus, from an abiotic perspective as well, the Late Cretaceous WIS is an excellent period to study how species interacted with a dynamic planet. Globally, Late Cretaceous climate was a “greenhouse” interval in Earth history with average annual temperatures much higher than the modern, no permanent polar ice, and a significantly reduced latitudinal thermal gradient (Barron 1983, 1995; Spicer and Corfield 1992; Covey et al. 1996; Huber et al. 1995, 2002; Jenkyns et al. 2004; Hay 2008). Moreover, the WIS experienced numerous transgressive-regressive cycles including five third-order eustatic cycles (the largest of which were the Cenomanian-Turonian Greenhorn cycle, the Coniacian-Campanian Niobrara cycle, and the Campanian-Maastrichtian Claggett/Bearpaw cycle), and several smaller fourth-order sequences (Hattin 1982; Kauffman 1984; Kauffman and Caldwell 1993). Due to the narrow connections at the northern and southern tips of the seaway, restricted marine conditions dominated, including often-brackish water conditions and a dysoxic to anoxic benthos. Normal open-marine conditions were likely short-lived (0.5-1 Myr durations) and were associated with transgressive peaks (e.g., at the Albian/Cenomanian boundary, Cenomanian/Turonian boundary, Coniacian-Santonian, and middle Campanian) (Kauffman 1984; Tsujita and Westermann 1998; Fisher and Arthur 2002). 5 Research Chapters and Species Database My dissertation is composed of three main studies (two of which have been previously published in peer-reviewed journals) that investigate the impacts of biotic vs. abiotic changes on paleobiogeographic and macroevolutionary patterns of marine taxa from the Late Cretaceous WIS. Because the goal of my research is to uncover general principles of the impact of abiotic vs. biotic changes on macroevolution, the taxa included in this dissertation span a broad phylogenetic and ecological range. Both vertebrate and invertebrate taxa were investigated, including species with pelagic, nekto-benthic, and benthic adult lifestyles; ecologically, some species were dominantly predatory, some durophagous, scavengers, suspension-feeders, etc. The full species paleobiogeographic dataset includes 83 taxa, with species’ identifications vetted through direct examination by myself or one of my collaborators (Table 1-1). Geographic resolution of species occurrences is at the county level or better and stratigraphic resolution is at the level of geologic stage. In order to assign stratigraphic age to species occurrences, a stratigraphic correlation of fossil-bearing formations in the WIS across the entire 35 Myr period of the Late Cretaceous was compiled (Table 4-3 and Appendix 3). Species’ paleo-range sizes were estimated using a convex hull around species’ occurrence points as well as calculating latitudinal extent of species distributions during each of the six Late Cretaceous stages. ArcGIS v. 9.2 (ESRI 2006) was used to visualize and calculate range area after using the PaleoGIS extension (v. 3.0; Ross and Scotese 2000; Rothwell Group 2007) to rotate the Earth’s tectonic plates to their paleo-positions during each stage. Detailed paleoenvironmental reconstructions were done based on extensive literature survey, and fieldwork conducted in South Dakota, Missouri, and Mississippi. 6 The first study in my dissertation tested for the effects of biotic interactions on patterns of extinction by competitive exclusion in 10 marine vertebrates (Myers and Lieberman 2011). Paleobiogeographic evidence of competitive exclusion between pairs of ecologically and phylogenetically related vertebrates was hypothesized to be shown as statistically significant negative range-area correlations through time. However, statistical evidence for such a pattern was not found, suggesting that competitive exclusion was not a mechanism mediating extinctions in these taxa. Thus other factors, such as environmental changes, were more likely controlling extinction patterns. The second study tested for the effect of range size on patterns of survivorship and invasion potential in 63 species of WIS invertebrates (Myers et al. 2013). Counter to patterns documented by other studies, this study did not find a relationship between large range size and extinction resistance in molluscan species. Moreover, endemic species with small range sizes were more likely to become invasive. This may be a consequence of the unique conditions during the Late Cretaceous (e.g., its prolonged extreme and equable warmth). These results suggest that some biogeographic “rules” (e.g., large range size conferring extinction resistance and increased invasion potential) may not prevail under conditions of prolonged and equable global warmth. The last study focused on the application of ecological niche modeling (ENM) in the fossil record. ENM was developed by modern biologists to estimate species’ abiotic requirements by correlating environmental factors (e.g., temperature) with known species occurrences. In the modern, spatially explicit environmental layers are easily downloadable (e.g., www.WorldClim.org; Hijmans et al. 2005). However, in the fossil record, paleoenvironmental layers must be carefully reconstructed from sedimentological and geochemical proxies. This 7 chapter provides guidelines and best practices for paleoenvironmental reconstruction and important conceptual considerations when applying ENM in the fossil record. The results of these studies highlight the importance of the abiotic environment on paleobiogeographic and macroevolutionary patterns. This research illustrates that biotic interactions, such as competitive exclusion, do not seem to have a profound influence on extinction potential of marine vertebrates. Abiotic changes, however, have complex effects on species’ paleobiogeography that are likely specific to the environmental regime in which species reside. ENM is a useful tool to quantify species’ abiotic requirements and test specific hypotheses regarding the impact of changing environmental conditions on macroevolutionary patterns (e.g., the impact of ecological niche stability, breadth, and phylogenetic conservation on patterns of speciation, extinction, and distribution change). However, standardized methods for paleoenvironmental reconstruction and an explicit conceptual framework provide a critical foundation to producing accurate and informative models. 8 Table 1-1. List of marine taxa and their geologic duration in the Late Cretaceous Western Interior Seaway. Geologic stage abbreviations: Cenomanian (CEN), Turonian (TUR), Coniacian (CON), Santonian (SAN), Campanian (CAM), Maastrichtian (MAA). Taxa Geologic Range Bivalvia Agerostrea falcata CAM-MAA Anomia argentaria CAM-MAA Anomia cobbani TUR Anomia gryphorhyncus CAM-MAA Anomia micronema CAM-MAA Anomia obliqua CAM Anomia pfeiferensis TUR Anomia subquadrata TUR-CAM Crassosstrea glabra CAM-MAA Exogyra columbella CEN Exogyra costata CAM-MAA Exogyra erraticostata CEN Exogyra laeviuscula SAN Exogyra levis CEN Exogyra olisiponensis CEN Exogyra tigrina SAN Exogyra trigeri CEN Ilmatogyra arietina CEN Ostrea beloiti CEN-TUR Ostrea malachitensis TUR Ostrea plumosa CAM Ostrea russelli CAM-MAA Ostrea translucida MAA Pseudoperna bentonensis TUR Pseudoperna congesta CEN-MAA Pycnodonte mutabilis CAM Pycnodonte newberryi CEN-TUR Cephalopoda Actinocamax manitobensis TUR-CON Actinosepia canadensis CAM-MAA Baculites aquilaensis SAN Baculites asper CON-SAN 9 Baculites asperiformis CAM Baculites baculus CAM Baculites clinolobatus CAM Baculites codyensis CON-SAN Baculites compressus CAM Baculites compressus robinsoni CAM Baculites corrugatus CAM-MAA Baculites crickmayi CAM Baculites cuneatus CAM Baculites eliasi CAM Baculites gilberti CAM Baculites grandis CAM Baculites gregoryensis CAM Baculites haresi SAN-CAM Baculites jenseni CAM Baculites larsoni MAA Baculites maclearni CAM Baculites mariasensis TUR-CON Baculites obtusus CAM Baculites ovatus CAM-MAA Baculites perplexus CAM Baculites pseudovatus CAM Baculites undatus CAM Baculites reduncus CAM Baculites reesidei CAM Baculites rugosus CAM Baculites scotti CAM Baculites sp. (smooth spp.) CAM Baculites sp. (smooth) CAM Baculites sp. (weak flank ribs) CAM Baculites sweetgrassensis CON Baculites taylorensis CAM Baculites texanus CAM Baculites thomi CON-CAM Baculites undulatus TUR Baculites yokoyamai CEN-CON, CAM Belemnitella bulbosa MAA Eubaculites carinatus MAA 10 Eutrephoceras alcesence CAM Eutrephoceras dekayi CAM-MAA Pseudobaculites natosini CAM-MAA Pseudobaculites nodosus CON Pseudobaculites wyomingensis CON Sciponoceras gracilis CEN-TUR Trachybaculites columna MAA Tusoteuthis longa CAM Gastropoda Anisomyon apicalis TUR-CON Anisomyon borealis CAM-MAA Anisomyon centrale CAM-MAA Drepanochilus evansi CAM-MAA Euspira obliqua MAA Euspira rectilabrum CAM-MAA Graphidula culbertsoni MAA Turritella vertebroides CAM Turritella whitei CEN Maxillopoda Stramentum elegans TUR Reptilia Tylosaurus sp. CON-MAA Platecarpus sp. CON-CAM Actinopterygii Xiphacinus sp. CEN-MAA Chondrichthyes Cretoxyrhina mantelli CEN-SAN Squalicorax falcatus CEN-CAM Squalicorax kaupi CON-MAA Ptychodus anonymous CEN-CON Ptychodus mortoni TUR-CAM Ptychodus whipplei CEN-CON Rhinobatos incertus CEN-CAM 11 Literature Cited Barnosky, A. D., N. Matzke, S. Tomiya, G. O. U. Wogan, B. Swartz, T. B. Quental, C. Marshall, J. L. McGuire, E. L. Lindsey, K. C. Maguire, B. Mersey, and E. A. Ferrer. 2011. Has the Earth’s sixth mass extinction already arrived? Nature 471: 51-57. Barron, E. J. 1983. A warm, equable Cretaceous: the nature of the problem. Earth Science Reviews 19:305–338. Barron, E. J. 1995. Warmer Worlds: global change lessons from Earth history. World Survey of Climatology 16:71-94. Cobban, W. A., I. Walaszczyk, J. D. Obradovich, and K. C. McKinney. 2006. A USGS Zonal table for the Upper Cretaceous middle Cenomanian-Maastrichtian of the Western Interior of the United States based on ammonites, inoceramids, and radiometric ages. USGS Open-file Report 2006-1250. Covey, C., L. C. Sloan, and M. I. Hoffert. 1996. Paleoclimate data constraints on climate sensitivity: the paleocalibration method. Climatic Change 32:165-184. Environmental Systems Research Institute. 2006. ARCGIS version 9.2. ESRI, Redlands, CA. Fatherree, J. W., P. J. Harries, and T. M. Quinn. 1998. Oxygen and carbon isotopic “dissection” of Baculites compressus (Mollusca: Cephalopoda) from the Pierre Shale (upper Campanian) of South Dakota: implications for Paleoenvironmental reconstructions. Palaios 13:376-385. Fisher, C. G. and M. A. Arthur. 2002. Water mass characteristics in the Cenomanian Western Interior seaway as indicated by stable isotopes of calcareous organisms. Palaeogeography, Palaeoclimatology, Palaeoecology 188:189-213. Glancy, T. J. Jr., M. A. Arthur, E. J. Barron, and E. G. Kauffman. 1993. A paleoclimate model 12 for the North American Cretaceous (Cenomanian-Turonian) epicontinental sea. In W. G. E. Caldwell and E. G. Kauffman, eds. Evolution of the Western Interior Basin. Geological Association of Canada Special Paper 39: 219-242. Hancock, J. M. and E. G. Kauffman. 1979. The great transgressions of the Late Cretaceous. Journal of the Geological Society of London 136:175-186. Harries, P. J. 2003. A reappraisal of the relationship between sea level and species richness. In P. J. Harries ed. High Resolution Approaches In Stratigraphic Paleontology. Topics in Geobiology 21: 227-261. Hattin, D. E. 1982. Stratigraphy and depositional environment of the Smoky Hill Chalk Member, Niobrara Chalk (upper Cretaceous) of the type area, western Kansas. Kansas Geological Survey Bulletin 225:1-108. Hay, W. W. 2008. Evolving ideas about the Cretaceous climate and ocean circulation. Cretaceous Research 29:725-753. Haywood, A. M., A. Ridgewell, D. J Lunt, D. J. Hill, M. J. Pound, H J. Dowsett, A. M. Dolan, J. E. Francis, and M. Williams. 2011. Are there pre-Quaternary geological analogues for a future greenhouse warming? Philosophical Transactions of the Royal Society A 369:933-956. Hijmans, R. J., S. E. Cameron, J. L. Parra, P. G. Jones and A. Jarvis. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25:1965-1978. Huber, B. T., D. A. Hodell, and C. P. Hamilton. 1995. Middle-Late Cretaceous climate of the southern high latitudes: stable isotopic evidence for minimal equator-to-pole thermal gradients. Geological Society of America Bulletin 107:1164-1191. Huber, B. T., R. D. Norris, and K. G. MacLeod. 2002. Deep-sea paleotemperature record of 13 extreme warmth during the Cretaceous. Geology 30:123-126. Jablonsky, D. 1987. Heritability at the species level: analysis of geographic ranges of Cretaceous mollusks. Science 238:360-363. Jenkyns, H. C., A. Forster, S. Schouten, and J. S. Sinnginghe Damste. 2004. High temperatures in the Late Cretaceous Arctic Ocean. Nature 432:888-892. Kauffman, E.G. 1984. Paleobiogeography and evolutionary response dynamic in the Cretaceous Western Interior Seaway of North America. In G.E.G. Westermann, ed. Jurassic-Cretaceous Biochronology and Paleogeography of North America. Geological Association of Canada Special Paper 27: 273-306. Kauffman, E. G. and W. G. E. Caldwell. 1993. The Western Interior Basin in Space and Time. In W. G. E. Caldwell and E. G. Kauffman, eds. Evolution of the Western Interior Basin, Geological Association of Canada Special Paper 39:1-30. Keller, G., Z. Berner, T. Adatte, and D. Stueben. 2004. Cenomanian-Turonian and δ13C, and δ18O sea level and salinity variations at Pueblo, Colorado. Palaeogeography, Palaeoclimatology, Palaeoecology 211:19-43. Kennedy, W. J., N. H. Landman, W. K. Christensen, W. A. Cobban, and J. M. Hancock. 1998. Marine connections in North America during the late Maastrichtian: palaeogeographic and palaeobiogeographic signi®cance of Jeletzkytes nebrascensis Zone cephalopod fauna from the Elk Butte Member of the Pierre Shale, SE South Dakota and NE Nebraska. Cretaceous Research 19:745-775. Landman, N. H., W. A. Cobban, and N. L. Larson. 2012 (in press). Mode of life and habitat of scaphitid ammonites. Geobios doi:10.1016/ j.geobios.2011.11.006. 14 Leakey R. E., and R. Lewin. 1995. The Sixth Extinction: Patterns of Life and the Future of Humankind. Doubleday, New York. McElwain, J. C. and S. W. Punyasena. 2007. Mass extinction events and the plant fossil record. Trends in Ecology and Evolution 22: 548-557. Myers, C. E. and B. S. Lieberman. 2011. Sharks that pass in the night: using Geographical Information Systems to investigate competition in the Cretaceous Western Interior Seaway. Proceedings of the Royal Society of London B 278: 681-689. Myers, C. E., R. A. MacKenzie III, and B. S. Lieberman. 2013. A GIS approach to studying greenhouse biogeography: invasion and extinction in the Cretaceous Western Interior Seaway. Paleobiology 39:135-148. Peterson, A. T., and B. S. Lieberman 2012. Species’ geographic distributions through time: playing catch-up with changing climates. Evolution: Education and Outreach doi: 10.1007/s12052-012-0385-2. Poulsen, C. J., E. J. Barron, M. A. Arthur, and W. H. Peterson. 2001. Response of the mid-Cretaceous global oceanic circulation to tectonic and CO2 forcings. Paleoceanography 16:576-592. Ross, M. I. and C. R. Scotese. 2000. PaleoGIS/Arcview 3.5, PALEOMAP Project. Arlington, TX. Rothwell Group, LP. 2007. PALEOGIS for ARCGIS 9.x. Houston. Sageman, B. B., J. Rich, M. A. Arthur, G. E. Birchfield, and W. E. Dean. 1997. Evidence for Milankovich periodicities in Cenomanian-Turonian lithologic and geochemical cycles, Western Interior USA. Journal of Sedimentary Research 67:286-302. Schroder-Adams, C. J., D. A. Leckie, J. Bloch, J. Craig, D. J. McIntyre, and P. J. Adams. 1996. Paleoenvironmental changes in the Cretaceous (Albian to Turonian) Colorado Group of 15 western Canada: microfossil, sedimentological, and geochemical evidence. Cretaceous Research 17:311-365. Spicer, R. A. and R. M. Corfield. 1992. A review of terrestrial and marine climates in the Cretaceous with implications for modeling the ‘Greenhouse Earth.’ Geological Magazine 129:169-180. Tsujita, C. J. and G. E. G. Westermann. 1998. Ammonoid habitats and habits in the Western Interior Seaway: a case study from the Upper Cretaceous Bearpaw Formation of southern Alberta, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology 144:135-160. Ufnar, D. F., G. A. Ludvigson, L. Gonzalez, and D. R. Grocke. 2008. Precipitation rates and atmospheric heat transport during the Cenomanian greenhouse warming in North America: estimates from a stable isotope mass-balance model. Palaeogeography, Palaeoclimatology, Palaeoecology 266:28-38. Wake, D. B., and V. T. Vredenburg. 2008. Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proceedings of the National Academy of Sciences USA 105 :11466-11473. Wiens, J. J., and C. H. Graham 2005. Niche conservatism: integrating evolution, ecology, and conservation biology. Annual Review of Ecology, Evolution, and Systematics 36: 519-539. 16 Chapter 2. Sharks That Pass In The Night: Using GIS to Investigate Competition in the Cretaceous Western Interior Seaway Originally published as: Myers, C. E. & B. S. Lieberman. 2011. Sharks That Pass in the Night: Using GIS to investigate competition in the Cretaceous Western Interior Seaway. Proceedings of the Royal Society of London B 278:681-689. Abstract One way the effects of both ecology and environment on species can be observed in the fossil record is as changes in geographic distribution and range size. The prevalence of competitive interactions and species replacements in the fossil record has long been investigated and many evolutionary perspectives, including those of Darwin, have emphasized the importance of competitive interactions that ultimately lead one species to replace another. However, evidence for such phenomena in the fossil record is not always manifest. Here we use new quantitative analytical techniques based on geographic information systems (GIS) and PaleoGIS tectonic reconstructions to consider this issue in greater detail. The abundant, well-preserved fossil marine vertebrates of the Late Cretaceous Western Interior Seaway of North America provide the component data for this study. Statistical analysis of distributional and range size changes in taxa confirms earlier ideas that the relative frequency of competitive replacement in the fossil record is limited to non-existent. It appears that typically environmental gradients played the primary role in determining species distributions, with competitive interactions playing a more minor role. 17 Introduction Historical Perspective A central question in biogeography and evolution is what causes species’ distributions to wax and wane through time. Traditionally, a dominant role has been ascribed to competitive interactions between species (Darwin 1859, MacArthur and Wilson 1972, Van Valen, 1987, Vermeij 1987, Jackson and McKinney 1990, Rosenzweig and McCord 1991, Sepkoski et al. 2000). Classic examples include the decline and replacement of brachiopods by bivalves, mammal-like reptiles by archosaurs, cyclostome bryozoans by cheilostome bryozoans, gymnosperms by angiosperms, multituberculates by rodents, and South American mammals by North American fauna; however, these cases for the most part have not been tested in detail (Benton 1987, 1996a, Rayner and Masters 1995). The theoretical importance of competition in evolution actually pre-dates Darwinian competitively driven natural selection and can be traced back to the notion of plenitude. Plenitude ascribes a fixed number of ecological niches on Earth, with rapid evolution of life to fill all available niche space. Once filled, evolution occurs in dynamic equilibrium where individual species may arise and go extinct, but patterns of global diversity remain constant (Cifelli 1981, Walker and Valentine 1984, Benton 1987, 1996b). Darwin (1859) supported this view, particularly with his famous wedge analogy, where species are akin to wedges hammered into a surface – once the surface is filled with wedges, a new wedge may only be driven in at the expense of an older wedge being driven out (Gould and Calloway 1980, Gould 1985, Benton 1996b). From this perspective, evolution occurs by a series of competitive replacements through time, species’ distributions are predominantly controlled by competitive interactions with contemporaries, and interspecific competition is a primary driver of macroevolution. 18 An alternative perspective is where an existing species or clade is successful until an external perturbation results in its extinction and later replacement by a new taxon. For instance, a re-examination of the diversity patterns of brachiopods and bivalves by Gould and Calloway found these clades to be as “ships that pass in the night” (Longfellow, IN: Gould and Calloway 1980); a view in accord with the notion that abiotic environmental change dictates species origination and extinction patterns (Eldredge and Cracraft 1980, Vrba 1980, 1985, Cifelli 1981, Gould 1985, Masters and Rayner 1993, Benton 1996a, 2009, Barnosky 2001, Flagstad et al. 2001, Lieberman et al. 2007). Of course these (and other) authors acknowledge that both factors likely play some role in evolution. Thus, here we test for evidence of interspecific competition on species’ distributions over macroevolutionary timescales by concentrating on identification of competitive replacements in fossil taxa using GIS. GIS-based techniques are increasingly recognized as powerful tools for investigating evolutionary patterns and processes (Rode and Lieberman 2004, Stigall and Lieberman 2006, Costa et al. 2008, Kozak et al. 2008, Butler et al. 2010). These methods allow for quantitative measurement of distribution and range size change during specific temporal intervals. Further, GIS analyses lend themselves to statistical analysis of negative range area correlations in species pairs through time, which can be used as a proxy for evidence of competitive replacement. The focus of this analysis is a set of marine vertebrate species from the exceptionally diverse and complete record of the Late Cretaceous Western Interior Seaway of North America. This region has been the subject of palaeobiological and geological study for more than a century and has been intensely sampled. Further, palaeobiological samples can be placed in a detailed stratigraphic context. 19 Geological Setting The Late Cretaceous covers a 35 million year period between 100-65Ma. The Earth at this time was in a greenhouse climate state with little or no polar ice (Barron 1983, Huber et al. 2002, Spicer 2002, Everhart 2005). As a consequence of this, and higher rates of sea floor spreading, sea-level was much higher than today. In particular, central North America was covered by a shallow epicontinental sea, the Western Interior Seaway (WIS) (i.e. ≤ 600m water depth) (Hattin 1982, Kauffman and Caldwell 1993, Poulsen et al. 2001, Everhart 2005). The WIS represents a foreland basin formed by tectonic loading and lithospheric flexure during uplift of the Rocky Mountains to the west. This basin was inundated episodically from both boreal waters extending south from the Arctic Ocean and tropical waters extending north from the proto-Atlantic/Tethys seas (Hattin 1982, Kauffman 1984, Kauffman and Caldwell 1993, Shimada et al. 2006). At the end of the Early Cretaceous (late Albian, ~100Ma) a global sea-level low stand separated the northern and southern arms of the WIS for the last time until the late Maastrichtian (~65Ma). Cyclic sea-level changes are recorded in the WIS as three major transgressive/regressive events: the Greenhorn Cycle (late Cenomanian-Turonian), which included the sea-level high stand for the Late Cretaceous with eustatic sea-levels upwards of 250m higher than today; the Niobrara Cycle (late Coniacian – early Campanian); and the Claggett/Bearpaw Cycle (Campanian – Maastrichtian) (Hattin 1982, Kauffman 1984, Kauffman and Caldwell 1993). Our understanding of the Late Cretaceous WIS is based on over one hundred years of field and laboratory work by geologists, palaeoclimatologists, and palaeobiologists. As a consequence, the tectonic, environmental, and geologic history of this area is well understood and extensively palaeobiologically sampled making it an ideal region for this type of 20 palaeobiogeographical investigation (e.g., Hancock and Kauffman 1979, Hattin 1982, Kauffman 1984, Nicholls & Russell 1990, Glancy et al. 1993, Russell 1993, Schroder-Adams et al. 1996, Sageman et al. 1997, Schwimmer et al. 1997, Keller et al. 2004, Everhart 2001, 2005, Becker et al. 2006, Cobban et al. 2006, Shimada et al. 2006, Ufnar et al. 2008). However, extensive sampling does not always equate to representative sampling; consequently, we provide various tests to assess the quality of the WIS record and its use in palaeobiogeographical analyses. Materials and Methods Data Collection A temporal and geographic occurrence database was generated for ten Late Cretaceous WIS vertebrate taxa. Taxa included four genera of shark: three species of Ptychodus (P. anonymus, P. mortoni, and P. whipplei), one species of Cretoxyrhina (C. mantelli), two species of Squalicorax (S. falcatus and S. kaupi) and one species of Rhinobatos (Rhinobatos incertus); as well as two genera of mosasaur (Platecarpus sp., and Tylosaurus sp.) and one teleost genus (Xiphactinus sp.). The taxa included in this analysis were chosen because they are common and abundant in the WIS fossil record, persist through at least three geologic stages of the Late Cretaceous, and have been well characterized taxonomically and palaeobiologically. Further, the WIS at this time had no prominent physical barriers that might have prevented interactions between taxa. Data on species’ geographic and stratigraphic ranges were collected through examination of museum collections, fieldwork, and survey of the literature. The following museum collections were used: Natural History Museum and Biodiversity Research Center (NHM-BI, University of Kansas); Peabody Museum of Natural History (YPM, Yale University); Texas 21 Memorial Museum (TMM, University of Texas – Austin); Sternberg Museum of Natural History (FHSM, Fort Hays State University); University of Colorado Museum (UCB, University of Colorado – Boulder); University of Nebraska State Museum (UNSM); and the Black Hills Institute (BHI, South Dakota). These museums contain important and diverse collections of WIS taxa spanning the majority of Late Cretaceous WIS geography, and taxa in these collections are well-documented geographically and stratigraphically. All museum specimens were personally examined and identification confirmed by the authors. In cases where species identifications lacked confidence, analyses were run at the generic level (e.g. Tylosaurus, Platecarpus, Xiphactinus). To augment information from museums, fieldwork was conducted at Late Cretaceous sites in western South Dakota and southeastern Missouri. Resolution of geographic locality data was at the county-level and better, the standard level of resolution used in other GIS-based palaeobiogeographic analyses (e.g., Rode and Lieberman 2004, Hendricks et al. 2008, Maguire and Stigall 2009). However, most data represent even higher resolution at the 1 mi2 township, range, and section. Temporal resolution was at the level of geologic stage within the Late Cretaceous and characterized by formation and member of specimen occurrence. The resulting database consists of 762 total occurrence points; the number of occurrence points per taxon (species and in some cases genus) varies from 31 to 197 (Figure 2-1, Appendix 1-1). 22 F ig ur e 2- 1. D at a p o in ts s h o w in g o cc u rr en ce r ec o rd s o f L at e C re ta ce o u s m ar in e v er te b ra te s p ec im en s an al y ze d i n t h is s tu d y. X ip ha ct in us s p . (p in k ), P la te ca rp us s p . (d ar k g re en ), T yl os au ru s sp . (d ar k b lu e) , Sq ua lic or ax k au pi ( o ra n g e) , Sq ua lic or ax fa lc at us (r ed ), R hi no ba to s in ce rt us ( li g h t g re en ), P ty ch od us w hi pp le i ( w h it e) , P ty ch od us m or to ni ( d ar k g ra y ), P ty ch od us a no ny m us ( li g h t g ra y ), C re to xy rh in a m an te lli ( y el lo w ). P re se n t d ay o u tc ro p o f L at e C re ta ce o u s se d im en ts i s al so s h o w n ( b ro w n ). 23 Range Reconstructions Geographic locality data for each species’ occurrence was georeferenced and imported into ArcGIS v.9.2 for visual representation and spatial analysis (ESRI 2006). PaleoGIS v.3.0 (Scotese 1998, Ross and Scotese 2000, Rothwell Group 2007) was then used to reconstruct the palaeogeography of each stage during the Late Cretaceous following the methods of Rode and Lieberman (2004) and Stigall and Lieberman (2006) (Figure 2-2). This step ensures that distribution and range area reconstructions minimize estimation error due to tectonic contraction and expansion in the North American plate over the course of the Late Cretaceous. Once PaleoGIS was used to reconstruct the geography of a particular stage, a ten kilometer buffer was applied to each specimen occurrence point. Buffering species’ locality points helps control for any error in the translation from current geographic location to deep time georeferenced latitude and longitude. Additionally, buffering gives area to point occurrence data, enabling retention of these data in the analysis. ArcGIS was then used to construct least-fit polygons for each taxon at each temporal interval. The spatial analysis software available within this program was used to calculate area of each reconstructed range. Geographic range data for all taxa are provided in Appendix 1-1. 24 F ig ur e 2- 2. E xa m pl e of P al eo G IS ( R ot hw el l G ro up 2 00 7) p la te te ct on ic r ec on st ru ct io n. D is tr ib ut io n of C re to xy rh in a m an te lli (y el lo w ), T yl os au ru s sp . ( bl ue ). P re se nt d ay o ut cr op o f L at e C re ta ce ou s se di m en ts is a ls o sh ow n (b ro w n) . ( a) P al eo G IS p re se nt d ay te ct on ic c on fi gu ra tio n. ( b) P al eo G IS C on ia ci an r ec on st ru ct io n (~ 87 M a) . 25 Identifying Competition One way competition can be observed in the fossil record is as changes in species’ distribution and range size through time. Benton (1996a, b) defined “Candidate Competitive Replacements” (CCRs) as species pairs showing negatively correlated abundance and diversity patterns over time. CCRs must involve taxa with overlapping geographic and stratigraphic ranges and should also involve comparisons between taxa with similar habitat, body size, and diet. Further, all CCRs must show a distinctly “successful” taxon (the survivor) as well as a distinctly “unsuccessful” taxon, identified by range contraction and extinction within two temporal intervals after the minimum date of origin of the “successful” taxon (Benton 1996a, b). This pattern can also be identified in the fossil record as negatively correlated geographic range area through time, which can be tested for statistical significance using nonparametric rank correlation in PAST v.2.01 (Hammer et al. 2001) (Spearmann’s ρ and Kendall’s τ, p ≤ 0.05); these statistical analyses were corrected for multiple comparisons using the Bonferroni correction. All taxa under investigation display geographic and stratigraphic overlap. To identify CCRs, taxa with similar inferred ecotypes were compared, as taxa within the same ecotype are most likely to have interacted competitively. The taxa in this study can be divided into two general palaeoecologies: species of Cretoxyrhina, Squalicorax, Tylosaurus, Platecarpus, and Xiphactinus are inferred to have been pelagic predators (e.g., Russell 1967, Williamson et al. 1993, Everhart 2005, Rothschild et al. 2005, Shimada and Cicimurri 2005, Becker 2006, Shimada et al. 2006; see Schwimmer et al. 1997 for additional discussions of Squalicorax); species of Ptychodus and Rhinobatos are inferred to have had a nekto-benthic, durophagous lifestyle (e.g., Stewart 1988, Williamson et al. 1993, Everhart 2005, 2007, Shimada et al. 2006; 26 see Hamm 2008, 2010 for additional discussions of Ptychodus). Comparisons were also conducted by genus, as species within the same genus may be more likely to have the greatest degree of competitive overlap. Finally, an agnostic approach was used, and pairwise comparisons between all taxa were considered. Analysis of Bias There are many phenomena that can explain why one species range might increase through time while another decreases through time. In addition to competition and other processes discussed below, an incomplete fossil record could artificially produce a pattern mirroring a CCR. Incompleteness of the fossil record is a potential source of bias in any palaeontological study. As previously mentioned, the Late Cretaceous WIS has been exhaustively studied for over a century and is well characterized both in terms of its geology and palaeontology. Further, it has not undergone significant tectonic modification since the Late Cretaceous. These may all partly serve to obviate the potential problems of an incomplete fossil record. Moreover, some areas within the WIS show exceptional preservation in the form of Konservat Lagerstätte; one of these, the Smoky Hill Chalk member of the Niobrara Formation spans three temporal intervals (Coniacian, Santonian, and Campanian stages) of this study (Schwimmer et al. 1997, Meyer and Milsom 2001, Bottjer 2002). However, this does not mean that there might not be certain taphonomic factors conspiring to cloud our understanding of biogeographic patterns in these taxa over time. Because of this, three tests were used to determine if incompleteness or bias in the WIS fossil record is artifactually influencing palaeobiogeographic patterns, including those pertaining to CCRs. First, the robustness of range area reconstructions to potential outliers was tested by resampling occurrence points for each taxon. An ‘n-1’ jackknifing procedure was utilized to estimate the 27 resampled mean range size and associated confidence bands for each taxon during each time interval (resampled data available in Appendix 1-1). Mean range area was then subjected to nonparametric rank correlation tests and the results were compared to those obtained using original range area calculations (tests on resampled data available in Appendix 1-3 and 1-4, and discussed more fully below). The second test compared geographic range size in each taxon to area of available Late Cretaceous sedimentary outcrop. A high percentage of overlap between the distribution of taxa and available outcrop would suggest that presence/absence of Late Cretaceous geologic record may be influencing our results. The third test aimed to identify a correlation between number of data points and geographic range size for each temporal interval. In this case, if sampling bias had an effect on our range size reconstructions, a strong positive correlation between number of data points and range size would be expected. Results Competition in the WIS Tables 2-1 and 2-2 show the results of intrageneric range area correlations and correlations by palaeoecotypes respectively; pairwise comparisons between all taxa are included in Appendix 1-2. All species did show changes in distribution and range size through time. The majority of the species comparisons showed no evidence of interspecific competition (e.g., Figure 2-3). A complete set of geographic comparisons for all taxa considered is provided in Appendix 1-5 to 1-47). Some taxa did generally show the basic biogeographic pattern predicted for a CCR (Figure 2-4), however, when analyzed the pattern was not found to be statistically significant. Indeed, no statistically significant negative range area correlations were identified 28 from intrageneric comparisons, within ecotype comparisons, or when all taxa were compared, after the Bonferroni correction was applied. For instance, consider that among the four possible intrageneric comparisons, only Squalicorax falcatus and S. kaupi is near significance using Kendall’s τ (τ = -0.69007, p = 0.0518), but the correlation is not significant after a Bonferroni correction for multiple comparisons was applied (new critical p-value of p ≤ 0.013) (Table 2-1). Thus, it appears that for these vertebrate taxa evidence for candidate competitive replacements in the Cretaceous WIS is negligible to non-existent. 29 Table 2-1. Intrageneric range area correlations. A Bonferroni correction (Sokal and Rohlf 1995) for multiple comparisons indicates a critical p-value of p ≤ 0.013 for statistical significance. Taxon A Taxon B Spearman’s ρ p-value Kendall’s τ p-value Squalicorax falcatus Squalicorax kaupi -0.812 0.072 -0.690 0.052 Ptychodus anonymus Ptychodus mortoni -0.185 0.742 -0.077 0.828 Ptychodus anonymus Ptychodus whipplei 0.936 0.025 0.833 0.019 Ptychodus mortoni Ptychodus whipplei 0.092 0.883 0.077 0.828 Table 2-2. Range area correlations among species with similar palaeoecology. (a) Inferred large, pelagic (circular vertebral centra suggesting fusiform-body) predators; (b) inferred large, nekto-benthic durophagous lifestyle. A Bonferroni correction (Sokal and Rohlf 1995) for multiple comparisons indicates a critical p-value of p ≤ 0.002 for statistical significance. Taxon A Taxon B Spearman’s ρ p-value Kendall’s τ p-value (a) Inferred pelagic, predatory taxa Cretoxyrhina mantelli Squalicorax falcatus 0.928 0.022 0.828 0.020 Cretoxyrhina mantelli Squalicorax kaupi -0.882 0.036 -0.786 0.027 Cretoxyrhina mantelli Tylosaurus sp. -0.765 0.097 -0.643 0.070 Cretoxyrhina mantelli Platecarpus sp. -0.431 0.392 -0.386 0.277 Cretoxyrhina mantelli Xiphactinus sp. 0.174 0.733 0.138 0.697 Squalicorax falcatus Squalicorax kaupi -0.812 0.072 -0.690 0.052 Squalicorax falcatus Tylosaurus sp. -0.696 0.144 -0.552 0.120 Squalicorax falcatus Platecarpus sp. -0.334 0.533 -0.298 0.401 Squalicorax falcatus Xiphactinus sp. 0.371 0.419 0.333 0.348 Squalicorax kaupi Tylosaurus sp. 0.765 0.097 0.571 0.107 Squalicorax kaupi Platecarpus sp. 0.770 0.108 0.617 0.082 Squalicorax kaupi Xiphactinus sp. 0.058 0.933 0.000 1.000 Platecarpus sp. Tylosaurus sp. 0.524 0.283 0.463 0.192 Platecarpus sp. Xiphactinus sp. 0.152 0.833 0.149 0.674 Tylosaurus sp. Xiphactinus sp. -0.058 0.933 -0.138 0.697 (b) Inferred nekto-benthic, durophagous taxa Ptychodus anonymus Ptychodus mortoni -0.185 0.7417 -0.0772 0.828 Ptychodus anonymus Ptychodus whipplei 0.936 0.0250 0.8333 0.019 Ptychodus anonymus Rhinobatos incertus 0.880 0.0500 0.7454 0.036 Ptychodus mortoni Ptychodus whipplei 0.092 0.8833 0.0772 0.828 Ptychodus mortoni Rhinobatos incertus -0.058 0.9333 0.0000 1.000 Ptychodus whipplei Rhinobatos incertus 0.7860 0.1167 0.5963 0.093 30 F ig ur e 2- 3. P al eo G IS ( R ot hw el l G ro up 2 00 7) r an ge r ec on st ru ct io ns il lu st ra tin g th e pa la eo bi og eo gr ap hi c pa tte rn s un co ve re d fo r th e m aj or ity o f tw o- ta xo n co m pa ri so ns in th is s tu dy . T yl o sa u ru s sp . ( bl ue ) an d P la te ca rp u s sp . ( da rk g re en ) di st ri bu tio ns a re s ho w n du ri ng th e L at e C re ta ce ou s. L at e C re ta ce ou s st ag es : ( a) C on ia ci an , ( b) S an to ni an , ( c) C am pa ni an , ( d) M aa st ri ch tia n. T he se ta xa d o no t s ho w a s ta tis tic al ly s ig ni fi ca nt n eg at iv e ra ng e ar ea c or re la tio n th ro ug h tim e an d th us a re n ot id en tif ie d as C C R s. P re se nt d ay ou tc ro p of L at e C re ta ce ou s se di m en ts is a ls o sh ow n (b ro w n) . 31 F ig ur e 2- 4. P al eo G IS ( R ot hw el l G ro up 2 00 7) r an ge r ec on st ru ct io ns il lu st ra tin g th e ge ne ra l p re di ct ed g eo gr ap hi c pa tte rn o f a C C R , al th ou gh th e ne ga tiv e re la tio ns hi p in r an ge s iz e is n ot s ta tis tic al ly s ig ni fi ca nt . S qu al ic or ax fa lc at us ( re d) , a nd S . k au pi ( or an ge ) di st ri bu tio ns a re s ho w n du ri ng th e L at e C re ta ce ou s. L at e C re ta ce ou s st ag es : ( a) C en om an ia n, ( b) T ur on ia n, ( c) C on ia ci an , (d ) Sa nt on ia n, ( e) C am pa ni an , ( f) M aa st ri ch tia n. S . f al ca tu s sh ow s st ab le , t ho ug h dy na m ic , r an ge s iz e un til th e or ig in at io n of S . k au pi in th e C on ia ci an ( c) . A ft er th is ti m e, S . f al ca tu s ex pe ri en ce s se qu en tia l d ec re as e in r an ge s iz e re su lti ng in e xt in ct io n at th e en d C am pa ni an ( e) . T hi s ex am pl e ill us tr at es a n eg at iv e re la tio ns hi p be tw ee n th e ra ng e ar ea o f tw o ec ol og ic al ly s im ila r sp ec ie s w ith in th e sa m e ge nu s, a nd th us c ou ld r ep re se nt a c om pe tit iv e re pl ac em en t o f S. fa lc at us b y S. k au pi . P re se nt d ay o ut cr op o f L at e C re ta ce ou s se di m en ts is a ls o sh ow n (b ro w n) . 32 Analysis of Bias Geographic range estimations using this palaeobiogeographic method may be susceptible to artificial inflation by widely flung single occurrence points. In order to assess the influence of these potential outliers on our range reconstructions, and thus pertaining to the identification of statistically significant CCRs, we re-ran all the pairwise comparisons using the estimated mean geographic range calculated by jackknifing (Appendix 1-3). The results are identical: before or after correcting for multiple comparisons, no statistically significant intrageneric or within ecotype CCRs were identified; when all taxa were compared, two CCRs only appeared statistically significant before the Bonferroni correction was applied: they were no longer significant after correction for multiple comparisons. Thus, the results from analysis of the original data and the resampled data are equivalent and the data appear robust to resampling. Consequently, outliers are not likely to be playing a significant role in influencing the results. To test for the effect of available outcrop area on species distributions during the Late Cretaceous, we compared species’ geographic range size with area of Late Cretaceous sedimentary record; the approximate margins of the WIS for the early, middle, and late Late Cretaceous, along with the occurrence records parsed by stage, are shown in Appendix 1-48. Taxa were shown to occupy only 4–37% of potential habitat. Because taxa are not present in all or even the majority of available outcrop area during this time period, it is unlikely that the simple availability of Late Cretaceous sedimentary record is controlling the patterns of distribution and range size change observed in this analysis. A correlation of number of unique geographic localities sampled with size of geographic range reconstruction for each temporal interval in this analysis is shown in Table 2-3 (for correlation statistics using resampled means, see Appendix 1-4). The number of unique localities 33 was used to test for sampling bias (instead of all sampled occurrences) because this reduces artificial inflation of points sampled and maximizes the potential for finding a significant correlation (thus the test is most sensitive to identifying sampling bias). None of the stages during the Late Cretaceous show significant correlations between number of data points and size of geographic range (p >> 0.007 using Bonferroni correction for multiple comparisons) except the Coniacian stage (p = 0.001) (Table 2-3); the same is true of the resampled data (Appendix 1-4). Many (though not all) taxa have small geographic range size during the Coniacian; it is possible that this represents a bias in collection or preservation. On the other hand, this stage is the point of origin or extinction for a number of the taxa studied (e.g., Tylosaurus sp., Platecarpus sp., Squalicorax kaupi originate; Ptychodus anonymus and Ptychodus whipplei go extinct). Species commonly have small geographic range size at the point of origination and extinction (particularly if speciation occurs allopatrically in small isolated populations and extinction first involves reduction to a single population). To assess the influence of this phenomenon, these taxa were removed and the correlation statistics re-run (Table 2-3, and Appendix 1-4). Excluding taxa originating or going extinct, the number of sampled localities during the Coniacian is no longer significantly correlated with reconstructed range size in both the original and the resampled data (see Table 2-3 and Appendix 1-4). Thus the uniquely small range size of these taxa was likely causing the suggested sampling bias during this interval. 34 Table 2-3. Correlation results between number of unique geographic localities sampled and reconstructed geographic range size for each stage during the Late Cretaceous. A Bonferroni correction (Sokal and Rohlf 1995) for multiple comparisons indicates a critical p-value of p ≤ 0.007 for statistical significance. Coniacian* represents correlation between number of unique geographic localities and reconstructed range size after removing taxa that either originate or go extinct during this stage. Stage Spearman’s ρ p-value Kendall’s τ p-value Cenomanian 0.886 0.016 0.733 0.039 Turonian 0.775 0.049 0.683 0.031 Coniacian 0.905 0.001 0.805 0.001 Coniacian* 0.700 0.2333 0.600 0.142 Santonian 0.551 0.163 0.743 0.101 Campanian 0.764 0.056 0.651 0.040 Maastrichtian 0.886 0.667 0.817 0.201 Total (combined) 0.733 0.020 0.556 0.025 35 Discussion This study uses new techniques in quantitative biogeographic analysis to test for the role of competitive replacement in the fossil record. We focused on species’ distributions in the abundant representatives of the vertebrate fauna from the Late Cretaceous WIS, specifically looking for two-taxon comparisons suggesting competitive replacement. No two-taxon comparisons showed any statistical evidence of significant, negative geographic range correlations. These results reiterate previous analyses indicating little evidence for competitive replacement (Benton 1996a, b). Further, this suggests that something other than interspecific competition plays the predominant role in influencing species distributions over macroevolutionary time scales. Such processes were most likely abiotic environmental changes, both climatic and tectonic, as these have been shown to have had a significant impact on species distributions and macroevolution at other times in the history of life (Lieberman and Eldredge 1996, Lieberman 2000, Barnosky 2001, Flagstad et al. 2001, Rode and Lieberman 2004, Stigall and Lieberman 2006, Hendricks et al. 2008, Benton 2009, Gates et al. 2010). There could, however, also be a substantial contribution from ecological factors such as food source tracking, intraspecific interactions, etc. It is worth noting that competitive replacement may be more prevalent among species that are rare and/or geographically restricted. Such cases are difficult to identify in the fossil record, and thus by necessity our study focused on more abundant and potentially more “successful” taxa from the outset. As a consequence, even though we attempted to maximize recovery of CCRs by using broad definitions of palaeoecological similarity, our estimate of the frequency of CCRs is most surely an underestimate. Nonetheless, it is based on quantitative and detailed investigation of these groups, and thus the best estimate possible at present. 36 Moreover, while we believe that our analysis includes real species using a phylogenetic species concept, it is impossible to exclude the possibility that some of these species actually represent ecomorphs within a single lineage. If this were the case, then instead of identifying cases of competitive replacement between species, our analysis would be testing for intraspecific interactions occurring between co-occurring ecomorphs. The apparent non-prevalence of competitive replacement within potentially adaptive lineages then might suggest that ecomorph evolution also may not be strongly influenced by these types of competitive interactions. Ultimately, this study provides little evidence that CCRs play a defining role in shaping species’ distributions at the macroevolutionary scale. The driving force is instead likely to be abiotic environmental factors, such as climate and sea-level changes, that determine species distribution and range size. Other ecological factors may have been important as well, but interspecific competition does not appear to have had a major affect on macroevolutionary patterns of species in the fossil record (Vrba 1980, Nicholls & Russell 1990, Barnosky 2001, Flagstad et al. 2001, Benton 2009, Gates et al. 2010, Venditti et al. 2010). 37 Literature Cited Barnosky, A. D. 2001 Distinguishing the effects of the Red Queen and Court Jester on Miocene mammal evolution in the northern Rocky Mountains. J. Vertebr. Paleontol. 21, 172-185. Barron, E. J. 1983 A warm, equable Cretaceous: The nature of the problem. Earth Sci. Revs. 19, 305–338. Becker, M. A., J. A. Chamberlain Jr., & G. E. Wolf 2006 Chondrichthyes from the Arkadelphia Formation (upper Cretaceous: upper Maastrichtian) of Hot Spring County, Arkansas. J. Paleontol. 80, 700-716. Benton, M. J. 1987; Progress and competition in macroevolution; Biol. Revs. 62, 305-338. Benton, M. J. 1996a Testing the roles of competition and expansion in tetrapod evolution. Proc. R. Soc. B 263, 641-646. Benton, M. J. 1996b On the nonprevalence of competitive replacement in the evolution of tetrapods. In Evolutionary paleobiology (eds D. Jablonski, D. H. Erwin, & J. Lipps), pp. 185-210. Chicago, IL: Chicago University Press. Benton, M. J. 2009 The Red Queen and the Court Jester: species diversity and the role of biotic and abiotic factors through time. Science 323, 728-732. Bottjer, D. J. 2002 Smoky Hill Chalk: spectacular Cretaceous marine fauna. In Exceptional Fossil Preservation: A Unique View on the Evolution of Marine Life (eds D. J. Bottjer, W. Etter, & J. W. Hagadorn, C.M Tang), pp. 353-364. New York, NY: Columbia University Press. Butler, R. J., P. M. Barrett, M. G. Penn, & P. Kenrick 2010 Testing coevolutionary hypotheses over geological timescales: interactions between Cretaceous dinosaurs and plants, Biol. J. Linn. Soc. Lond. 100, 1-15. 38 Cifelli, R. L. 1981 Patterns of evolution among the Artiodactyla and Perissodactya (Mammalia). Evolution 35, 433-440. Cobban, W. A., I. Walaszczyk, J. D. Obradovich, & K. C. McKinney 2006 A USGS Zonal table for the Upper Cretaceous middle Cenomanian-Maastrichtian of the Western Interior of the United States based on ammonites, inoceramids, and radiometric ages. U.S.G.S., Open-file Rept. 2006-1250, pp. 46. Costa, G. C., C. Wolfe, D. B. Shepard, J. P. Caldwell, & L. J. Vitt 2008 Detecting the influence of climatic variables on species distributions: a test using GIS niche-based models along a steep longitudinal environmental gradient. J. Biogeogr. 35, 637-646. Environmental Systems Research Institute 2006. ArcGIS version 9.2. Redlands, CA. Eldredge, N. & J. Cracraft 1980 Phylogenetic patterns and the evolutionary process. New York, NY: Columbia University Press. Everhart, M. J. 2001 Revisions to the biostratigraphy of the Mosasauridae (Squamata) in the Smoky Hill Chalk Member of the Niobrara Chalk (Late Cretaceous) of Kansas. Trans. Kans. Acad. Sci. 104, 59-78. Everhart, M. J. 2005 Oceans of Kansas: a natural history of the Western Interior sea. Bloomington, IN: Indiana University Press. Everhart, M. J. 2007 New stratigraphic records (Albian-Campanian) of Rhinobatos sp. (Chondrichthyes; Rajiformes) from the Cretaceous of Kansas. Trans. Kans. Acad. Sci. 110, 225-235. Flagstad, O., P. O. Syversten, N. C. Stenseth, & K. S. Jakobsen 2001 Environmental change and rates of evolution: the phylogeographic pattern within the hartebeest complex as related to climatic variation. Proc. R. Soc. B 268, 667-677. 39 Gates, T. A., S. D. Sampson, L.E. Zanno, E. M. Roberts, J. G. Eaton, R. L. Nydam, J. H. Hutchinson, J.A. Smith, M.A. Loewen, & M.A. Getty 2010 Biogeography of terrestrial and freshwater vertebrates from the Late Cretaceous (Campanian) Western Interior of North America Palaeogeogr. Palaeoclimatol. Palaeoecol. 291, 371-387. Glancy, T. J. Jr., M. A. Arthur, E. J. Barron, & E. G. Kauffman 1993 A paleoclimate model for the North American Cretaceous (Cenomanian-Turonian) epicontinental sea. In Evolution of the Western Interior Basin (eds W. G. E. Caldwell & E. G. Kauffman), Geol. Assoc. Can. Spec. Pap. 39, pp. 219-242. St. John’s, Canada: Geological Association of Canada. Gould, S. J. 1985 The paradox of the first tier: an agenda for paleobiology. Paleobiology 11, 2-12. Hamm, S. A. 2008 Systematic, stratigraphic, geographic, and palaeoecological distribution of the Late Cretaceous shark genus Ptychodus within the Western Interior Seaway. Unpublished Master’s thesis, University of Texas at Dallas, 434p. Hamm, S. A. 2010 The Late Cretaceous shark, Ptychodus rugosus (Ptychodontidae) in the Western Interior Sea. Trans. Kans. Acad. Sci. 113, 44-55. Hammer, Ø., D. A. T. Harper, & P. D. Ryan 2001 PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 4, 1-9. Hancock, J. M. & E. G. Kauffman 1979 The great transgressions of the Late Cretaceous. J. Geol. Soc. London 136, 175-186. Hattin, D. E. 1982 Stratigraphy and depositional environment of the Smoky Hill Chalk Member, Niobrara Chalk (upper Cretaceous) of the type area, western Kansas. Kans. Geol. Survey Bull. 225, 1-108. 40 Henricks, J. R., B. S. Lieberman, & A. L. Stigall 2008 Using GIS to study palaeobiogeographic and macroevolutionary patterns in soft-bodied Cambrian arthropods. Palaeogeogr. Palaeoclimatol. Palaeoecol. 264, 163-175. Huber, B. T., R. D. Norris, & K. G. MacLeod 2002 Deep-sea paleotemperature record of extreme warmth during the Cretaceous. Geology 30, 123-126. Jackson, J. B. C. & F. K. McKinney 1990 Ecological processes and progressive macroevolution of marine clonal benthos. In Causes of Evolution (eds R. M. Ross & W. D. Allmon), pp. 173-209. Chicago, IL: University of Chicago Press. Kauffman, E.G. 1984 Paleobiogeography and evolutionary response dynamic in the Cretaceous Western Interior Seaway of North America. In Jurassic-Cretaceous Biochronology and Paleogeography of North America (ed. G.E.G. Westermann), Geol. Assoc. Can. Spec. Pap. 27, pp. 273-306. St. John’s, Canada: Geological Association of Canada. Kauffman, E. G. & W. G. E. Caldwell 1993 The Western Interior Basin in Space and Time. In Evolution of the Western Interior Basin (eds W. G. E. Caldwell & E. G. Kauffman), Geol. Assoc. Can. Spec. Pap. 39, pp. 1-30. St. John’s, Canada: Geological Association of Canada. Keller, G., Z. Berner, T. Adatte, & D. Stueben 2004 Cenomanian-Turonian and δ13C, and δ18O sea level and salinity variations at Pueblo, Colorado. Palaeogeogr. Palaeoclimatol. Palaeoecol. 211, 19-43. Kozak, K.H., C.H. Graham, and J.J. Wiens 2008 Integrating GIS-based environmental data into evolutionary biology. Trends Ecol. Evol. 23, 141-148. Lieberman, B. S. & N. Eldredge 1996 Trilobite biogeography in the Middle Devonian: geological processes and analytical methods. Paleobiology 22, 66-79. 41 Lieberman, B. S., W. Miller III, & N. Eldredge 2007 Paleontological patterns, macroecological dynamics, and the evolutionary process. Evol. Biol. 34, 28-48. (doi: 10.1007/s11692-007-9005-4) MacArthur, R. H. & E. O. Wilson 1972 The theory of island biogeography. Princeton, NJ: Princeton University Press. Maguire, K. C. & A. L. Stigall 2009 Using ecological niche modeling for quantitative biogeographic analysis: a case study of Miocene and Pliocene Equinae in the Great Plains. Paleobiology 35, 587-611. Masters, J. C. & R. J. Rayner 1993 Competition and macroevolution: the ghost of competition yet to come? Biol. J. Linn. Soc. Lond. 49, 87-98. Meyer, D. L. & C. V. Milsom 2001 Microbial sealing in the biostratinomy of Uintacrinus Lagerstätten in the Upper Cretaceous of Kansas and Colorado, USA. Palaios 16, 535-546 Nicholls, E. L. & A. P. Russell 1990 Paleobiogeography of the Cretaceous Western Interior Seaway of North America: the vertebrate evidence, Palaeogeogr. Palaeoclimatol. Palaeoecol. 79, 149-169. Poulsen, C. J., E. J. Barron, M. A. Arthur, & W. H. Peterson 2001 Response of the mid-Cretaceous global oceanic circulation to tectonic and CO2 forcings. Paleoceanography 16, 576-592. Rayner, R. J. & J. C. Masters 1995 A good loser is still a loser: competition and the South African fossil record. S. Afr. J. Sci. 91, 184-189. Rode, A. L. & B. S. Lieberman 2004 Using GIS to unlock the interactions between biogeography, environment, and evolution in Middle and Late Devonian brachiopods and bivalves. Palaeo 211, 345-359. 42 Rosenzweig, M. L. & R. D. McCord 1991 Incumbent replacement: evidence for long-term evolutionary progress. Paleobiology 17, 202-213. Rothschild, B. M., L. D. Martin, & A. S. Schulp 2006 Sharks eating mosasaurs, dead or alive? In: Proceedings of the First Mosasaur Meeting (eds. A.S. Schulp & J. W. M. Jagt), Netherl. J. Geosci. 84, 335-340. Rothwell Group, LP 2007. PaleoGIS for ArcGIS 9.x. Houston, TX. Russell, D. A. 1993 Vertebrates in the Cretaceous Western Interior Sea. In Evolution of the Western Interior Basin (ed. W. G. E. Caldwell & E. G. Kauffman), Geol. Assoc. Can. Spec. Pap. 39, pp. 665-680. St. John’s, Canada: Geological Association of Canada. Russell, D. A. 1967 Systematics and morphology of American mosasaurs (Reptilia, Sauria). Bull. Peabody Mus. Nat. Hist. 23, 1-241. Sageman, B. B., J. Rich, M. A. Arthur, G. E. Birchfield, & W. E. Dean 1997 Evidence for Milankovich periodicities in Cenomanian-Turonian lithologic and geochemical cycles, Western Interior U.S.A. J. Sediment. Res. 67, 286-302. Schroder-Adams, C. J., D. A. Leckie, J. Bloch, J. Craig, D. J. McIntyre, & P. J. Adams 1996 Paleoenvironmental changes in the Cretaceous (Albian to Turonian) Colorado Group of western Canada: microfossil, sedimentological, and geochemical evidence. Cret. Res. 17, 311-365. Schwimmer, D. R., J. D. Stewart, & G. D. Williams 1997 Scavenging by sharks of the genus Squalicorax in the Late Cretaceous of North America. Palaios 12, 71-83. Scotese, C. R. 1998 PALEOMAP Animations, PALEOMAP Project. University of Texas at Arlington, Texas. 43 Sepkoski, J. J. Jr., F. K. McKinney, & S. Lidgard 2000 Competitive displacement amoung post-Paleozoic cyclostome and cheilostome bryozoans. Paleobiology 26, 7-18. (doi: 10.1666/0094-8373(2000)026<0007:CDAPPC>2.0.CO;2) Shimada, K. & D. J. Cicimurri 2005 Skeletal anatomy of the Late Cretaceous shark, Squalicorax (Neoselachii: Anacoracidae). Paläontol. Zeit. 79, 241-261. Shimada, K. 1997 Paleoecological relationships of the Late Cretaceous Lamniform shark, Cretoxyrhina mantelli (Agassiz). J. PaleontOL. 71, 926-933. Shimada, K., B. A. Schumacher, J. A. Parkin, & J. M. Palermo 2006 Fossil marine vertebrates from the lowermost Greenhorn Limestone (upper Cretaceous: Middle Cenomanian) in southeastern Colorado. J. Paleontol. 80, 1-45. Sokal, R. R. & F. J. Rohlf 1995 Biometry: the principles and practices of statistics in biological research 3rd ed. New York, NY: W.H. Freeman & Co. Spicer, B. 2002 Changing Climate and biota. In The Cretaceous World (ed. P. Skelton), pp.85-162. Cambridge, UK: Cambridge University Press. Stewart, J. D. 1988 Paleoecology and the first North American west coast record of the shark genus Ptychodus, J. Vertebr. Paleontol. 8, 27A. Stigall, A. L. & B. S. Lieberman 2006 Quantitative palaeobiogeography: GIS, phylogenetic biogeographical analysis, and conservation insights. J. Biogeogr. 33, 2051-2060. Ufnar, D. F., G. A. Ludvigson, L. Gonzalez, & D. R. Grocke 2008 Precipitation rates and atmospheric heat transport during the Cenomanian greenhouse warming in North America: estimates from a stable isotope mass-balance model. Palaeogeogr. Palaeoclimatol. Palaeoecol. 266, 28-38. Van Valen, L, M. 1987 A new evolutionary law. Evol. Theory 1, 1-30. 44 Venditti, C., A. Meade, & M. Pagel 2010 Phylogenies reveal new interpretation of speciation and the Red Queen. Nature 463, 349-352. Vermeij, G. J. 1987 Evolution and escalation: an ecological history of life. Princeton, NJ: Princeton University Press. Vrba, E. S. 1980 Evolution, species and fossils: how does life evolve? S. Afr. J. Sci. 76, 61-84. Vrba, E. S. 1985 Environment and evolution: alternative causes of the temporal distribution of evolutionary events. S. Afr. J. Sci. 81, 229-236. Walker, T. D. & J. W. Valentine 1984 Equilibrium models of evolutionary species diversity and the number of empty niches. Am. Nat. 124, 887-899. Williamson, T. E., J. I. Kirkland, & S. G. Lucas 1993 Selachians from the Greenhorn Cyclothem (“Middle” Cretaceous: Cenomanian-Turonian), Black Mesa, Arizona, and the paleogeographic distribution of Late Cretaceous Selachians. J. Paleontol. 67, 447-474. 45 Chapter 3. Greenhouse biogeography: the relationship of geographic range to invasion and extinction in the Cretaceous Western Interior Seaway Originally published as: Myers, C. E., R. A. MacKenzie III, & B. S. Lieberman. 2013. Greenhouse biogeography: the relationship of geographic range with invasion and extinction in the Cretaceous Western Interior Seaway. Paleobiology 39:135-148. Abstract Significant warming of the Earth’s climate in the near-term seems increasingly likely. If significant enough, in the long-term this climatic regime could come to resemble previous greenhouse intervals in Earth history. Consequently, analysis of the fossil record during periods of extreme warmth may provide important lessons for species biology, including biogeography, in a much warmer world. To explore this issue, we analyzed the biogeographic response of 63 molluscan species to the long-term global warmth in the Late Cretaceous Western Interior Seaway (WIS) of North America using Geographic Information Systems (GIS) to quantitatively measure changes in range size and distribution throughout this interval. We specifically considered the role that geographic range size played in mediating extinction resistance and invasion potential of these WIS species. No relationship between geographic range size and survivorship was recovered. However, endemic species with small range sizes were more likely to become invasive. Finally, mollusks did not experience a poleward shift in range out of the tropics during this warm regime. To the extent that these patterns are representative, and the WIS and taxa considered constitute a reasonable ancient analogue to a warmer future world, these results suggest that some biogeographic “rules” may not prevail under Greenhouse conditions of long-term, equable warmth. They also suggest other factors beyond geographic range size, 46 including distinctive niche characteristics, may play quite important roles in species survival and invasion potential. This potentially complicates predictions regarding the future responses of extant species to long-term warming. Introduction Scientists predict significant climatic warming in the near future even under the most conservative modeling scenarios (e.g., Sala et al. 2000; Solomon et al. 2007; Moss et al. 2010; Burrows et al. 2011), and the consequences pose severe risks to the planet’s biota. Taxa will be threatened not only by changing climate (e.g., Travis 2003; Colwell et al. 2008; Harley 2011; Willis and MacDonald 2011), but also by the species invasions likely precipitated by this change (Stachowicz et al. 2002; Hickling et al. 2006; Thomas and Ohlemüller 2010; Harley 2011). The fossil record can contribute a significant and unique perspective towards understanding the biotic effects of climate change (e.g., Vermeij 1991a,b; McKinney 1997; Liow 2007; Jablonski 2008; Lockwood 2008; Franks and Beerling 2009; Stigall 2010; Dietl and Flessa 2011; Willis et al. 2010; Willis and MacDonald 2011) because it provides the opportunity to monitor species’ responses across the entire lifetime of the species. Paleobiogeographic studies are especially important in this regard because geographic range has long been known to have a significant influence on extinction risk (e.g., Hansen 1980; Jablonski 1987, 2008; Flessa and Jablonski 1996; Gaston 2003; Purvis et al. 2000; Kiessling and Baron-Szabo 2004; Jablonski and Hunt 2006; Liow 2007; Payne and Finnegan 2007; Powell 2007; Kiessling and Aberhan 2007; Hendricks et al. 2008; Crampton et al. 2010; Stigall 2010; Harnik 2011; although see Stanley 1986; Stanley et al. 1988; Norris 1992; Vermeij 1993 for notable exceptions) and invasion potential (e.g., Vermeij 1991b; Mouton and Pimm 1986; Roy et al. 1991; Daehler and Strong 1993; Rode and Lieberman 2004; Hayes and Barry 2008). In this contribution we use Geographic Information Systems 47 (GIS) to examine the influence of geographic range size on both survivorship and invasion potential during the Late Cretaceous. GIS-based techniques are frequently used to investigate evolutionary patterns and processes as they allow for quantitative analysis of distribution and range size (e.g., Rode and Lieberman 2004; Stigall and Lieberman 2006; Costa et al. 2008; Hendricks et al. 2008; Kozak et al. 2008; Swenson 2008; Stigall 2010; Myers and Lieberman 2011; Dunhill 2012). We focus specifically on bivalve, cephalopod, and gastropod species from the North American Western Interior Seaway (WIS) because these taxa are diverse and abundant and further, because this region and time interval are well characterized both paleobiologically and geologically (e.g., Hancock and Kauffman 1979; Hattin 1982; Barron 1983; Kauffman 1984; Jablonski 1987; Glancy et al. 1993; Kauffman and Caldwell 1993; Schroder-Adams et al. 1996; Sageman et al. 1997; Fatherree et al. 1998; Kennedy et al. 1998; Tsujita and Westermann 1998; Poulsen et al. 2001; Huber et al. 1995, 2002; Harries 2003; Yacobucci 2004, 2008; Jenkyns et al. 2004; Keller et al. 2004; Cobban et al. 2006; Landman et al. 2007, 2012; Ufnar et al. 2008). The Late Cretaceous is particularly interesting time for paleobiogeographic analysis because it was a “Greenhouse” interval characterized by extreme and equable warmth, with no permanent polar ice and a latitudinal temperature gradient reduced by 50% or more compared to the modern (Barron 1983, 1995; Covey et al. 1996; Huber et al. 2002; Spicer and Corfield 1992; Jenkyns et al. 2004; Hay 2008). While unlikely to be a direct analogue, Late Cretaceous warmth may resemble the sort of long-term climatic regime into which our planet is headed and thus provide important input on the biogeographic effects of crossing climatic and other environmental thresholds (Spicer and Corfield 1992; Barron 1995; Covey et al. 1996; Haywood et al. 2011). Thus, studies of this interval may provide a window into the factors influencing future long-term patterns of invasion and extinction. 48 The Late Cretaceous WIS was a shallow epicontinental sea (e.g., ≤ 300m depth) formed by the inundation of the North American continent by waters from both the boreal Arctic and southern equatorial Tethys seas. Continental flooding was caused by higher global sea levels (up to 300m above modern) in combination with basin formation due to lithospheric flexure and tectonic loading produced by the Rocky Mountain uplift to the west. During the Early Cretaceous, the northern and southern arms of the WIS were episodically connected, however, during the latest Albian/earliest Cenomanian, eustatic sea level rose connecting the northern and southern arms until the end Maastrichtian (~ 35 Myr period) (Hancock and Kauffman 1979; Hattin 1982; Kauffman 1984; Glancy et al. 1993; Kauffman and Caldwell 1993; Schroder-Adams et al. 1996; Kennedy et al. 1998). Due to narrow connections at both the northern and southern ends of the WIS, conditions were likely dominated by restricted marine environments, often including somewhat brackish surface waters and a dysoxic benthos. More normal marine conditions were short-lived (0.5-1Myr) and occurred in close association with tectonoeustatic transgressive peaks (Albian-Cenomanian boundary, Cenomanian-Turonian boundary, Coniacian-Santonian, middle Campanian) (Kauffman 1984; Tsujita and Westermann 1998; Fisher and Arthur 2002). Methods Data Collection A spatiotemporal database was constructed for 63 species of Late Cretaceous WIS mollusks. This dataset included 27 species from eight genera of bivalves (Agerostrea, Anomia, Crassostrea, Exogyra, Ilymatogyra, Ostrea, Pseudoperna, and Pycnodonte), 27 species from 10 genera of cephalopods (Actinocamax, Actinosepia, Baculites, Belemnitella, Eubaculites, 49 Eutrephoceras, Pseudobaculites, Sciponoceras, Trachybaculites, and Tusoteuthis), and nine species from five genera of gastropods (Anisomyon, Drepanochilus, Euspira, Graphidula, and Turritella) (Appendix 2-1 and 2-2). The taxa in this study were chosen because they are common and abundant in the WIS during the Late Cretaceous and are well characterized taxonomically and paleobiologically. Taxa were excluded if they did not meet geographic or stratigraphic resolution standards: locality information at the county-level or better and stratigraphic resolution at the level of geologic stage; geographic resolution of the majority of occurrences was the 1mi2 township, range, and section. Further, all included taxa occurred in at least two geographically unique locations within a single geologic stage or in at least one unique location in two or more stages. We recognize that these standards necessarily exclude rare taxa; however, rare taxa are more susceptible to the biases of sampling and preservation. Lazarus taxa (i.e., those present in multiple, non-consecutive geologic stages) were also excluded in order to prevent biases in survivorship and invasions during stages of non-presence (Flessa and Jablonski 1983, Jablonski 1984). Thus, our database reflects a conservative approach, which is likely robust to these biases. The resulting species database consists of 7511 total occurrences, representing 1124 unique geographic localities. Species identifications and occurrence data were obtained by examination of museum collections by CEM and RAM, and a survey of the literature. The following institutional museum collections were used: Natural History Museum and Biodiversity Institute, University of Kansas (KUMIP); Peabody Museum of Natural History, Yale University (YPM); American Museum of Natural History (AMNH); Texas Memorial Museum, University of Texas–Austin (TMM); University of Montana Paleontology Center (UMPC); United States Geological Survey, Denver, CO (USGS); Academy of Natural Sciences Philadelphia (ANSP), Smithsonian 50 Institution National Museum of Natural History (NMNH), University of Michigan Museum of Paleontology (UMMP), Sternberg Museum of Natural History, Fort Hays State University (FHSU); University of Nebraska State Museum (UNSM); and the Black Hills Institute (BHI). Fieldwork to obtain new material was also conducted in Colorado, Minnesota, Missouri, Mississippi, North Dakota, and South Dakota by CEM and RAM. Range Reconstructions Geographic locality data for species’ occurrences were geo-referenced and imported into ARCGIS v. 9.2 for visual representation and spatial analysis (ESRI 2006). PALEOGIS v. 3.0 (Ross and Scotese 2000; Rothwell Group 2007) was then used to reconstruct the paleogeography of each stage during the Late Cretaceous following the methods of Rode and Lieberman (2004) and Stigall and Lieberman (2006) (Figure 3-1). This step ensures that distribution and range area reconstructions minimize estimation error owing to tectonic contraction and expansion in the North American plate over the course of the Late Cretaceous. A stratigraphic database was generated to correlate all geologic formations/members in the Late Cretaceous WIS where species of interest were known to occur. Correlations were determined by extensive literature survey and use of various stratigraphic databases (e.g., USGS National Geologic Map Database: http://ngmdb.usgs.gov; Macrostrat: http://macrostrat.geology.wisc.edu). Biostratigraphic indices were also used when available following the Late Cretaceous zonation of Cobban et al. (2006). 51 A B Figure 3-1. Present day plate reconstruction (a) and PaleoGIS plate reconstruction for the Santonian stage of the Late Cretaceous (b). Available sedimentary record for the Late Cretaceous is shown in black. 52 Range areas were then estimated by constructing a convex hull around occurrence points for each species during each geologic stage of the Late Cretaceous using the method of Myers and Lieberman (2011) (Figure 3-2; Appendix 2-1). Following Myers and Lieberman (2011), a 10 km buffer was applied to all occurrence points in order to account for errors in translating modern locality information to deep time latitude and longitude. This method also gives area to range reconstructions for species with two or less occurrences in a given stage, allowing them to be retained in the analysis. Previous studies in the Late Cretaceous Gulf and Atlantic Coastal Plain have estimated geographic range as a linear metric (e.g., along-outcrop maximum linear distance between geographic endpoints or maximum great circle distance between occurrences) for a given species at each time interval or for the duration of the species (e.g., Jablonski 1986, 1987; Jablonski and Roy 2003; Jablonski and Hunt 2006; Harnik 2011). This method can be reasonable given the linear geometry of the Gulf and Atlantic Coastal Plain, where area reconstructions would likely erroneously include intervening land. In the WIS basin the use of range area is more informative and meaningful biologically since a linear metric such as described above would necessarily circumscribe some unknown percentage of the perimeter of the species’ true distribution, while our reconstructed range areas directly estimate this parameter. Further, it is worth recognizing that when GIS-based paleobiogeographic studies have used both area- and distance-based metrics, they retrieved congruent results (Hendricks et al. 2008; Stigall 2010). However, environments have been shown to change more dramatically in latitudinal than longitudinal space (see Powell 2007 for discussion on the correlation between latitude and environmental tolerance vs. longitude and dispersal ability). Thus, area calculations may be less discerning of species’ environmental tolerances because they include the potentially diluting effect of longitudinal range (Stevens 1989; Powell 2007). Consequently, we also estimated 53 species ranges using the linear metric of latitudinal extent. This was calculated for each species during each stage of the Late Cretaceous by taking the difference in latitude between the most northerly and most southerly occurrence points and adding one (such that species with ranges contained within a single degree of latitude are given non-zero extent) (Appendix 2-1). Survivorship Survivorship in a given geologic stage was defined as the presence of a given species in at least one unique locality in the subsequent stage. Thus, a species designated as a survivor in the Cenomanian stage, was one with at least one occurrence in the following Turonian stage. Consequently, species occurring in the Maastrichtian were informative for defining survivorship in the Campanian, however, there were no survivors identified in the Maastrichtian because the Danian stage was excluded from the present analysis. Paleogene taxa were excluded from our analysis in part because regional occurrence records of such species are rare and hard to verify; e.g., only one of the species we analyzed could demonstrably be shown to occur in Paleogene strata in North America. Moreover, our emphasis was on testing for the effects of geographic range on survivorship and invasion potential during “normal” intervals of prolonged and equable warmth. Survivorship and invasions of Maastrichtian taxa into the Danian might instead reflect the unique environmental changes associated with the end-Cretaceous mass extinction event. We tested the hypothesis that large range size confered resistance to extinction during each stage of the Late Cretaceous by looking for a positive correlation between reconstructed range area and species’ survivorship, as well as latitudinal extent and species’ survivorship in subsequent stages. Statistical significance of these correlations was determined by comparing the range size of survivors vs. non-survivors during each stage using a non-parametric Mann- 54 Whitney U test. Several contingency table analyses were also used to consider various factors that might be correlated with survivorship. This type of analysis assesses the dependence of two or more properties (Sokal and Rohlf 1995). In our case, such dependence would indicate additional, confounding variables that may reduce our ability to recognize a significant relationship between geographic range and survivorship. For instance, we tested whether extinction resistance was dependent on area of origin by considering the relationship between survivorship and presence in the biogeographic sub-provinces (BSPs) established by Kauffman (1984) for the Late Cretaceous WIS (Figure 3-2). In an extensive synthesis of the geologic, climatic, oceanographic, and biologic history of the WIS, Kauffman (1984) defined four BSPs, characterized by 10-25% endemic taxa, within the broader North American province. The WIS was divided into three BSPs, from north to south: Northern Interior sub-province (NISP), Central Interior sub-province (CISP), and the Southern Interior sub-province (SISP); the fourth BSP represented the Gulf and Atlantic Coast sub-province (GASP). These BSPs are analogous to modern definitions of biogeographic units; i.e., the NISP is analogous to a cool temperate biotic zone, the CISP is to a mild temperate biotic zone, the SISP to a warm temperate zone, and the GASP to a mixture of southern, warm temperate and subtropical zones. Kauffman (1984) also defined a broad “ecotone” of mixing between BSPs in the north-central WIS, which he identified as the “endemic center” (EC). The EC contained the majority of fauna endemic to the WIS, including several cephalopod and bivalve clades. We also tested whether being an endemic fauna from the EC provided extinction resistance. 55 Figure 3-2. Range area reconstruction (hatched) for Baculites codyensis (inset) during the Santonian geologic stage. Scale on insert is 2.5cm; available sedimentary record for the Late Cretaceous is shown in black. Estimated shorelines of the WIS as well as BSP delineations are shown in black and Kauffman’s Endemic Center in grey. From north-to-south, BSPs are designated: Northern Interior sub-province (NISP), Central Interior sub-province (CISP), Southern Interior sub-province (SISP), Gulf and Atlantic Coast sub-province (GASP). Shorelines, BSPs, and Endemic Center boundaries are modified from Kauffman (1984). GASP SISP CISP NISP 56 We further tested the relationship between benthic or pelagic adult lifestyles and survivorship during the Late Cretaceous. Gastropods and bivalves were treated as having benthic adults, whereas cephalopods were treated as having pelagic adults. Finally, we tested for differences in survivorship between cephalopods, gastropods, and bivalves. Invasion Potential Species invasions were identified when a surviving species expanded its range into a new BSP (sensu Kauffman 1984) across a stage boundary. For example, a species was designated as an invader in the Cenomanian stage if that species experienced range expansion from the NISP into the CISP in the Turonian stage (Figure 3-3). The exclusion of Paleogene data from our study again precluded the identification of invasion potential for Maastrichtian species. However, Maastrichtian species did remain informative for the identification of invaders in the Campanian (Appendix). The relationship between range size and invasion potential through time was assessed by comparing ranges (both range area and latitudinal extent) of species that do invade in the subsequent stage with species that do not invade, for all stages using a non-parametric Mann-Whitney U test. The effects of BSP of origin, endemism in the EC, benthic vs. pelagic adult lifestyle, and clade membership on invasion potential were also assessed using contingency table analysis. All statistics were analyzed using PAST v. 2.01 (Hammer et al. 2001). 57 A B G AS P SI SP CI SPN IS P G AS P SI SP CI SPN IS P F ig ur e 3- 3. R ec on st ru ct ed r an ge s fo r B a cu li te s co d ye n si s (h at ch ed , i ns er t p an el A ) an d B . t ho m i ( sp ec kl ed , i ns er t p an el B ) in th e Sa nt on ia n (A ) an d C am pa ni an ( B ) ge ol og ic s ta ge s. B a cu li te s co d ye n si s ill us tr at es n on -i nv as iv e be ha vi or , i .e ., la ck o f ra ng e ex pa ns io n in to n ew B SP s in th e su bs eq ue nt C am pa ni an s ta ge . B a cu li te s th o m i do es s ho w in va si on b eh av io r as c ha ra ct er iz ed b y si gn if ic an t ra ng e ex pa ns io n fr om th e N or th er n In te ri or B SP in th e Sa nt on ia n in to th e C en tr al a nd S ou th er n In te ri or B SP s in th e C am pa ni an . A va ila bl e se di m en ta ry r ec or d fo r th e L at e C re ta ce ou s is s ho w n in b la ck . E st im at ed s ho re lin es o f th e W IS a s w el l a s B SP d el in ea tio ns ar e sh ow n in b la ck a nd K au ff m an ’s E nd em ic C en te r in g re y. S ho re lin es , B SP s, a nd E nd em ic C en te r bo un da ri es a re m od if ie d fr om K au ff m an ( 19 84 ). 58 Results Survivorship and Invasion Potential Molluscan species with larger geographic ranges were not found to be more likely to survive during the Late Cretaceous (Table 3-1). Further, no relationship was recovered between number of BSPs occupied and extinction resistance. Since number of BSPs occupied is related to range size, this corroborates the lack of significant correlation between range area (and latitudinal extent) and survivorship. No significant relationship was resolved between survivorship and BSP of endemism or presence in Kauffman’s (1984) EC (Table 3-2); these results are robust to the influence of species’ benthic vs. pelagic adult lifestyle as well as to specific clade membership (Table 3-3). Large range size was also not a significant predictor of invasion potential. Instead, a correlation between small range size and invasion was resolved for taxa across all stages during the Late Cretaceous (range area: U = 21, p < 0.001; latitudinal extent: U = 27, p < 0.001). When broken into its constituent stages this relationship appears to result from patterns in the Campanian; the Cenomanian and Coniacian stages did not have enough data to be analyzed on their own, and the Turonian and Santonian stages showed a non-significant relationship (Table 3-1). The lack of significance in the Turonian and Santonian may reflect low statistical power of the analyses for these stages resulting from low sample sizes (n = 2-3 in Turonian; n = 3 in the Santonian). Thus, while a relationship cannot be conclusively documented for all individual stages, generally there does appear to be a negative correlation between range area (and latitudinal extent) and invasion potential when adequate data are available (i.e., during the Campanian and across the whole Late Cretaceous). A significant relationship was also found between invasion potential and number of BSPs occupied, which indicates that endemic species 59 (i.e., those occupying only a single BSP) were significantly more likely to become invaders than more cosmopolitan taxa (Table 3-2). As with survivorship, no relationship was resolved between invasion potential and BSP of endemism or presence in the EC (Table 3-2). This indicates that Late Cretaceous mollusks were not experiencing a poleward shift in range out of the tropics during this warm regime. 60 Table 3-1. Mann-Whitney U comparisons of range area and latitudinal extent with survivorship and invasion potential. N designates the number of survivors and non-survivors or invaders and non-invaders respectively for each analysis. Range Area Mann-Whitney U p-value Latitudinal Extent Mann-Whitney U p-value Survivorship Late Cretaceous (N = 36, 40) 695 0.799 623 0.314 Cenomanian (N = 4, 6) 9 0.594 10 0.7491 Turonian (N = 5, 8) 19 0.942 10.5 0.093 Coniacian (N = 5, 6) 7 0.167 5 0.080 Santonian (N = 6, 3) 6 0.519 6 0.517 Campanian (N = 16, 17) 107 0.304 114.5 0.448 Invasion Potential Late Cretaceous (N = 12, 24) 21 < 0.001 27 < 0.001 Turonian (N = 2, 3) 0 0.149 1 0.387 Santonian (N = 3, 3) 1 0.190 0 0.081 Campanian (N = 6, 10) 3.5 0.004 4 0.005 61 Table 3-2. Contingency table analysis comparing biotic sub-provinces to survivorship and invasion potential. Endemic species are those that occur in only a single BSP. BSP = biotic sub-province and EC = endemic center of Kauffman 1984. Cramer’s V Contingency C p-value BSP of occupancy vs. survivorship of endemic species 0.452 0.412 0.081 BSP of occupancy vs. invasion potential of endemic species 0.156 0.154 0.952 No. BSPs occupied vs. survivorship of all species 0.255 0.245 0.167 No. BSPs occupied vs. invasion potential of all species 0.767 0.609 < 0.001 Species endemic to EC vs. survivorship 0.271 0.262 0.120 Species endemic to EC vs. invasion potential 0.026 0.026 0.923 Table 3-3. Contingency table analysis comparing survivorship and invasion potential to benthic vs. pelagic adult lifestyle and clade membership. Endemic species are those that occur in only a single BSP. Cramer’s V Contingency C p-value Benthic/Pelagic vs. survivorship of endemic species 0.312 0.298 0.073 Benthic/Pelagic vs. survivorship of all species 0.058 0.0.58 0.606 Benthic/Pelagic vs. invasion potential of endemic species 0.101 0.100 0.707 Benthic/Pelagic vs. invasion potential of all species 0.239 0.233 0.151 Clade vs. survivorship of endemic species 0.325 0.309 0.175 Clade vs. survivorship of all species 0.072 0.072 0.816 Clade vs. invasion potential of endemic species 0.213 0.209 0.727 Clade vs. invasion potential of all species 0.280 0.270 0.243 62 Assessing External Bias There are a number of ways in which external biases, reflecting paleobiological incompleteness, may impact our ability to accurately resolve the relationship between biogeographic patterns and survivorship or invasion potential. However, the study area, taxa, and statistical methods used in our analysis were chosen in part to reduce the effects of these biases. As mentioned previously, the Late Cretaceous WIS has a long history of extensive study and paleobiological sampling. Our choice of taxa exclusively included groups with calcitic or aragonitic shelly hard parts and as shown by Kidwell (2005) differences in shell composition do not tend to bias estimations of molluscan species durations in the Phanerozoic (see also Jablonski 1988). Furthermore, the stratigraphic preservation potential in the WIS is generally quite high with no major tectonic activity since the Late Cretaceous to significantly alter deposited sediments. The WIS even contains some exceptional preservation in the form of Konservat Lagerstätte; e.g., the Smoky Hill Chalk, a geographically widespread formation spanning three of the stages included in this study (the Coniacian, Santonian and Campanian stages) (Hattin 1982; Meyer and Milsom 2001; Bottjer 2002). We also used non-parametric statistics, as these are more robust to artifacts arising due to sampling bias (e.g., Jablonski 1987; Jablonski and Valentine 1990; Hunt et al. 2005; Jablonski and Hunt 2006). Myers and Lieberman (2011) used a variety of tests to assess the quality of the record in this region and specifically the robustness of reconstructed ranges to effects of outcrop availability and sampling. These tests included a resampling procedure to test the effect of far-flung single occurrences on range reconstructions. Similar to the findings of Hunt et al. (2005), these authors found outliers to have little effect on nonparametric rank correlations, and in the WIS it appears that incompleteness had a minimal impact on biogeographic patterns (Myers and 63 Lieberman 2011). However, to address the potential for sampling bias in the particular dataset used here, we tested for correlation between the number of unique geographic localities in each geologic stage and average reconstructed range area. Were sampling a serious issue, we would expect a significant positive correlation; however, non-parametric Spearman’s D and Kendall’s τ correlations were not statistically significant at the p ≤ 0.05 level. We also looked for the effects of outcrop availability on our reconstructed ranges by testing for a correlation between the number of unique geographic localities in each stage and available outcrop area. Again, were available outcrop seriously affecting our reconstructed range sizes, we would expect a significant positive correlation which was not resolved by nonparametric tests (although see discussion in Dunhill 2012 for a different perspective). We further tested for a direct correlation between average reconstructed range size for each stage and available outcrop area; rank correlations remained insignificant (Table 3-4). Geologic stages in the Late Cretaceous vary in temporal duration (e.g., the Cenomanian stage spans six million years while the Turonian stage spans only four million years). To test for the effect of temporal bin size on range area reconstructions we again looked for a statistically significant nonparametric rank correlation between average range size in a given interval and interval duration. Interval durations were calculated from Cobban et al.’s (2006) zonal table. Were temporal bin size biasing our results we would expect a positive correlation between range size and stage duration, however, neither Spearman’s D nor Kendall’s τ correlations were found to be significant at the p ≤ 0.05 level suggesting that bin size was not significantly influencing our results (Table 3-4). A similar result was found by Kennedy and Cobban (1976) who found no relationship between ammonite species longevity, biostratigraphic zone duration, or cycles of transgression and regression. 64 Table 3-4. Nonparametric rank correlations used to assess issues of external bias in range area analyses. Analyses performed across the six stages of the Late Cretaceous (N = 6 for all tests). Spearman’s D p-value Kendall’s τ p-value Average No. Unique Occurrences vs. Average Range Area 15.5 0.218 0.414 0.243 Sum of Unique Occurrences vs. Outcrop Area 12 0.142 0.600 0.091 Average Range Area vs. Outcrop Area 40.0 0.749 -0.067 0.851 Average Range Area vs. Interval Duration 40.0 0.749 -0.067 0.851 65 Discussion Survivorship and Geographic Range Contrary to many previous studies (e.g., Hansen 1980; Jablonski 1987, 2008; Flessa and Jablonski 1996; Gaston 2003; Purvis et al. 2000; Kiessling and Baron-Szabo 2004; Jablonski and Hunt 2006; Liow 2007; Payne and Finnegan 2007; Powell 2007; Kiessling and Aberhan 2007; Hendricks et al. 2008; Crampton et al. 2010; Stigall 2010; Harnik 2011), we found no significant relationship between survivorship and range size in 63 species of Late Cretaceous mollusks. While we acknowledge the low statistical power of some of our range size comparisons (sample sizes provided in Table 3-1), it seems unlikely that this wholly accounts for our results, given that when taxa are binned across the entire Late Cretaceous, a significant relationship between range size and survivorship is still not recovered (Table 3-1). Accordingly, we explore alternative explanations for this pattern. Many of the studies cited above attribute the positive relationship between survivorship and range size to the buffering effect of large range to local perturbations – i.e., the larger the species’ geographic range, the less likely that the species will experience extinction in all of its constituent populations (regardless of the extinction mechanism) (e.g., Kiessling and Aberhan 2007; Foote et al. 2008). Range size can also be viewed as a proxy for the breadth of a species’ environmental niche (Stevens 1989; Brown 1995; Brown et al. 1996; McKinney 1997; Stigall 2010), whereby large range size reflects a more generalist, eurytopic species able to survive and proliferate under a greater variety of environmental conditions. The relationship between niche breadth and species longevity has been demonstrated in several studies (e.g., Baumiller 1993; Kammer et al. 1997, 1998; McKinney 1997; Liow 2007; Stigall 2010; Heim and Peters 2011) with the argument that species with greater niche breadth are more resistant to extinction because 66 they can withstand more significant environmental change within their distribution; stenotopic species with narrower niche breadths are more likely to succumb to extinction given even a small environmental perturbation. In this view, niche breadth is the underlying cause of species survivorship, and range size is correlated with extinction resistance only when positively coupled with niche breadth (i.e., when large range size also reflects large niche breadth) (see Brown 1995 for more on this coupled view). Notably, the Late Cretaceous is a unique period in Earth history characterized by long-term global warmth, with an important aspect of this warmth being severe reduction in latitudinal temperature gradients (Barron 1983; Spicer and Corfield 1992; Huber et al. 1995, 2002; Hay and DeConto 1999; Jenkyns et al. 2004; Hay 2008). It is reasonable to hypothesize that one biological consequence of this long-term warm and equable climate could be the homogenization of niche breadths amongst species caused by early preferential extinction of more stenotopic species (e.g., Brown 1995; Kammer et al. 1997; Travis 2003; Colwell et al. 2008; Jablonski 2008), and survival of only more eurytopic taxa. This could potentially result in the decoupling of range size from niche breadth, where variability in range sizes no longer necessarily reflects significant changes in niche breadth between species; thus range size would be a poor predictor of extinction resistance. In this scenario, range size would instead be controlled by the complex interaction between species’ and organismal traits as suggested by some (e.g., Jablonski 2008; Davidson et al. 2009; Crampton et al. 2010; but see Harnik 2011 for a different perspective). A number of other factors may be controlling geographic range size in these clades and causing the lack of significant results here. For example, some authors hypothesize that body size (e.g., Johnson et al. 1995; Payne 2005; Liow et al. 2008; Davidson et al. 2009) or abundance (e.g., Stanley 1986; Stanley et al. 1988; McKinney 1997; Payne et al. 2011) are the primary 67 controls on survivorship, although the direct influence of these has been questioned (e.g., Jablonski 1996, 2008; Kiessling and Baron-Szabo 2004; Harnik 2011). In this scenario, covariation of range size with these factors is the real control on species survivorship, and our results would suggest that range size is perhaps not consistently covarying with these factors during the Late Cretaceous. Yet another hypothesis, proposed by Waldron (2010), suggests that there may be a difference between “classic” extinction resistance, which can correlate positively with range size, and a species’ “threat tolerance.” Under this premise, if environments change rapidly enough to severely reduce population sizes regardless of niche breadth, such that generalists and specialists have similar range sizes, then generalists lose the advantage of large range size buffering against extinction. At this point, individual species’ tolerances to a given threat will become the significant predictor of survivorship patterns (Waldron 2010). Given the stressors of extreme warmth and fluctuating sea levels, such a scenario is potentially plausible in the Late Cretaceous WIS, and thus the lack of correlation between range size and survivorship in our analysis could reflect the input of individual species’ threat tolerance on survivorship at this time. Invasion Potential and Geographic Range In the taxa we analyzed from the Late Cretaceous WIS, small geographic range size was somewhat correlated with an increased potential to invade new areas and there was a significant relationship between endemism and invasion potential (Table 3-2). This may suggest that there is something about being endemic and narrowly distributed in the WIS that ultimately facilitated invasion. However, many other factors may be influencing these results. For instance, by definition a widespread species with a cosmopolitan distribution cannot further invade a “new” region, so this constrains any conclusions somewhat. Moreover, when broken into its constituent 68 time series, the negative relationship between range size and invasion potential seems to reflect a pull from Campanian taxa, which may imply that conditions after the Campanian were optimal for facilitating invasions. Alternatively, since many taxa originate in the Campanian, the patterns observed here may instead reflect new species that have yet to reach their maximum geographic range, i.e., an age and area effect (Gaston 1998; Foote et al. 2008), especially given that only a single species occurs in more than one BSP prior to becoming invasive. It is worth noting that species with small range size, but located near a biogeographic barrier, will in general have a higher probability of invasive behavior due to the fact that even minimal range expansion will likely cause the species to cross into a new biogeographic province. Indeed, Roy (2011) found that localities near the center of biogeographic provinces contained fewer “extralimital species” (i.e., those that have expanded into new provinces) than those near provincial edges. Further, the definition of biogeographic provinces and areas of endemism themselves will play an important role in identifying patterns. The species considered here also show a complete lack of poleward migration in response to Late Cretaceous warmth. Some studies of extant taxa have predicted such a shift (e.g., Hickling et al. 2006; Parmesan 2006; but see Colwell et al. 2008 and Burrows et al. 2011), whereas here we find no evidence for such a pattern. It is worth noting that Jablonski (2008) has suggested increased global warmth may actually result in a reverse invasion pattern, in which species from higher latitudes migrate into the tropics, filling empty ecological space caused by extinctions in specialized taxa (see also the “ecological opportunity” hypothesis in Vermeij 1991b). Effects on invasion dynamics, such as those noted here, probably result from a combination of interacting factors (Crawley 1987). As with survivorship, there is ample evidence 69 that environmental niche breadth may be a significant predictor of invasion potential since greater niche breadth implies greater likelihood to survive in new habitats should they become accessible (see Erhlick 1989; Roy et al. 1991; Brown 1995; Stigall 2010 and references therein). Additionally, body size (Roy et al. 2002), propagule pressure (see Ruiz et al. 2000; Lockwood et al. 2005) and abundance (see Williamson 1996; Williamson and Fitter 1996) may be important components in predicting invasion success. Still, if the results presented here regarding species’ invasions during times of extreme warmth are generally representative, they may have some implications for future biotic responses to anticipated long-term warmth; i.e., it may ultimately be the species with initially narrow distributions that become the most effective invaders. Concluding Remarks Current work is beginning to investigate the complex relationship between species’ abiotic requirements as observed in environmental space (E-space) and how those occur spatially when mapped onto geography (G-space). The relationship between E-space and G-space has strong potential to influence species’ distributional limits (e.g., potential for successful dispersal or migration) and the spatial structure of populations (which in turn has a profound effect on patterns of speciation and extinction) (see Soberón and Nakamura 2009; Peterson et al. 2011; Myers & Saupe in press for more on these concepts). Our hope is that the results of this study have provided some interesting patterns relating range size to survivorship and invasion potential during the warm Late Cretaceous interval. A long-standing debate in geology centers on the relative frequency of directional versus cyclical patterns or trends (“Time’s Arrow” vs. “Time’s Cycle”) in the history of the Earth and its life (Gould 1987). Every moment or interval of time is unique, yet because many processes recur, we may study intervals in the distant past to gain understanding of other time periods, even our 70 own future. The extent to which we can do the latter with the Late Cretaceous WIS is not yet clear. For instance, the WIS was an epicontinental seaway that contained many now extinct clades, and may therefore not serve as a direct analogue to study the effects of future climate changes on marine fauna. Moreover, other sources of human-induced habitat degradation and fragmentation compound the challenges faced by many species today, and will undoubtedly magnify the negative effects of climate change alone (McKinney 1997; Travis 2003; Jablonski 2008; Waldron 2010; Willis and MacDonald 2011). Still, we suggest that studies of the fossil record in general, and the Late Cretaceous WIS in particular, can provide insight into how species responded biogeographically to long-term “Greenhouse” conditions. The analyses presented here show that some of the biogeographic “rules” prevalent today, and under many other climatic regimes, may not have prevailed under periods of prolonged, extreme warmth. Thus, species may respond to future prolonged warmth in individualistic ways reflecting multifactorial changes in niche and biological dimensions that are species specific (Crawley 1987; Brown et al. 1996; McKinney 1997; Davidson et al. 2009; Waldron 2010; Willis and MacDonald 2011). If broadly applicable, this conclusion may make predictions of future extinctions and invasions even more challenging, as species’ survivorship and invasion potential will not be easily generalizable to a single metric (like geographic range size). An important lesson from the fossil record in this regard is that an approach that applies the tenets of Time’s Cycle in fact validates the importance of Time’s Arrow and the distinctive character of taxon, place, and time. 71 Literature Cited Barron, E. J. 1983. A warm, equable Cretaceous: the nature of the problem. Earth Science Reviews 19:305–338. ⎯⎯⎯. 1995. Warmer Worlds: global change lessons from Earth history. World Survey of Climatology 16:71-94. Baumiller, T. K. 1993. Survivorship analysis of Paleozoic Crinoidea: effect of filter morphology on evolutionary rates. Paleobiology 19:304-321. Bottjer, D. J. 2002. Smoky Hill Chalk: spectacular Cretaceous marine fauna. Pp. 353-364 in D. J. Bottjer, W. Etter, and J. W. Hagadorn, C.M Tang, eds. Exceptional Fossil Preservation: A Unique View on the Evolution of Marine Life. Columbia University Press, New York. Brown, J. H. 1995. Macroecology. University of Chicago Press, Chicago. Brown, J. H., G. C. Stevens, D. M. Kaufman. 1996. The geographic range: size, shape, boundaries, and internal structure. Annual Reviews of Ecology and Systematics 27:597-623. Burrows, M. T., D.S. Schoeman, L.B. Buckley, P. Moore, E.S. Poloczanska, K. M. Brander, C. Brown, J. F. Bruno, C. M. Duarte, B. S. Halpern, J. Holding C. V. Kappel, W. Kiessling, M. I. O’Connor, J. M. Pandolfi, C. Parmesan, F. B. Schwing, W. J. Sydeman, and A. J. Richardson. 2011. The pace of shifting climate in marine and terrestrial ecosystems. Science 334:652-655. Cobban, W. A., I. Walaszczyk, J. D. Obradovich, and K. C. McKinney. 2006. A USGS Zonal table for the Upper Cretaceous middle Cenomanian-Maastrichtian of the Western Interior of the United States based on ammonites, inoceramids, and radiometric ages. USGS Open-file Report 2006-1250. 72 Colwell, R. K., G. Brehm, C. L. Cardelus, A. C. Gilman, and J. T. Longino. 2008. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322:258-261. Costa, G. C., C. Wolfe, D. B. Shepard, J. P. Caldwell, and L. J. Vitt. 2008. Detecting the influence of climatic variables on species distributions: a test using GIS niche-based models along a steep longitudinal environmental gradient. Journal of Biogeography 35: 637-646. Covey, C., L. C. Sloan, and M. I. Hoffert. 1996. Paleoclimate data constraints on climate sensitivity: the paleocalibration method. Climatic Change 32:165-184. Crampton, J. S., R. A. Cooper, A. G. Beu, M. Foote, and B. A. Marshall. 2010. Biotic influences on species duration: interactions between traits in marine molluscs. Paleobiology 36:204-223. Crawley, M. J. 1987. What makes a community invasible? Colonization, Succession, and Stability 26:429-453. Daehler, C. C. and D. R. Strong Jr. 1993. Prediction and biological invasion. Trends in Ecology and Evolution 8:380. Davidson, A. D., M. J. Hamilton, A. G. Boyer, J. H. Brown, and G. Ceballos. 2009. Multiple ecology pathways to extinction in mammals. Proceedings of the National Academy of Sciences USA 106:10702-10705. Dietl, G. P. and K. W. Flessa. 2011. Conservation paleobiology: putting the dead to work. Trends in Ecology and Evolution 26:30-37. Dunhill, A. M. 2012. Problems with using rock outcrop area as a paleontological sampling proxy: rock outcrop and exposure area compared with coastal proximity, topography, land use, and lithology. Paleobiology 38:126-143. Erhlick, P. R. 1989. Attributes of invaders and the invading process: vertebrates. In J.A. Drak, H. 73 A. Mooney, F. di Castri, R. H. Groves, F. J Kruger, M, Rejmánek, and M. Williamson, eds. Biological Invasions: A Global Perspective, Scope 37:315-328. Environmental Systems Research Institute. 2006. ARCGIS version 9.2. ESRI, Redlands, CA. Fatherree, J. W., P. J. Harries, and T. M. Quinn. 1998. Oxygen and carbon isotopic “dissection” of Baculites compressus (Mollusca: Cephalopoda) from the Pierre Shale (upper Campanian) of South Dakota: implications for Paleoenvironmental reconstructions. Palaios 13:376-385. Fisher, C. G. and M. A. Arthur. 2002. Water mass characteristics in the Cenomanian Western Interior seaway as indicated by stable isotopes of calcareous organisms. Palaeogeography, Palaeoclimatology, Palaeoecology 188:189-213. Flessa, K. W. and D. Jablonski 1993. Extinction is here to stay. Paleobiology 9:315-321. ⎯⎯⎯. 1996. The geography of evolutionary turnover: a global analysis of extant bivalves. Pp. 376-397 in D. Jablonski, D. H. Erwin, and J. H. Lipps, eds. Evolutionary Paleobiology. University of Chicago Press, Chicago. Foote, M., J. S. Crampton, A. G. Beu, and R. A. Cooper 2008. On the bidirectional relationship between geographic range and taxonomic duration. Paleobiology. 34(4): 421-433. Franks, P. J. and D. J. Beerling. 2009. CO2-forced evolution of plant gas exchange capacity and water-use efficiency over the Phanerozoic. Geobiology 7:227-236. Gaston, K. J. 1998. Species-range size distributions: products of speciation, extinction, and transformation. Philosophical Transactions of the Royal Society of London B 353:219-230. Gaston, K. J. 2003. The structure and dynamics of geographic ranges. Oxford Series in Ecology and Evolution. Oxford University Press, Oxford, UK. Glancy, T. J. Jr., M. A. Arthur, E. J. Barron, and E. G. Kauffman. 1993. A paleoclimate model for the North American Cretaceous (Cenomanian-Turonian) epicontinental sea. In W. G. E. 74 Caldwell and E. G. Kauffman, eds. Evolution of the Western Interior Basin. Geological Association of Canada Special Paper 39: 219-242. Gould, S. J. 1987. Time’s arrow time’s cycle: myth and metaphor in the discovery of geological time. Harvard University Press, Cambridge, Mass. Hammer, Ø., D. A. T. Harper, and P. D. Ryan. 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica 4:1-9. Hancock, J. M. and E. G. Kauffman. 1979. The great transgressions of the Late Cretaceous. Journal of the Geological Society of London 136:175-186. Hansen, T A. 1980. Influence of larval dispersal and geographic distribution on species longevity in neogastropods. Paleobiology 6:193-207. Harley, C. D. G. 2011. Climate change, keystone predation, and biodiversity loss. Science 334:1124-1127. Harnik, P. G. 2011. Direct and indirect effects of biological factors on extinction risk in fossil bivalves. Proceedings of the National Academy of Sciences USA 108:13594-13599. Harries, P. J. 2003. A reappraisal of the relationship between sea level and species richness. In P. J. Harries ed. High Resolution Approaches In Stratigraphic Paleontology. Topics in Geobiology 21: 227-261. Hattin, D. E. 1982. Stratigraphy and depositional environment of the Smoky Hill Chalk Member, Niobrara Chalk (upper Cretaceous) of the type area, western Kansas. Kansas Geological Survey Bulletin 225:1-108. Hay, W. W. 2008. Evolving ideas about the Cretaceous climate and ocean circulation. Cretaceous Research 29:725-753. 75 Hay, W. W. and R. M. DeConto. 1999. Comparison of modern and Late Cretaceous meridional energy transport and oceanology. Geological Society of America Special Paper 332:283-300. Hayes, K. R. and S. C. Barry. 2008. Are there any consistent predictors of invasion success? Biological Invasions 10:483-506. Haywood, A. M., A. Ridgewell, D. J Lunt, D. J. Hill, M. J. Pound, H J. Dowsett, A. M. Dolan, J. E. Francis, and M. Williams. 2011. Are there pre-Quaternary geological analogues for a future greenhouse warming? Philosophical Transactions of the Royal Society A 369:933-956. Heim, N. A. and S. E. Peters. 2011. Regional environmental breadth predicts geographic range and longevity in fossil marine genera. PLoS ONE 6:1-12. Hendricks, J. R., B. S. Lieberman, and A. L. Stigall. 2008. Using GIS to study palaeobiogeographic and macroevolutionary patterns in soft-bodied Cambrian arthropods. Palaeogeography, Palaeoclimatology, Palaeoecology 264:163-175. Hickling, R., D. B. Roy, J. K. Hill, R. Fox, and C. D. Thomas. 2006. The distributions of a wide range of taxonomic groups are expanding polewards. Global Change Biology 12:450-455. Huber, B. T., D. A. Hodell, and C. P. Hamilton. 1995. Middle-Late Cretaceous climate of the southern high latitudes: stable isotopic evidence for minimal equator-to-pole thermal gradients. Geological Society of America Bulletin 107:1164-1191. Huber, B. T., R. D. Norris, and K. G. MacLeod. 2002. Deep-sea paleotemperature record of extreme warmth during the Cretaceous. Geology 30:123-126. Hunt, G., K. Roy, and D. Jablonski. 2005. Species-level heritability reaffirmed: a comment on “On the heritability of geographic range sizes.” The American Naturalist 166:129-135. Jablonski, D. 1984. Keeping time with mass extinctions. Paleobiology 10:139-145. 76 ⎯⎯⎯. 1986. Larval ecology and macroevolution in marine invertebrates. Bulletin of Marine Science 39:565-587. ⎯⎯⎯. 1987. Heritability at the species level: analysis of geographic ranges of Cretaceous mollusks. Science 238:360-363. ⎯⎯⎯. 1988. Estimates of species durations: response. Science 240: 969. ⎯⎯⎯. 1996. Body size and macroevolution. Pp. 256-289 in D. Jablonski, D. H. Erwin, and J. H. Lipps eds. Evolutionary Paleobiology. University of Chicago Press, Chicago. ⎯⎯⎯. 2008. Extinction and the spatial dynamics of biodiversity. Proceedings of the National Academy of Sciences USA 105(Suppl. 1):11528-11535. Jablonski, D. and G. Hunt. 2006. Larval ecology, geographic range, and species survivorship in Cretaceous mollusks: organismic versus species-level explanations. The American Naturalist 168:556-564. Jablonski, D. and K. Roy 2003. Geographical range and speciation in fossil and living molluscs. Proceedings of the Royal Society of London B 270:401-406. Jablonski, D. and J. W. Valentine. 1990. From regional to total geographic ranges: testing the relationship in Recent bivalves. Paleobiology 16:126-142. Jenkyns, H. C., A. Forster, S. Schouten, and J. S. Sinnginghe Damste. 2004. High temperatures in the Late Cretaceous Arctic Ocean. Nature 432:888-892. Johnson, K. G., A. F. Budd, and T. A. Stemann. 1995. Extinction Selectivity and Ecology of Neogene Caribbean Reef Corals. Paleobiology 21:52-73. Kammer, T. W., T. K. Baumiller, and W. I. Ausich. 1997. Species longevity as a function of niche breadth: evidence from fossil crinoids. Geology 25:219-222. ⎯⎯⎯. 1998. Evolutionary significance of differential species longevity in Osagean- 77 Meramician (Mississippian) crinoid clades. Paleobiology 24:155-176. Kauffman, E.G. 1984. Paleobiogeography and evolutionary response dynamic in the Cretaceous Western Interior Seaway of North America. In G.E.G. Westermann, ed. Jurassic-Cretaceous Biochronology and Paleogeography of North America. Geological Association of Canada Special Paper 27: 273-306. Kauffman, E. G. and W. G. E. Caldwell. 1993. The Western Interior Basin in Space and Time. In W. G. E. Caldwell and E. G. Kauffman, eds. Evolution of the Western Interior Basin, Geological Association of Canada Special Paper 39:1-30. Keller, G., Z. Berner, T. Adatte, and D. Stueben. 2004. Cenomanian-Turonian and δ13C, and δ18O sea level and salinity variations at Pueblo, Colorado. Palaeogeography, Palaeoclimatology, Palaeoecology 211:19-43. Kennedy, W. J. and W. A. Cobban. 1976. Aspects of ammonite biology, biogeography, and biostratigraphy. Special Papers in Palaeontology 17:1-94. Kennedy, W. J., N. H. Landman, W. K. Christensen, W. A. Cobban, and J. M. Hancock. 1998. Marine connections in North America during the late Maastrichtian: palaeogeographic and palaeobiogeographic signi®cance of Jeletzkytes nebrascensis Zone cephalopod fauna from the Elk Butte Member of the Pierre Shale, SE South Dakota and NE Nebraska. Cretaceous Research 19:745-775. Kidwell, S. M. 2005. Shell composition has no net impact on large-scale evolutionary patterns in mollusks. Science 307:914-917. Kiessling, W. and R. C. Baron-Szabo. 2004. Extinction and recovery patterns of scleractinian corals at the Cretaceous-Tertiary boundary. Palaeogeography, Palaeoclimatology, Palaeoecology 214:195-223. 78 Kiessling, W. and M. Aberhan. 2007. Geographical distribution and extinction risk: lessons from Triassic-Jurassic marine benthic organisms. Journal of Biogeography 34:1473-1489. Kozak, K.H., C.H. Graham, and J.J. Wiens. 2008. Integrating GIS-based environmental data into evolutionary biology. Trends Ecology and Evolution 23:141-148. Landman, N. H., N. L. Larson, and W. A. Cobban. 2007. Jaws and radula of Baculites from the upper Cretaceous (Campanian of North America). Pp. 257-298 in N. H. Landman, R. A. Davis, and R. H. Mapes, eds. Cephalopods Present and Past: New Insights and Fresh Perspectives. Springer, New York. Landman, N. H., W. A. Cobban, and N. L. Larson. 2012 (in press). Mode of life and habitat of scaphitid ammonites. Geobios doi:10.1016/ j.geobios.2011.11.006. Liow, L. H. 2007. Does versatility as measured by geographic range, bathymetric range, and morphological variability contribute to taxon longevity? Global Ecology and Biogeography 16:117-128. Liow, L. H., M. Fortelius, E. Bingham, K. Lintulaakso, H. Mannila, L. Flynn, N. C. Stenseth. 2008. Proceedings of the National Academy of Sciences USA 105:6097-6102. Lockwood, J. L., P. Cassey, and T. Blackburn. 2005. The role of propagule pressure in explaining species invasions. Trends in Ecology and Evolution 20:223-228. Lockwood, R. 2008. Beyond the big five: extinctions as experiments in the history of life. In P. H. Kelley and R. K. Bambach eds. From Evolution to Geobiology: Research Questions Driving Paleontology at the Start of a New Century. Paleontological Society Papers, Volume 14:207-228. McKinney, M. L. 1997. Extinction vulnerability and selectivity: combining ecological and paleontological views. Annual Review of Ecology and Systematics 28:495-516. 79 Meyer, D. L. and C. V. Milsom. 2001. Microbial sealing in the biostratinomy of Uintacrinus Lagerstätten in the Upper Cretaceous of Kansas and Colorado, USA. Palaios 16:535-546 Moss, R. H., J. A. Edmonds, K. A. Hibbard, M. R. Manning, S. K. Rose, D. P. van Vuuren, T. R. Carter, S. Emori, M. Kainuma, T. Kram, G. A. Meehl, J. F. B. Mitchell, N. Nakicenovic, K. Riahi, S. J. Smith, R. J. Stouffer, A. M. Thomson, J. P. Weyant, and T. J. Wilbanks. 2010. The next generation of scenarios for climate change research and assessment. Nature 463:747-756. Moulton, M. P. and S. L. Pimm. 1986. Species introductions in Hawaii. IN: Ecology of Biological Invasions of North America and Hawaii. In H. A. Mooney and J. A. Drake, eds. Ecological Studies: Analysis and Synthesis 58: 231-249. Myers, C.E. and B. S. Lieberman. 2011. Sharks that pass in the night: using Geographical Information Systems to investigate competition in the Cretaceous Western Interior Seaway. Proceedings of the Royal Society B 278: 681-689. Myers, C. E. and E. E. Saupe. In press. A macroevolutionary expansion of the Modern Synthesis. Palaeontology. Norris, R.D. 1992. Extinction selectivity and ecology in planktonic foraminifera. Palaeogeography, Palaeoclimatology, Palaeoecology 95: 1-17. Parmesan, C. 2006. Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics 37:636-669. Payne, J. L. 2005. Evolutionary Dynamics of Gastropod Size across the End-Permian Extinction and through the Triassic Recovery Interval. Paleobiology 31:269-290. 80 Payne, J. L. and S. Finnegan. 2007. The effect of geographic range on extinction risk during background and mass extinction. Proceedings of the National Academy of Sciences USA 104:10506-10511. Payne, J. L., S. Truebe, A. Nützel, and E. T. Chang. 2011. Local and global abundance associated with extinction risk in late Paleozoic and early Mesozoic gastropods. Paleobiology 37:616-632. Peterson, A. T., Soberón, J., Pearson, R. G., Anderson, R. P., Martínez-Meyer, E., Nakamura, M. and Araújo, M. B. 2011. Ecological Niches and Geographic Distributions. Princeton University Press, New Jersey. Poulsen, C. J., E. J. Barron, M. A. Arthur, and W. H. Peterson. 2001. Response of the mid-Cretaceous global oceanic circulation to tectonic and CO2 forcings. Paleoceanography 16:576-592. Powell, M. G. 2007. Geographic range and genus longevity of late Paleozoic brachiopods. Paleobiology 33:530-546. Purvis, A., J. L. Gittleman, G. Cowlishaw, and G. M. Mace. 2000. Predicting extinction risk in declining species. Proceedings of the Royal Academy of London B 267:1947-1952. Rode, A. L. and B. S. Lieberman. 2004. Using GIS to unlock the interactions between biogeography, environment, and evolution in Middle and Late Devonian brachiopods and bivalves. Palaeo 211:345-359. Rohde, K., M. Heap, and D. Heap. 1993. Rapoport’s rule does not apply to marine teleosts and cannot explain latitudinal gradients in species richness. The American Naturalist 142:1-16. Ross, M. I. and C. R. Scotese. 2000. PaleoGIS/Arcview 3.5, PALEOMAP Project. Arlington, TX. Rothwell Group, LP. 2007. PALEOGIS for ARCGIS 9.x. Houston. 81 Roy, K. 2001. Analyzing temporal trends in regional diversity: a biogeographic perspective. Paleobiology 27:631-645. Roy, K. and J. D. Witman. 2009. Spatial patterns of species diversity in the shallow marine invertebrates: patterns, processes, and prospects. Pp. 101-121 in J. D. Witman and K. Roy eds. Marine Macroecology. University of Chicago Press, Chicago. Roy, J., M. L. Navas, and L. Sonié 1991. Invasion by annual brome grasses: a case study challenging the homoclime approach to invasions. Pp. 207-224 in R.H. Groves and F. Di Castri, eds. Biogeography of Mediterranean Invasions. Cambridge University Press, Cambridge, UK. Roy, K., D. Jablonski, and J. W. Valentine. 1994. Eastern Pacific molluscan provinces and latitudinal diversity gradient: no evidence for “Rapoport’s rule.” Proceedings of the National Academy of the USA 91:8871-8874. ⎯⎯⎯. 2002. Body size and invasion success in marine bivalves. Ecology Letters 5:163-167. Ruiz, G. M., P. W. Fofonoff, J. T. Carlton, M. J. Wonham, and A. H. Hines. 2000. Invasion of coastal marine communities in North America: apparent patterns, processes, and biases. Annual Review of Ecology and Systematics 31:481-531. Sageman, B. B., J. Rich, M. A. Arthur, G. E. Birchfield, and W. E. Dean. 1997. Evidence for Milankovich periodicities in Cenomanian-Turonian lithologic and geochemical cycles, Western Interior USA. Journal of Sedimentary Research 67:286-302. Sala, O. E., F. S. Chapin III, J. J. Armesto, E. Berlow, J. Bloomfield, R. Dirzo, E. Huber-Sanwald, L. F. Huenneke, R. B. Jackson, A. Kinzig, R. Leemans, D. M. Lodge, H. A. Mooney, M. Oesterheld, N. L. Poff, M. T. Sykes, B. H. Walker, M. Walker, D. H. Wall. 2000. Global biodiversity scenarios for the year 2100. Science 287:1770­1774. 82 Schroder-Adams, C. J., D. A. Leckie, J. Bloch, J. Craig, D. J. McIntyre, and P. J. Adams. 1996. Paleoenvironmental changes in the Cretaceous (Albian to Turonian) Colorado Group of western Canada: microfossil, sedimentological, and geochemical evidence. Cretaceous Research 17:311-365. Soberón, J. and Nakamura, M. 2009. Niches and distributional areas: concepts, methods, and assumptions. PNAS 106:19644–19650. Sokal, R. R. and F. J. Rohlf. 1995. Biometry, 3rd ed. W.H. Freeman and Company, New York. Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. Averyt, M. Tignor, and H. L. Miller. 2007. IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. Spicer, R. A. and R. M. Corfield. 1992. A review of terrestrial and marine climates in the Cretaceous with implications for modeling the ‘Greenhouse Earth.’ Geological Magazine 129:169-180. Stachowicz, J. J., J. R Terwin, R. B. Whitlatch, and R. W. Osman. 2002. Linking climate change and biological invasion: ocean warming facilitates nonindigenous species invasions. Proceedings of the National Academy of Sciences USA 99:15497-15500. Stanley, S. M. 1986. Population size, extinction, and speciation: the fission effect in Neogene bivalves. Paleobiology 12:89-110. Stanley, S. M., K. L. Wetmore, and J. P. Kennett. 1988. Macroevolutionary differences between the two major clades of Neogene planktonic foraminifera. Paleobiology 14:235-249. Stevens, G. C. 1989. The latitudinal gradient in geographical range: how so many species coexist in the tropics. The American Naturalist 133:240-256. 83 ⎯⎯⎯. 1996. Extending Rapoport’s rule to Pacific marine fishes. Journal of Biogeography 23:149-154. Stigall, A. L. and B. S. Lieberman. 2006. Quantitative palaeobiogeography: GIS, phylogenetic biogeographical analysis, and conservation insights. Journal of Biogeography 33:2051-2060. Stigall, A. L. 2010. Using GIS to assess the biogeographic impact of species invasions on native brachiopods during the Richmondian Invasion in the type-Cincinnatian (Late Ordovician, Cincinnati region). Palaeontologia Electronica 13:1-19. Swenson, N. G. 2008. The past and future influence of geographic information systems on hybrid zone, phylogeographic, and speciation research. Journal of Evolutionary Biology 21:421-434. Thomas, C. D. and R. Ohlemüller. 2010. Climate change and species’ distributions: an alien future? Pp. 19-29 in C. Perrings, H. Mooney, and M. Williamson, eds. Bioinvasions and Globalization: Ecology, Economics, Management, and Policy. Oxford University Press, Oxford, UK. Travis, J. M. J. 2003. Climate change and habitat destruction: a deadly anthropogenic cocktail. Proceedings of the Royal Society of London B 270:467-473. Tsujita, C. J. and G. E. G. Westermann. 1998. Ammonoid habitats and habits in the Western Interior Seaway: a case study from the Upper Cretaceous Bearpaw Formation of southern Alberta, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology 144:135-160. Ufnar, D. F., G. A. Ludvigson, L. Gonzalez, and D. R. Grocke. 2008. Precipitation rates and atmospheric heat transport during the Cenomanian greenhouse warming in North America: estimates from a stable isotope mass-balance model. Palaeogeography, Palaeoclimatology, Palaeoecology 266:28-38. 84 Vermeij, G. J. 1991a. When biotas meet: understanding biotic interchange. Science 253:1099-1104. ⎯⎯⎯. 1991b. Anatomy of an invasion: the trans-Arctic interchange. Paleobiology 17:281-307. ⎯⎯⎯. 1993. Biogeography of recently extinct marine species: implications for conservation. Conservation Biology 7:391-397. Waldron, A. 2010. Lineages that cheat death: surviving the squeeze on range size. Evolution 64:2278-2292. Williamson, M. 1996. Biological Invasions. Population and Community Biology Series 15. Chapman and Hall, London, UK. Williamson, M. and A. Fitter. 1996. The characters of successful invaders. Biological Conservation 78:163-170. Willis, K. J., K.D. Bennett, S. A. Bhagwat, and H.J.B. Birks. 2010. 4° C and beyond: what did this mean for biodiversity in the past? Systamatics and Biodiversity 8:3-9. Willis, K. J. and G. M. MacDonald. 2011. Long-term ecological records and their relevance to climate change predictions for a warmer world. Annual Review of Ecology, Evolution, and Systematics 42:267-287. Yacobucci, M. M. 2008. Controls on shell shape in acanthoceratid ammonites from the Cenomanian-Turonian Western Interior Seaway of North America. In P. J. Harries, ed. High-Resolution Approaches in Stratigraphic Paleontology. Topics in Geobiology 21:195-226. Yacobucci, M. M. 2004. Neogastroplites meets Metengonoceras: morphological response of an endemic hoplitid ammonite to a new invader in the mid-Cretaceous Mowry Sea of North America. Cretaceous Research 25: 927-944. 85 Chapter 4. Developing methods for application of ecological niche modeling in the fossil record. Abstract Ecological niche modeling (ENM) is a quantitative technique used to predict species’ abiotic requirements. It is a correlative technique, requiring geographically explicit information on species occurrences and the suites of environmental conditions experienced at each occurrence point. The output of these models is a set of environmental suitability rules that can be projected geographically and to different time periods to test biogeographic, ecologic, and evolutionary hypotheses. Thus, ENM is a powerful tool for understanding how a dynamic Earth environment impacts biogeographic and macroevolutionary patterns. Although developed by biologists and used extensively in the modern, ENM is just beginning to be applied to the fossil record. In part this reflects the unique methodological challenge of reconstructing paleoenvironmental layers to be used in ENM analysis, whereas in the modern these layers are easily available from large public databases (e.g., WorldClim). This manuscript provides best practices for paleoenvironmental reconstruction to be used in ENM analyses in addition to a discussion of the contextual framework and important considerations to appropriately applying ENM to the fossil record. Introduction Ecological niche modeling (ENM) is a widely used technique developed by biologists for estimating species’ abiotic environmental requirements (i.e., niche attributes) by correlating known species occurrences with spatially explicit environmental characteristics (Guisan and 86 Zimmerman 2000; Guisan and Thuiller 2005; Elith and Leathwick 2009; Peterson et al. 2011). This technique allows biologists to quantitatively test hypotheses of species’ interactions with their environment across space or into the near future or recent past. Over the last 25 years, ENM has been used to investigate species biogeography (e.g., Svenning and Svok 2004; Graham and Hijmans 2006; Graham et al. 2010), conservation biology (e.g., Martínez-Meyer et al. 2006; Tinoco et al. 2009; Tittensor et al. 2009; Zang et al. 2012), spread of invasive species (e.g., Peterson 2003; Thuiller et al. 2005a; Broennimann et al. 2007; Jiménez-Valverde et al. 2011a) and the effects of predicted climate change (e.g., Pearson and Dawson 2003; Thuiller et al. 2005b; Hijmans and Graham 2006; Saupe et al. 2011). Additionally, when used in conjunction with phylogenetic information, ENM can be used to investigate the conservation or divergence of niche characteristics during evolution. This relationship has also been studied using modern datasets, with increasing support for phylogenetic niche conservation as the norm in many clades (e.g., Peterson et al. 1999; Graham et al. 2004; Pearman et al. 2008; Weins et al. 2010; Peterson 2011; see Losos 2008 and Losos et al. 2003 for an alternative view). Whereas modern biologists have extensively used ENM to investigate hypotheses surrounding species’ abiotic niches for the last two decades, ENM has only recently been applied to the fossil record (e.g., Stigall Rode & Lieberman 2005a; Stigall and Lieberman 2006; Maguire & Stigall 2009; Svenning et al. 2011). In part, this reflects some methodological challenges in the fossil record not experienced by modern biologists. In the modern, spatially explicit global environmental layers (e.g., temperature, precipitation) are easily downloadable at a variety of spatial scales; however, these layers are not readily available for periods in deep time. Thus, in order to use ENM techniques to quantify niche characteristics, paleontologists must construct their own environmental layers using information from sedimentological and geochemical 87 analyses. As may be expected, the accuracy and resolution at which paleoenvironments are reconstructed has a significant impact on the quality of the model that is produced. Thus, it is important to have a standardized and quantitative framework for reconstructing past environments to be used in ENM. This manuscript lays out best practices for reconstructing these environmental factors in the fossil record and provides an application of this methodology using data from the Late Cretaceous Western Interior Seaway (WIS) of North America. ENM: Basic Methods and Theory Over the last 10 years, ENM has experienced increasing popularity in a number of disciplines and research groups. In part, this reflects the user-friendly nature of many modeling algorithms (e.g., Maxent). However, it is extremely important that ENMs be applied using a reasonable conceptual framework and consideration of species-specific characteristics (Austin 2002, 2007; Guisan and Thuiller 2005; Jiménez-Valverde et al. 2008; Peterson et al. 2011; Araújo and Peterson 2012). Thus, a brief discussion of basic niche modeling theory and methods will provide important context to the way paleoenvironments are reconstructed specifically for ENM in the fossil record. Species geographic distributions are controlled by three main factors: abiotic conditions necessary for species survival and reproduction (e.g., temperature, precipitation), necessary and non-exclusive biotic interactions (e.g., nutrients, mutualisms), and the ability to access suitable areas (e.g., dispersal capacity) (Soberón and Peterson 2005; Peterson et al. 2011). Together, these factors make up the Biotic-Abiotic-Movement, or BAM, framework of Peterson et al. (2011; see also Soberón and Peterson 2005; Barve et al. 2011; Saupe et al. 2012). Within this framework, ENM is a multivariate correlative approach for estimating A, that is, a species abiotic requirements. In other words, by comparing species’ occurrences with the combinations of environmental factors experienced at each location, these 88 models provide a prediction of what environments are suitable vs. unsuitable for a given species. To the degree that species are able to occupy all suitable abiotic habitat (i.e., are not B- or M-limited), and that the breadth of habitats reflects the full range of a species environmental tolerances, ENM provides a prediction of a species fundamental niche. This is different from a mechanistic approach, which identifies species abiotic niche characteristics via direct experimentation or models of the limits of species’ physiological tolerances to different environmental factors (Guisan and Zimmerman 2000; Pearson and Dawson 2003; Kearney and Porter 2009). While a mechanistic approach may seem a more robust method for identifying species’ environmental requirements, these models also suffer limitations that may lead to inaccuracy in estimating fundamental niche attributes. For example, individual variation in physiological tolerances may lead to an estimate of abiotic limits that does not match those of the entire species – i.e., inaccurate reconstruction of the species-level fundamental niche (see Pearson and Dawson 2003; Kearney and Porter 2009 for more detail on this and other limitations of mechanistic models). Further, the development of physiologically-based models is both expensive and time-consuming – thus, even in the modern, ENM is more widely applied than mechanistic modeling (Barry and Elith 2006; Kearney and Porter 2009). Significantly, ENMs are able to predict species environmental requirements with high fidelity, even in the fossil record, and therefore are a useful tool for understanding species’ interactions with their environment (Pearson and Dawson 2003; Barry and Elith 2006; Elith and Leathwick 2009; Kearney et al. 2010; Walls and Stigall 2012). It is important to note that ENM is not the same as species distribution modeling (SDM), which is a common error in the literature. ENM produces a prediction of species’ environmental suitability in environmental space. This prediction is often projected onto geography to visualize where suitable vs. 89 unsuitable environments occur geographically, which outlines potential distributions of species. However, in order to estimate actual species’ distributions, SDMs must take into account information regarding species’ dispersal potential and limitations (Peterson 2006; Peterson et al. 2011; Araújo and Peterson 2012). This may include necessary and/or limiting biotic interactions and barriers to accessing habitable areas, in addition to the abiotic variables used for ENM (for more details see Peterson et al. 2011; Araújo and Peterson 2012; Warren 2012). Statistical approaches to ENM Ecological niche modeling may be implemented using a wide variety of modeling algorithms (see Guisan and Zimmerman 2000; Guisan and Thuiller 2005; Elith and Leathwick 2009; Peterson et al. 2011 for a complete overview). The result of most algorithms is a geographically explicit suitability surface that predicts where abiotic conditions are most suitable vs. unsuitable for a given species. This is achieved by fitting one or more statistical functions to explain the relationship between occurrence data and environmental factors (Elith and Leathwick 2009; Peterson et al. 2011). Typically models are trained in a region containing all known species occurrences plus some additional area that is inferred to be accessible, but probably unsuitable, to the species (the M region in Soberón and Peterson 2005; Barve et al. 2011; Peterson et al. 2011). Once the algorithm establishes a suitability rule-set for this training region, the model can be projected to a new geographic area and/or to another period of time. The product of this projection is a new geographic map composed of environmental suitability scores for a given species in the new region or time. These results can then be used to test hypotheses of observed distribution changes, extinction, speciation, environmental adaptation, etc. The primary differences between the available ENM algorithms are the types of species occurrence data required by the model, and the mathematical functions used to generate and test 90 the model predictions. For example, some models only require information about species presences (e.g., BIOCLIM, DOMAIN), while others require information about both presences and known absences (e.g., generalized additive models – GAMs, generalized linear models – GLMs) (Guisan and Zimmerman 2000; Elith and Leathwick 2009; Peterson et al. 2011). Known absences are challenging to discern in both the modern and fossil records. In the modern, biases in sampling (e.g., not observing a species during a given sampling effort even though it maybe present in the area or inability to sample all areas of potential occurrence) prevent most studies from identifying true absences (see Hortal et al. 2008; Jiménez-Valverde et al. 2008, 2011a; Peterson et al. 2011; Martin et al. 2012 for more on this subject). In fossil record, this may reflect imperfect fossil preservation or bias in available geologic outcrop in which fossils may occur. Some modeling algorithms bypass this problem by creating “pseudo-absences” through sampling the environmental background where there are no species’ occurrences (e.g., genetic algorithm for rule-set prediction – GARP), or by sampling from the entire background including species’ occurrences (e.g., a maximum entropy algorithm – Maxent) (Stockwell and Peters 1999; Phillips et al. 2004, 2006; Jiménez-Valverde et al. 2008; Elith and Leathwick 2009; Peterson et al. 2011). Many research groups have tested the sensitivity, or performance, of the different ENM algorithms under different environmental conditions with mixed results (e.g., Hirzel et al. 2001; Elith et al. 2006; Austin 2007; Elith and Graham 2009; Saupe et al. 2012). However, Maxent and GARP appear to function well under many scenarios, and thus tend to be some of the most widely applied in the modern. Maxent and GARP are also ideally situated to work with fossil data because they deal well with non-uniform and small sample sizes (Peterson 2001; Stigall Rode and Lieberman 2005a; Hernandez et al. 2006; Pearson et al. 2007; see Jiménez-Valverde et al. 2008 and Peterson et al. 2011 for a more complete discussion of how to choose a modeling 91 algorithm). Whereas Maxent and GARP both use presence-only occurrence data, they differ in the mathematical functions used to predict the relationship between species’ occurrences and environmental information (in addition to differences in how they sample for pseudo-absences described above). Maxent estimates suitability via an index of similarity that under most conditions resembles a heterogeneous point process or logistic regression function (Phillips et al. 2004, 2006; Fithian and Hastie 2012; Renner and Warton 2013). Alternatively, GARP uses a machine learning approach that maximizes predictability when a diverse set of locally established suitability rules are tested across an independent set of occurrence and pseudo-absence points (Stockwell and Peters 1999). Paleoenvironmental Reconstruction A unique challenge in the application of ENM techniques to test hypotheses in the fossil record is availability of paleoenvironmental information. Spatially explicit environmental layers are easily available in the modern; however, they must be carefully reconstructed in deep time. Environmental layers are constructed by assigning environmental characteristics to unique geographic points from fieldwork and literature survey. GIS algorithms are then used to interpolate between points to create a coverage of values for a particular environmental factor (e.g., temperature) across the area of interest. This procedure is replicated for all environmental factors and time periods of interest (see Stigall Rode and Lieberman 2005a for a detailed description of GIS-based environmental interpolation). Furthermore, traditional environmental information (e.g., temperature, precipitation) are not easily extracted from the geologic record; thus, environmental layers are constructed using sedimentological and geochemical proxies that are considered important in determining habitable areas for marine organisms, as well as reflecting the types of data used by geologists and paleoceanographers to reconstruct marine 92 paleoenvironments (Boucot 1981; Brenchley and Harper 1998; Stigall Rode and Lieberman 2005a; Walls and Stigall 2011). When developing paleoenvironmental layers for ENM analysis, there are a number of things to consider in conjunction with aspects of the species’ biology under investigation and the types of hypotheses being tested. One is the geographic range of the model that is being built. This has obvious impact on the geographical extent of the paleoenvironmental reconstruction, but also has very important conceptual implications, both on model performance and types of hypotheses that can be tested. A second suite of considerations in preparing for paleoenvironmental analysis is the type of environmental layers (i.e., variables) being reconstructed and how they relate to one another. These concepts are considered in more detail below prior to the discussion of best practices in paleoenvironmental reconstruction. Determining Model Extent Several recent studies have noted the importance of delineating an appropriately sized region in which to train niche models (e.g., Guisan and Thuiller 2005; Barve et al. 2011; Peterson et al. 2011; Saupe et al. 2012; Owens et al. accepted). ENM algorithms use the training region (M in Soberón and Peterson 2005; Barve et al. 2011; Peterson et al. 2011) to sample environments lacking species occurrences in order to determine environmental combinations that are likely unsuitable for a given species. Thus, M is the region that could feasibly be sampled (or reached) by a given species and is delimited using information about species’ dispersal capabilities. That is, a species that can disperse widely (and thus sample a large number of habitats) should have a larger hypothesized M than a species with more limited movement capacity. The size of M is important because overestimation will lead models to erroneously predict potentially habitable, but inaccessible areas as unsuitable. Likewise, underestimation of 93 M will prevent models from having enough information to determine suitability and potentially lead to issues of model extrapolation (Barve et al 2011; Saupe et al. 2012). Furthermore, it is extremely important when applying ENM that the species occurrence data incorporates the entire species distribution. Application of ENM to specific populations does have interesting applications (see the below section on ENM in the Fossil Record). However, some studies erroneously use population-level occurrence data to build ENMs and then extrapolate these results to the species-level either by directly projecting population models more globally (e.g., Beale et al. 2008; see Araújo et al. 2009 and Jiménez-Valverde et al. 2011b for commentary), or interpreting population-level results at the species’ level (e.g., Stigall 2012). This ENM extrapolation has the similar result of limiting the information available to modeling algorithms as they attempt to correlate occurrences with suitable environments (Guisan and Thuiller 2005; Hortal et al. 2008; Jiménez-Valverde et al. 2011b; Raes 2012). The impact on model performance in this case is not entirely clear, but definitely algorithm-dependent. This is because excluded occurrences may truncate species’ occupation of environmental space in complex ways that are unique to each situation (Barve et al. 2011; Jiménez-Valverde et al. 2011b; Araújo and Peterson 2012; Raes 2012). Further, due to the differences in how algorithms fit statistical models to occurrence data, the model response to this truncation will be algorithm-dependent (Saupe et al. 2012; Owens et al. in press). Selecting environmental layers for paleo-ENM Before beginning to collect paleoenvironmental data, it is important to establish what (and how many) environmental layers will be used in the ENM analysis. The types of layers to be used will depend on the scale of the study, the specific ecology of the species under investigation, and the type of data available (Austin 2002, 2007; Guisan and Thuiller 2005; Elith 94 and Leathwick 2009; Peterson et al. 2011; Araújo and Peterson 2012). For example, in a regional study of benthic marine taxa with presence-only data, abiotic information about substrate conditions, bottom water oxygenation, water depth, wave energy etc. will likely be informative for predicting species environmental requirements. On the other hand, local surface water conditions are unlikely to be as informative both because this variable may not be important at the regional level, and surface conditions may be less significant for benthic taxa (Pearson and Dawson 2003, 2004; Soberón 2007; Peterson et al. 2011 and references therein). The number of layers used is also important: too few layers and ENM algorithms will be challenged to discern environmental differences and prone to over-prediction. Too many layers, however, and the algorithms will produce highly complex, over-fitted models that significantly under-predict suitable environments (Peterson and Cohoon 1999; Barry and Elith 2006; Hernandez et al. 2006; Peterson and Nakazawa 2008; Peterson et al. 2011). When choosing environmental layers for ENM analysis, direct variables are best. These variables have a direct physiological influence on suitability of habitat for a give species, and in the marine realm, include factors such as temperature, oxygenation, or pH. Indirect variables, on the other hand, do not have direct physiological influence and only affect habitat suitability in that they correlate with one or more direct variables (Austin 2002, 2007; Guisan and Thuiller 2005; Elith and Leathwick 2009; Jiménez-Valverde et al. 2011a; Peterson et al. 2011). Examples of indirect variables in the marine realm include bathymetry or latitude. Unfortunately, in the fossil record, actual measurement of direct variables is impossible. However, what can be measured are proxies for direct variables (e.g., geochemical proxies for temperature, proxies for oxygenation, nutrient availability, light, etc), which would be preferred over proxies for indirect variables for the reasons discussed above. 95 A final consideration in developing environmental data is correlation between the variables used (e.g., even in the modern, all of the easily downloadable environmental variables are variations of temperature and precipitation). Autocorrelation is common in the modern and fossil records and can lead to issues of overparameterization of model output (i.e., highly complex, over-fitted predictions) among other problems (Guisan and Zimmerman 2000; Elith and Leathwick 2009; Peterson et al. 2011). Thus, it is important to identify and respond to highly correlated environmental variables. A number of solutions to this issue exist, however, the simplest solution is to exclude those variables that are highly auto-correlated (e.g., Guisan and Zimmerman 2000; Guisan and Thuiller 2005; Peterson et al. 2011 and references therein). This can be done easily in R or other statistical package. Another solution is to use principle component analysis (PCA) to distill the contributions of each variable to the overall environmental variance. PCA can also be applied using a simple script in R; after which, the number of components used as environmental layers should reflect some combination of (1) threshold of percent variance explained, (2) a statistical method identifying PC significance (e.g., a broken stick distribution), and (3) a minimum number of layers needed for robust modeling (e.g., 4ish). Elith and Leathwick (2009) and Peterson et al. (2011) provide additional information regarding this and other methods for addressing issues of autocorrelation. 96 Table 4-1. Coding scheme used in reconstructing the 14 environmental layers for ENM analysis in the Late Cretaceous Western Interior Seaway. 1., 2., 3. Percent clay, silt, sand Approximate fraction of each grain size within a marine sedimentary package. Modified from Stigall Rode and Lieberman 2005a. 4., 5. Percent carbonate, chalk Approximate fraction of carbonate (primarily limestone) or specifically chalk beds within a marine sedimentary package. Modified from Stigall Rode and Lieberman 2005a. 6. Substrate Type Overall character of the substrate on which benthic organisms reside. Decimals delineate relative abundance of substrate types in a sedimentary package. Modified from Stigall Rode and Lieberman 2005a. 1. Sandy: well sorted, coarser-grained sediment 2. Silty: intermediate 3. Muddy: fine-grained, a mixture of silty and soupy sediments 4. Soupy: extremely fine-grained with abundant water in pore spaces 97 7. Degree of Bioturbation Approximate degree of burrowing and other within sediment trace fossil activity within a sedimentary package. Decimals delineate relative abundance of trace fossil activity within a sedimentary package. 1. Minimal: less than 25% sediments show bioturbation 2. Moderate: 25-50% sediments show bioturbation 3. Moderate-High: 50-75% of sediments show bioturbation 4. High: 75-100% of sediments show bioturbation 8. Bedding Style Approximate thickness of sedimentary beds. Decimals delineate relative abundance of bedding thickness in a marine sedimentary package. Modified from Stigall Rode and Lieberman 2005a. 1. Laminated < cm-scale bedding 2. Thin = cm-scale bedding 3. Moderate = dm-scale bedding 4. Thick = m-scale bedding 9. Inferred Water Depth Relative water depth with respect to storm and fair-weather wave bases. Decimals delineate relative placement within an energy zone. Modified from Stigall Rode and Lieberman 2005a. 0. Subaerial: above mean tide line; including delta plain and marsh settings. 98 1. Upper Intertidal: between mean low tide and mean high tide; including delta plain and marsh settings. 2. Lower Intertidal: between mean low tide and fair weather wave base; including upper and middle shoreface settings, delta plain and marsh settings. 3. Subtidal: between fair weather and storm wave base; including delta front and prodelta slope settings and lower shoreface settings. 4. Offshore: below storm wave base; including delta front and prodelta slope settings. 10. Depositional Environment Inferred sedimentary environment of deposition. Decimals delineate relative placement within depositional environments. Modified from Kauffman 1969; Sepkoski 1988; Prothero and Schwab 2004; Neuendorf et al. 2005; Stigall Rode and Lieberman 2005a. 1. Estuarine/Delta Plain: peritidal; beach and channel deposits, high sediment deltaic environments, shallow estuarine 2. Lagoonal/Delta Front: near-shore, protected subtidal including shelf lagoons, delta platform, and delta front; frequently heterolithic fine-grained lithofacies with storm deposits; wave-agitated environments including bars, oolite shoals, bioherm-ric areas; above wave base, may or may not be steep 3. Inner Shelf/Prodelta: dominated by sandand silt deposits; shallow open shelf and prodelta environments, below fair-weather wave base, but evidence of storm deposits 99 4. Midshelf: dominated by dark clay-muds; deeper open shelf and fore-delta environments; fine-grained sediments; low frequency of storm re-working 5. Outer Shelf: dominated by impure clayey carbonate muds; below storm wave base 6. Basin: dominated by carbonate muds; deep water; black shales; lower O2 11. Oxygenation Inferred O2 content of the water column at the water-sediment interface. Decimals delineate relative placement within oxygenation zones. Modified from Sageman and Bina 1997; Brenchley and Harper 1998; Stigall Rode and Lieberman 2005a. 1. Sub-aerial 2. Normal Marine/Aerobic: diverse shelly taxa including epifauna and infauna; bioturbated 3. Dysaerobic: shell epifauna and burrowers dominant; laminated to burrowed sediments 4. Anaerobic: no macrofauna; anaerobic S-bacteria; laminated sediments 12., 13., 14. δ13C, δ18O, TOC Average δ13C, δ18O, and total organic carbon per marine sediment package. 100 Methods for paleoenvironmental reconstruction: an example from the Late Cretaceous In the Late Cretaceous WIS paleoenvironmental data are being collected for 14 environmental layers (Table 4-1). These include: percent clay, silt, sand, chalk, and carbonate, bedding style, degree of bioturbation, substrate type, inferred water depth, depositional environment, oxygenation, total organic carbon (TOC), δ13C, and δ18O. These layers have been modified from those used in previous work (e.g., Stigall Rode and Lieberman 2005a) to reflect the taxa, conditions, and specific hypotheses being tested in the Late Cretaceous WIS. Some modification, however, also reflects evolution of ENM theory and practice. Notably, all environmental layers used are purely abiotic. This is unique from previous work, which incorporated both abiotic and some biotic variables such as ichnofacies or biofacies membership (e.g., Stigall Rode and Lieberman 2005a, Malizia and Stigall 2011; Walls and Stigall 2011; Stigall 2012). The incorporation of biotic variables into the ENM framework is deemed inappropriate here for two reasons: (1) the purpose of ENM in this case is to test hypotheses specific to how species responded to environmental changes, and (2) to the degree that these biotic variables may reflect abiotic conditions, they are indirect proxies and so less desirable (see discussion of direct vs. indirect variables above). While incorporating biotic variables into ENMs may be informative for understanding biotic limitations to species occupation of suitable habitat, they confound the ability to interpret the results that do reflect species’ abiotic requirements. Following previous workers (e.g., Stigall Rode and Lieberman 2005a), paleoenvironmental data is collected primarily through literature survey including peer-reviewed manuscripts, master’s theses, doctoral dissertations, and published fieldtrip guidebooks. Additional information gathered from fieldwork should also be incorporated when possible. Standardization of paleoenvironmental coding is extremely important when constructing 101 environmental layers. This endeavor requires many independent references (e.g., Appendix 3), which use a variety of terminologies, thus consistency in coding is paramount. Table 4-2 shows an example of the coding rule-set used for the Late Cretaceous WIS and associated reference material (Appendix 3). Substrate conditions are characterized using the environmental layers describing substrate grain size (i.e., percent clay, silt, sand, chalk, and carbonate), substrate type, degree of bioturbation, and bedding style. Percentages are calculated from stratigraphic columns as the approximate fraction of each grain size in a given column. Detailed stratigraphic descriptions in manuscript texts may also be used for this purpose (e.g., Kirkland 1991, Appendix). Figure 4-1 shows a sample stratigraphic column demonstrating the measurement of these properties. In this example, the total vertical extent of each rock type is first calculated by direct measurement: the column is composed of 2.34 m of sandstone, 5.13 m of shale, 1.04 m of siltstone, and 1.64 m of calcareous shale. Using coding rules provided in Table 4-2, sandstone is coded as 100% sand, shale is composed of 50% silt and 50% clay, and siltstone is composed of 87% silt and 17% clay. Likewise, the “calcareous” modifier of the shale is coded as 10% carbonate. Following the calculations shown in Figure 4-1, the lithology of this section is 23.1% sand, 41.0% silt, 34.3% clay, and 1.6% carbonate. 102 Table 4-2. La te Cret aceous Weste rn Inte rior Se away c oding r ule-set used f or eval uating paleoen vironm ental in format ion fro m literatu re surv ey. Sedime nt Typ es Coding COMM ENTS Citatio n siltston e / silt- shale 17% cl ay, 83% silt > 66% silt, re st clay Potter 2005; P rothero & Schwa b 2004 claysto ne / cla y- shale 83% cl ay, 17% silt > 66% clay, r est silt Potter 2005; P rothero & Schwa b 2004 mudsto ne / mudroc k / shal e 5 0% cla y, 50% silt Potter 2005: m udrock /shale = 50/50 silt/cla y Prother o & Sc hwab 2 004: 'm udston e' = 33 -65% c lay, res t silt (indura ted mu d) Potter 2005; P rothero & Schwa b 2004 bioclas tic mudsto ne 10% lm st, 45% clay, 4 5% silt < 10% lmst, r est mu dstone Neuend orf et a l. 2005 : indur ated m ud w/ ~ 50/50 clay & silt but not fissile or lam inated Prother o & Sc hwab 2 004; Neuend orf et a l. 2005 wackes tone 10% lm st, 45% clay, 4 5% silt >10% lmst, re st mud stone Readin g 1996 : is typ ical of a lagoo nal env iron Prother o & Sc hwab 2 004; Neuend orf et a l. 2005 packsto ne 5% cla y, 5% silt, 90 % lmst grain-s upporte d Neuend orf et a l. 2005 : < 1% mud Prother o & Sc hwab 2 004 grainst rone 100% no mud Readin g1996: is typi cal of a lagoon al to re ef flat e nviron P rothero & Sch wab 20 04 marl / m arlston e 50 % clay , 50% lmst Pettijo hn 195 7: 35-6 5% cla y & 65 -35% c arbona te Neuend orf et a l. 2005 ; Pettijo hn 195 7 siliciou s ooze 15% cl ay, 15% slt, 10% lmst, 60% S iO 2 30% no nbioge nic mu d(clay & silt), 0-20% calcar eous oo ze (CaCO 3 micro fossils) , & 50- 70% S iO 2 ooz e (SiO 2 microf ossils); (based on the "3 com ponent system " of pe lagic- hemipe lagic se diment s) Readin g 1996 calcare ous oo ze 1 5% cla y, 15% slt, 60% lmst, 10% S iO 2 30% no nbioge nic mu d(clay & slt), 50-70% calcar eous oo ze (CaCO 3 micro fossils) , & 0-2 0% SiO 2 ooze (SiO 2 microf ossils); (based on the "3 com ponent system " of pe lagic- hemipe lagic se diment s) Readin g 1996 argillit e any mu drock t hat has been s ubjecte d to low -grade metam orphism Prother o & Sc hwab 2 004 103 glauco nite Fe-ric h clay ; most often found as pell ets in sandst ones; i n agitate d, oxid ized, n ormal shallo w mar ine H 2 O (ma x 50- 200m) pellet s may form u nder lo cally r educed condi tions; large c oncret ions o f glauc onite o nly in shallo w shel f enviro nment s with slow sedim entatio n rates & sta rved o f silicic lastics Prothe ro & S chwab 2004 calcare nite 100% carbon ate > 50% sand- sized g rains c arbona te Neuen dorf et al. 20 05 Inferr ed Wa ter Depth Coding COMM ENTS Citatio n shoref ace H 2O d epth = [1- 3] zone b etween seawa rd lim it of sh ore & near-h orizon tal surfac e of of fshore zone; typica lly sea ward t o storm wave base (~ 10m) Neuen dorf et al. 20 05 upper shoref ace lower intertid al [2] below low ti de line ; abov e fair w eather wave base Prothe ro & S chwab 2004 middle shore face lower intertid al [2] below low ti de line ; at fai r weat her wa ve bas e Prothe ro & S chwab 2004 lower shoref ace subtid al [3] below low ti de line ; below fair w eather wave base Prothe ro & S chwab 2004 delta p lain / marsh sub-ae rial to lower intertid al = [0-2 ] delta f ront subtid al to offsho re = [3 -4] prodel ta subtid al to offsho re = [3 -4] 104 Deposi tional Setting Coding COMM ENTS Source estuari ne / margin al mari ne / delta p lain [1] peritida l; beac h/chan nel dep osits, h igh sed imenta tion de ltaic environ s, shall ow estu arine Kauffm an 196 9; Sepk oski 1988; P rothero &Swa b 2004; N euendo rf et al. 2005; S tigall R ode & Lieberm an 200 5a lagoon s / delt a front [2] near-sh ore, pro tected sub-tid al inclu ding sh elf lago ons, de lta platfor m, and delta f ront; fr equent ly hete rolithic fine-g rained lithofac es with storm deposit s; wave -agitate d envir onmen ts includi ng bars , oolite shoals , biohe rm-ric areas; a bove w ave base, m ay or m ay not be stee p Kauffm an 196 9; Sepk oski 1988; P rothero &Swa b 2004; N euendo rf et al. 2005; S tigall R ode & Lieberm an 200 5a inner s helf / prodelt a [3] domina ted by sand & silt de posits; shallo w open shelf & prodelt a envir onmen ts, belo w fair- weathe r wave base, b ut eviden ce stor m depo sits Kauffm an 196 9; Sepk oski 1988; P rothero &Swa b 2004; N euendo rf et al. 2005; S tigall R ode & Lieberm an 200 5a midshe lf [4] domina ted by dark cl ay mud s; deep er open shelf & fore-d elta environ ments; fine-g rained sedime nts, low freque ncy of storm re-wor king Kauffm an 196 9; Sepk oski 1988; P rothero &Swa b 2004; N euendo rf et al. 2005; S tigall R ode & Lieberm an 200 5a outer s helf [5] domina ted by impure clayey carbon ate mu ds; bel ow sto rm wave b ase Kauffm an 196 9; Sepk oski 1988; P rothero &Swa b 2004; N euendo rf et al. 2005; S tigall R ode & Lieberm an 200 5a basin [6] domina ted by carbon ate mu ds; dee p wate r; black shales ; lower O 2 Kauffm an 196 9; Sepk oski 1988; P rothero &Swa b 2004; N euendo rf et al. 2005; S tigall R ode & Lieberm an 200 5a 105 Descri ptors Coding COMM ENTS Citatio n silty 10% si lt Potter 2005 muddy 5% silt , 5% cl ay applied to non -mudst ones Potter 2005 clayey 10% cl ay > 10% clay Potter 2005 sandy, pebbly , etc. 10% sa nd or pebble > 10% sand o r pebbl e, etc Potter 2005 calcare ous 10% C aCO 3 > 10% CaCO 3; foram s, nann ofossil , etc Potter 2005 siliciou s 10% S iO 2 > 10% SiO 2; diatom s, radio larians , etc Potter 2005 carbon aceous 1% > 1% C org Potter 2005 argillac eous 10% cl ay apprec iable a mount of clay ("argil laceous limest one ha s signific ant, bu t < 50% clay) Neuend orf et a l. 2005 pyritife rous, ferrugi nous 3% typical ly 1-5% Potter 2005 micace ous, phosph atic, et c 3% typical ly 1-5% Potter 2005 "wkly calc" 0% "interm ittent" 2% "sporad ic" 2% "thin le nses" 2% "very f ew" 2% "abund ant" 25% "nume rous" 25% "streak s" 1% "grade s into.. ." 25% "slight ly…" 1% "very… " 33% "interb edded" 33% "some burrow ing" 10% "poorly " 1% 106 2 m 0 m Figure 4-1. Example stratigraphic column from which to calculate the environmental variables of percent clay, silt, sand, chalk, and carbonate as shown. ~~~ ~~ ~~ ~ ~~ ~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~ ~ ~ sandstone shale calcareous shalesiltstonebioturbation ~~ ~~~~~ Total sandstone = Total shale = Total siltstone = Total calcareous shale = Section Total = Sandstone = Shale = silt = clay = Siltstone = silt = clay = Calcareous Shale = carbonate = shale = = silt = clay = Total sand = sand = Total silt = silt = Total clay = clay = Total carbonate = carbonate = 2.34m 5.13m 1.04m 1.64m 10.15m 100% sand = 2.34m 50% silt, 50% clay 0.50*5.13 = 2.57m 0.50*5.13 = 2.57m 83% silt, 17% clay 0.83*1.04 = 0.86m 0.17*1.04 = 0.18m 10% carbonate, 90% shale 0.10*1.64 = 0.16m 0.90*1.64 = 1.47m 50% silt, 50% clay 0.50*1.47 = 0.74m 0.50*1.47 = 0.74m 2.34m 23.1% 2.57 + 0.86 + 0.74 = 4.17m 41.0% 2.57 + 0.18 + 0.74 = 3.48m 34.3% 0.16m 1.6% 107 The related variable of substrate type, broadly defines conditions of sea floor hardness and nutrient availability (Boucot 1981; Brenchley and Harper 1998). This is calculated by summing the abundance-weighted contributions of sand, silt, clay, and carbonate in a given sedimentary package. In the example provided by Figure 4-1 and using the substrate type coding from Table 4-1, substrate type would be coded as 0.231*[1] + 0.410*[2] + 0.343*[3] + 0.016*[4] = 2.14. Note that it is highly likely that the variable substrate type is correlated with some (or all) of the grain size variables describing lithology. This is also likely in the case of bioturbation with oxygenation, and depositional environment with inferred water depth. This provides an excellent example of when a PCA or other analysis should be implemented on the environmental variables to either produce new environmental layers composed of principle components, or otherwise reduce or remove the highly correlated variables from the analysis (Guisan and Zimmerman 2000; Guisan and Thuiller 2005; Peterson et al. 2011). Degree of bioturbation is a measure of the percentage of beds showing signs of burrowing or other trace fossil activity in a sedimentary package. This layer is a multivariate environmental proxy for general habitability of the sea floor, including such factors as oxygenation, current intensity, depth, and sea floor hardness (Brenchley and Harper 1998; Prothero and Schwab 2004). Bedding style is calculated as the abundance-weighted average thickness of the beds in a sedimentary package. Sediments may range from laminated (thickness less than 1cm) to m-scale, which describes the amount of sedimentary input into the marine habitat. Thus, bedding style is a proxy for water depth, turbidity, and energy level of the environment (Prothero and Schwab 2004). Information about bioturbation and bedding style may be estimated directly from stratigraphic columns or otherwise in the lithostratigraphic discussion provided in the accompanying text. In the example provided in Figure 4-1, two units contain 108 evidence of bioturbation. The sum of these units is 1.14m, which constitutes 11.3% of the section and the coded value for this location. Coding for bedding style is calculated as described for substrate type above. As discussed in Stigall Rode and Lieberman (2005a), the variable ‘inferred water depth’ is a measure of water depth relative to tides, storm-, and fair-weather wave bases. This is a proxy for light and oxygenation, in addition to water depth and wave energy in a given marine environment (Boucot 1981; Brenchley and Harper 1998). ‘Depositional environment,’ however, measures the inferred environment of sediment deposition and is more a proxy incorporating distance from the shoreline and relative water depth. Characterization of depositional environments is modified from Stigall Rode and Lieberman (2005a) in conjunction with the methods of other authors (Kauffman 1969; Sepkoski 1988; Prothero and Schwab 2004; Neuendorf et al. 2005). Table 4-2 provides an explanation of each inferred depositional environment coded. Measurement of both inferred water depth and depositional environment requires detailed reading of depositional and sedimentological interpretations in literature sources, or direct field observation. These variables are abundance-weighted averages within a given sedimentary package. For example, Owen et al. (2005) provide the following lithostratigraphic descriptions of members of the Dakota Sandstone in the Chama Basin of New Mexico: “The Encinal Canyon of the Chama Basin is far enough east to show abundant evidence of deposition in a marginal-marine environment, perhaps in a somewhat protected estuaries, bays, and tidal flats along the western shoreline of the Western Interior seaway during early Cenomanian time. …. The Oak Canyon was deposited in an offshore marine 109 environment…. Both Cubero parasequences were deposited as shoreface marine sands, mostly in the middle shoreface zone, but outer shoreface silty sand is more prominent in the lower parasequence. The middle shaley zone was deposited in the adjacent offshore muddy environment…. The Paguate was deposited in a middle and outer shoreface environment that was well populated with burrowing organisms.” (pp. 222-224) From this information, the depositional environment of the Encinal Canyon Member is estuarine or tidal flats, which based on the coding rules provided in Tables 1 and 2, is coded as 1. The Oak Canyon Member depositional environment is offshore marine. This description is less specific, and so is coded as 3-5 to include the potential contribution of all three offshore shelf marine depositional environments (i.e., inner shelf, mid-shelf, and outer-shelf environments). The Cubero Sandstone Tongue and Paguate Sandstone Tongue represent middle to outer shoreface environments, coded as 3’s. The Encinal Member makes up 12% of the section, the Oak Canyon Member makes up 15.5%, the Cubero Sandstone Tongue is 50.7%, and the Paguate Sandstone Tongue is 21.8%. Thus, the depositional environment for this sedimentary package is coded as: 1*0.12+3*0.052+4*0.052+5*0.052+3*0.507+3*0.218 = 2.92. The environmental layer ‘oxygenation’ describes the inferred, relative oxygen content at the sediment-water interface (modified from Sageman and Binna 1997; Brenchley and Harper 1998; Stigall Rode and Lieberman 2005a). As with inferred water depth and depositional environment, this variable is also an abundance-weighted average of a sedimentary package based on detailed reading of literature sources or direct field observation. TOC, δ13C, δ18O are all determined directly from laboratory measurements provided in the literature or analysis of samples collected in the field. TOC is an environmental proxy for nutrient availability, 110 oxygenation, and sedimentation rate, while δ13C and δ18O are proxies for water temperature, salinity, and oxygenation (Boucot 1981; Johnson Ibach 1982; Creaney and Passey 1993; Fürsich 1993; Brenchley and Harper 1998; Tyson 2001; Prothero and Schwab 2004). ENM in the Fossil Record: case study of the Late Cretaceous WIS Occurrence data and stratigraphic correlation Of course before conducting ENM in the fossil record (or the modern), one needs to quantify species distributions. In deep time this requires detailed analyses of taxonomy, localities, and stratigraphy to ensure that the data being entered, which the models ultimately analyze, are accurate (e.g., Myers and Lieberman 2011; Myers et al. 2013). The greater the time spent validating species assignments and distributions, the more confidence one can have that modeled results are accurate. Species occurrence data may be collected through use of museum collections, literature survey, or direct field collection. Importantly, occurrences should be identified to the species level and at a geographic resolution that approximately matches the resolution of paleoenvironmental data (Guisan and Thuiller 2005; Peterson et al. 2011). To this end, a species database has been constructed including over 8500 species occurrence points from the Late Cretaceous WIS. This dataset is composed of 86 species of molluscs, one species of cirriped arthropod, and 10 species of vertebrates (Table 1-1). Species identification and occurrence data were collected in collaboration with Dr. Richard MacKenzie III, by examination of regional and national museum collections, and fieldwork by C.E.M. and Dr. MacKenzie in Colorado, Minnesota, Missouri, Mississippi, North Dakota, and South Dakota. The museum and institutional collections used included: Academy of Natural Sciences, Philadelphia; American Museum of Natural History; Black Hills Institute; Natural History Museum and Biodiversity 111 Institute, University of Kansas; Peabody Museum of Natural History, Yale University; Smithsonian Institution National Museum of Natural History; Sternberg Museum of Natural History, Fort Hays State University; Texas Memorial Museum, University of Texas—Austin; University of Michigan Museum of Paleontology; University of Montana Paleontology Center; University of Nebraska State Museum; U.S. Geological Survey, Denver. The geographic resolution of this dataset was the county-level or higher; in the majority of cases the resolution of locality information was the one-mile by one-mile Township, Range, and Section BLM grid. Once collected, species occurrence data must be geo-referenced (i.e., locality information translated into latitude and longitude) and formatted for ArcGIS (ESRI 2006) and ENM algorithm software. Transferring model predictions to different periods in deep time further requires an accurate stratigraphic correlation of fossil-bearing geologic formations across the region of interest. In the Late Cretaceous, a detailed stratigraphic correlation of WIS formations across all of North America has not been done before, and the last geographically large-scale correlation was completed by Cobban and Reeside in 1952. Consequently, an updated stratigraphic database was constructed for the Late Cretaceous WIS (Table 4-3, references in Appendix 3). Stratigraphic correlations were determined by extensive literature survey and the use of various geologic databases (e.g.,USGS National Geologic Map Database: http://ngmbd.usgs.gov; Macrostrat: http://macrostrat.geology.wisc.edu; and COSUNA, Correlation of Stratigraphic Units of North America Project). Biostratigraphic indices were also used when available following the Late Cretaceous zonation of Cobban et al. (2006). Paleoenvironmental data are being collected as described in the previous section. These data reflect point occurrences of paleoenvironmental reconstruction across available Late Cretaceous outcrops in North America (Figure 1-1). The 14 environmental layers will then undergo PCA 112 and the number of components retained for ENM analysis will incorporate a minimum of four variables and at least 95% of the variance explained. ENM applications in the fossil record Once species occurrence data have been collected and stratigraphic correlations and paleoenvironmental layers have been constructed, there are a wealth of hypotheses that can be tested with ENM to better understand the relationship between ecology, evolution, and the environment. Of particular interest (both to modern and paleo-biologists) are the impacts of changing environments on ecological niche stability within species, the influence of niche breadth on extinction and speciation rates among species, and the effect of extinction events on phylogenetic niche conservation. As previously discussed, species abiotic, fundamental niche is defined as the set of physical environmental conditions in which a species may survive (Peterson et al. 2011). Thus, niche stability is characterized by relatively constant fundamental niche dimensions within a species over its duration (Martínez-Meyer et al. 2004; Pearman et al. 2008; Tingley et al. 2009). Niche breadth describes a species’ degree of environmental specificity, and niche conservation is the maintenance of similar niche attributes in evolutionarily related species (Wiens and Graham 2005; Wiens et al. 2010; Peterson 2011). Understanding the accuracy and generality of niche stability, breadth, and conservation under periods of environmental change is significant because these properties limit the geographic expansion of species, which mediates allopatric speciation, extinction resistance, patterns of species richness, community structure, and the spread of invasive species (e.g., Kammer et al. 1997; Peterson 2003; Peterson et al. 2005; Wiens and Graham 2005; Araújo and Rahbek 2006; Kozak and Wiens 2006, 2010; Rangel et al. 2007; Tingley et al. 2009; Wiens et al. 2010; Heim and Peters 2011; Stigall 2012; Myers and Saupe 2013). 113 The Late Cretaceous WIS is an excellent place to apply ENM to test some of these hypotheses, for example across the two different environmental regimes of the Cenomanian-Turonian (C/T, approx. 99.6 – 89.3 Ma) and the Campanian-Maastrichtian (C/M, approx. 83.5 – 65.6 Ma). The Cenomanian and Turonian stages of the Late Cretaceous mark a period of sea level and temperature rise in the WIS, both of which peaked at the C/T boundary. This period was a time of fairly uniform and rapid environmental change where marine environments moved towards open, aerobic conditions. In contrast, during the C/M the WIS experienced a gradual decline in temperature and sea level, including a number of minor sea level fluctuations. Thus during the C/M, species were forced to respond to repeated episodes of sea level change and concomitant changes in water conditions and chemistry (Kauffman 1984; Caldwell and Kauffman eds. 1993; Fisher and Arthur 2002). Additionally, species responded to climate warming across the C/T, as opposed to the cooling associated during the C/M (Spicer and Corfield 1992; Huber et al 1995, 2002; Hay 2008). Using ENM, niche attributes within and between species throughout the C/T and C/M can be assessed to test hypotheses of the impact of niche characteristics on patterns of speciation and extinction. Regarding niche stability, it will be possible to quantitatively test hypotheses such as, (1) Do surviving species show stability across environmental changes or is survivorship associated with niche expansion? (2) Is niche stability clade-, community-, or ecologically-specific, or universal among species? (3) Do invasive species show niche stability or expansion during invasions? Understanding the dynamics of when/where niche stability occurs informs the degree to which species may adapt to environmental changes occurring locally as well as across their entire distribution and lifetimes (i.e., addresses the question of plasticity in species abiotic requirements and to what degree, and under what environmental conditions) (Martínez-Meyer et 114 al. 2004; Martínez-Meyer and Peterson 2006; Pearman et al. 2008; Tingley et al. 2009; Walls and Stigall 2011; Monahan and Tingley 2012; Stigall 2012). Alternatively, niche breadth has been linked with increased species longevity as well as decreased speciation potential. This is hypothesized to be due to the buffering effect of large niche breadth to environmental perturbations and isolation of populations (Eldredge 1989; Baumiller 1993; Kammer et al 1997; Kammer et al. 1998; Liow 2007; Heim and Peters 2011). In this case, ENM can be used to constrain niche dimensions and test hypotheses such as: (1) What is the effect of niche breadth on extinction selectivity across environmental changes? (2) on patterns of distributional change and species invasions? (3) on rates of niche evolution? In order to test for niche conservation, phylogenetic hypotheses must be reconstructed for target clades. Statistical metrics (Warren et al. 2008, 2010; Broennimann et al. 2012) then measure the degree of similarity between ENM-generated fundamental niche predictions in related species compared to a null model. Using these techniques, it is possible to test a number of hypotheses, including: (1) Are abiotic niches conserved across environmental changes? (2) Is niche conservation (or lack thereof) clade-, community-, ecologically-specific or universal? (3) Does invasion pressure affect whether niches are conserved? ENM can also be used to test hypotheses at the population-level if full species distributions are not possible to acquire. For example, by modeling different populations within the same species, one could test whether individual populations show niche differentiation (i.e., adaptation) to local environments following climatic or topographic gradients. It would also be possible to track population-level responses to environmental changes using ENM to assess whether specific population characteristics (e.g., geographic breadth, abundance, etc.) influence population distribution, structure, or survivorship. 115 Conclusions Ecological niche modeling is an excellent tool for elucidating the relationships among species and their environment. When applied to the fossil record, it has the unique potential to quantitatively test hypotheses regarding the impact of a dynamic planet on species’ evolution. A plethora of previous work has shown that evolution is highly dependent on Earth processes (e.g., Raup 1979, 1994; Vrba 1980, 1985; Hallam 1981; Cracraft 1982; Raup and Sepkoski 1982; Knoll 1989; Allmon and Ross 1990; Knoll et al. 1996; Carroll 2000; Lieberman 2000, 2003a,b; Barnosky 2001; Rothschild and Lister 2003; Stigall Rode and Lieberman 2005a,b; Erwin 2006; Lieberman et al. 2007; Maguire and Stigall 2008; Peters 2008). There is broad agreement that large-scale, independent events have significantly impacted evolutionary history by causing major mass extinctions (e.g, Gould 1985, 2002; Erwin 1990; Jablonski and Raup 1995; Jablonski 2001; Alroy 2010; Congreve in review). However, an oft-overlooked corollary is how (and to what degree) abiotic variables play in initiating evolutionary change (see discussion in Lieberman et al. 2007; Knoll 2012; Myers and Saupe in press). The application of ENM techniques has the potential to be a very powerful tool for investigating this issue in addition to other macroevolutionary patterns and processes, such as niche stability and breadth, phylogenetic conservation, and adaptive vs. evolutionary radiations (e.g., Abe and Lieberman 2012; Lieberman 2012). Notably, ENM in the fossil record requires some additional methodological steps than when applied in the modern. The most important of these steps is that of reconstructing detailed, spatially-explicit paleoenvironments at the highest possible geographic resolution. This manuscript detailed methods for paleoenvironmental reconstruction that can be used as a standard of “best practices” in this procedure and may serve as a guide to future 116 paleobiogeographers applying this technique to quantitatively test hypotheses of species-environment interactions in the fossil record. 117 Table 4-3. St ratigra phic c orrelat ion of fossil- bearin g form ations in the Late C retaceo us We stern I nterior of No rth Am erica. Correl ations are re solved to the geolo gic sta ge lev el: Ber riasian (BER R), Ha uterivi an (HA UT), B arremi an (BA RR), A ptian ( APT), Albian (ALB ), Cen omani an (CE N), Tu ronian (TUR ), Con iacian (CON ), Sant onian (SAN) , Cam panian (CAM ), and Maast richtia n (MAA ), Dan ian (D AN). A ddition al abb reviati ons us ed: ch alk (ch k), lim estone (lmst) , sands tone (s s), sha le (sh) , group (grp), format ion (fm ), mbr (mem ber), U nivers ity of Monta na Pal eontol ogy C enter ( UMPC ). Refe rences provid ed in A ppend ix 3. State Geolog ic Unit Geolog ic Stage Refere nces an d Com ments AL Arcola Lmst CAM COSU NA (C AM) AL Bluffp ort Ma rl MAA COSU NA (M AA); H ancock 1993 (lowM AA B luffpo rt Mbr /Riple y Fm) ; Pucke tt 1997 (MAA Bluff port M br/Dem opolis Chk) AL Eutaw Fm SAN/C AM Manci ni et a l. 1987 ; Case & Sch wimm er 198 8; Sav rda et al. 199 8; Sav rda & Nanse n 2003 ; lots o ther pu bs sug gest S AN (e .g. Kin g 1990 , King et al. 2004, Kierna n 2002 , Whe tstone & Co llins 1 982); Kenne dy & C obban 1991 (SAN Tomb igbee Sand M br of E utaw F m); K ing & Skotni cki 19 94 (SA N); M acrost rat (CON -CAM ); Man cini & Pucke tt 2005 (CON /SAN in NE Gulf) ; Puck ett 199 7 (SAN) ; COS UNA (SAN/ CAM on Gu lf Coa st char t, but i n a low resoln "TUR - SAN" box o n anot her ch art...) AL Niobra ra Chk CON- CAM Shurr et al. 1 994 (C ON-C AM) AL Smoky Hills Chk (Niobr ara Ch k) SAN/C AM Shurr et al. 1 994 (S AN/C AM) AL Pierre Sh CAM/ MAA Shurr et al. 1 994 (C AM/M AA) AL Crow Crk M br (Pierre Sh) CAM Shurr et al. 1 994 (C AM) AL De Gr ey Mb r (Pierre Sh) CAM Shurr et al. 1 994 (C AM) AL Grego ry Mb r (Pierre Sh) CAM Shurr et al. 1 994 (C AM) AL Mobri dge M br (Pierre Sh) MAA Shurr et al. 1 994 (M AA) 118 AL Sharon Spring s Sh (Pierre Sh) CAM Shurr e t al. 19 94 (CA M) AL Verend rye Mb r (Pierre Sh) CAM Shurr e t al. 19 94 (CA M) AL Virgin Mbr (Pierre Sh) CAM Shurr e t al. 19 94 (CA M) AL Rotten Lmst CAM/M AA Loebli ch et a l. 1962 (Rotte n Lmst = old name f or Selm a Chk) ; Harpe r 1910 (Rotten Lmst = Selma Chk); Salisbu ry 189 5 (Rott en = Se lma); W hite 18 87 (Rotten = Aus tin Chk ) AL Selma Grp CAM/M AA COSU NA (C AM/M AA) AL Bluffto wn Fm (Selma Grp) CAM Case & Schwi mmer 1988 ( in GA) , Schw immer et al. 1 993 (m id-CAM in AL/GA ), King 1990; Pucket t 1992 (CAM ); Kenn edy & Cobba n 1991 (CAM ); Becker et al. 2 009 (C AM in GA); K ing & S kotnick i 1994; Becke r et al. 2009 ( in GA); M acrostr at (SA N/CAM ); Puck ett 199 7 (CAM ); COS UNA ( CAM) AL Demop olis Ch k (Selma Grp) CAM/M AA Heyda ri 2001 (CAM /MAA ); Kier nan 20 02 (CA M/MA A); Ma ncini e t al. 19 87 (CAM /MAA ); Case & Sch wimme r 1988 (CAM /MAA ); Puck ett 199 2 (CAM /MAA ); Puck ett & M ancini 2000 ( MAA) ; King 1990 ( CAM) ; Manc ini et al. 200 8 (CAM in Ern Gulf C oast); L ocklair & Sav rda 199 8 (CAM , also i n MS,TN ); Kenn edy & Cobba n 2001 (midC AM ba sal in M S/AL); Becke r et al. 2009 ( CAM/M AA in MS); K ing & S kotnick i 1994 (CAM centra l AL); Macro strat (C AM/M AA); M ancini & Puck ett 200 5 (mid /upCA M in N E Gulf ); Hanco ck 199 3 (mid /upCA M); Pu ckett 1 997 (C AM/M AA); C OSUN A (CA M) AL Moore ville C hk (Selma Grp) CAM Heyda ri 2001 (CAM ); King et al. 2 004 (C AM); M ancini et al. 1 987 (C AM); Kierna n 2002 (CAM ); Puck ett & M ancini 2000 ( CAM) ; Case & Schw immer 1988 ( CAM) ; Lackl air & S avrda 1 998 (C AM); P uckett 1996 ( SAN/C AM); Mancin i et al. 2008 ( SAN/C AM in easter n Gulf Coast) ; Kenn edy & Cobba n 1991 ( CAM) ; Beck er et al . 2009 (SAN/ CAM M oorevil le cent er of st ate); K ing & Sko tnicki 1 994 (C AM); M acrostr at (CA M); M ancini & Puck ett 200 5 (midSA N/midC AM in NE Gu lf); Puc kett 19 97 (CA M); CO SUNA (CAM ) AL Prairie Bluff Chk (Selma Grp) MAA Heyda ri 2001 , King 1990; M ancini et al. 1 987; K iernan 2002; P uckett 1992; Case & Schwi mmer 1988; P itakpai van & Hazel 1994; B enson & Tatr o 1964 ; Kenne dy et a l. 2000 ; Manc ini et a l. 2008 (MAA in Ern Gulf C oast); C obban & Kenne dy1995 ; King & Sko tnicki 1 994; S tephen son & Reesid e 1938 (MAA Prairie Bluff, CAM/ MAA Selma Grp; fo r easte rn Gul f Regio n); Ma crostra t (MAA ); Hanc ock 19 93 (up MAA) ; Pucke tt 1997 (MAA ); COS UNA ( MAA) AL Provid ence S and (Selma Grp) MAA King 1 990; P uckett 1992; K ing & S kotnick i 1994; Macro strat (M AA); P uckett 1997 ( MAA) ; COSU NA (M AA) 119 AL Ripley Fm (Selma Grp) MAA Verme ij & Du dley 19 82 (lat est CA M-MA A), He ydari 2 001 (M AA), K ing 199 0 (CAM /MAA ); Pitak paivan & Haz el 1994 (CAM /MAA ) Manc ini et a l. 1987 (MAA ); Kier nan 20 02 (MA A); Pu ckett 1 992 (M AA); P uckett & Man cini 20 00 (MAA ); Case & Sch wimme r 1988 (MAA ); Bens on & T atro 19 64 (CAM /MAA ); Man cini et al. 200 8 (CAM /MAA in Ern Gulf C oast); L acklair & Savrda 1998 ( MAA) ; King & Sko tnicki 1 994 (h ighestC AM/M AA); S tephen son & Ree side 19 38 (CA M/MA A Selm a Grp; for eas tern Gu lf Regi on); M acrostr at (CAM /MAA for wh ole ran ge GA /AL/M S/AR/T N/MO /MS); Mancin i & Pu ckett 2005 ( upCAM /lowM AA in NE Gu lf); Ha ncock 1993 ( lowMA A); Pu ckett 1 997 (MAA ); COS UNA ( MAA) AL Cusset a Sand Mbr (Ripley Fm) (Selma Grp) CAM King 1 990 (C AM); C ase & S chwim mer 19 88 (CA M); Pu ckett 1 992 (la test CAM/M AA); K ing & S kotnick i 1994 (latest CAM/M AA Ri pley); Stephe nson & Ree side 19 38 (CA M/MA A Selm a Grp; for eas tern Gu lf Regi on); M acrostr at (CAM /MAA ); Man cini & Pucket t 2005 (upCA M/low MAA Ripley in NE Gulf); Pucket t 1997 (CAM /MAA ); COS UNA ( CAM/M AA) AL Tombi gbee S and CAM COSU NA (C AM) AL Tuscal oosa G rp CEN-C ON Spangl er & P eterson 1950 ( APT-C EN in NC); H eydari 2001 ( CEN-C ON); K ing 1990 ( CEN/T UR); C ase & S chwim mer 19 88 (CE N); Ke nnedy & Cob ban 19 91 (upCE N Tusc aloosa Grp in AL/M S); Kin g & Sk otnicki 1994 ( CEN); Macro strat (CEN- SAN); Manci ni & P uckett 2005 ( midCE N/TUR Tusca loosa F m in N E Gulf); COSU NA (C EN-CO N) AL Coker Fm (Tusca loosa G rp) CEN/T UR Cahoo n 1972 (CEN /TUR) ; Manc ini et a l. 1987 (CEN /TUR) ; Coke r under lies Gordo; some pubs sa y just C EN (e. g. King et al. 2 004); K ennedy & Cob ban 1991 ( upCEN Tusca loosa G rp in A L/MS) ; King & Sko tnicki 1 994 (C EN Tuscal oosa); Macro strat (C EN/TU R); Ma ncini & Pucke tt 2005 (midC EN/TU R Tuscal oosa F m in N E Gulf ); COS UNA ( CEN/T UR) AL Gordo Fm (Tusca loosa G rp) CEN/T UR Cahoo n 1972 ; Gord er over lies Co ker; so me pub s say ju st CEN (e.g. K ing et a l. 2004); Manci ni et al . 1987 sugges t TUR/ CON; Kenne dy & C obban 1991 (upCE N Tusc aloosa Grp in AL/M S); Kin g & Sk otnicki 1994 ( CEN Tuscal oosa); Macro strat (C EN-CO N); Ma ncini & Pucke tt 2005 (midC EN/TU R Tuscal oosa F m in N E Gulf ); COS UNA ( CEN o n one c hart, T UR/CO N on G ulf Coast c hart) AR Arkade lphia M arl MAA ( up) Pitakpa ivan & Hazel 1994 ( upMA A); Sh aw 196 7 (upM AA); B ecker e t al. 20 06 (upMA A); Be nson & Tatro 1964 ( upMA A); Ma ncini e t al. 20 08 (in central Gulf Coast, upMA A); Bo ttjer 19 81 (up MAA) ; Beck er et al . 2009 (MAA ); Stephe nson & Reesid e 1938 (upMA A); Ma crostra t (MAA ) 120 AR Brown stown Marl SAN/C AM Shaw 1 967 (S AN); B aird 19 77 (SA N) Bec ker et a l. 2006 (up- mostSA N/lowe stCAM ); Man cini et al. 200 8 (CAM in cen tral/we st Gulf Coast) ; Marks & Stam 1983 ( CAM i n SW A R); Ha zel & P aulson 1964 ( CAM) ; Stephe nson & Reesid e 1938 (SAN ); Mac rostrat (SAN/ CAM f or Bro wnstow n Fm, CA M/MA A for “ Brown stown Marl”) ; Manc ini & P uckett 2005 (low/m idCAM in NW Gulf); Wagg oner 20 06 (low CAM) AR Nacato ch San d MAA ( low) Pitakpa ivan & Hazel 1994 ( lowMA A); Sh aw 196 7 (low MAA) ; Beck er et al . 2006 ( lowMA A); Ke nnedy et al. 2 000 (lo wMAA ); Bens on & T atro 19 64 (CAM /MAA also n orthern -LA); M ancini et al. 2 008 (C AM/M AA in central Gulf C oast an d just C AM in wester n Gulf Coast) ; Bottje r 1981 (lowM AA); Marks & Stam 1983 ( MAA in SW AR); S tephen son & Reesid e 1938 (MAA ); Macro strat (M AA); M ancini & Puck ett 200 5 (upC AM in NW G ulf) AR Saratog a Chk CAM/M AA Pitakpa ivan & Hazel 1994 ( CAM) ; Kenn edy & Cobba n 1993 (CAM ); Summ esberg er et al . 2007 (CAM ); Bens on & T atro 19 64 (CA M, also northe rn- LA); K ennedy et al. 2 000 (C AM); S haw 19 67 (CA M/MA A); Bo ttjer 19 85 (MAA ); Land ry 198 4 (MA A); Bo ttjer 19 81 (MA A); Ma rks & S tam 19 83 (MAA in SW AR); S tephen son & Reesid e 1938 (MAA ); Mac rostrat (CAM /MAA ); Hanc ock 19 93 (up CAM i n TX) AR Tokio Fm CON Benson & Tat ro 196 4 (also northe rn-LA) (CON ); Shaw 1967; Mancin i et al. 2008 ( CON/S AN in central Gulf C oast); H azel & Paulso n 1964 (CON /SAN) ; Stephe nson & Reesid e 1938 (CON /SAN) ; Macr ostrat ( CON/S AN) AZ Dakota Fm CEN/T UR Heaton 1950 ( CEN); Cobba n & Re eside 1 952a (C EN); E aton & Nation s 1991 (CEN in Blac k Haw k Mesa Basin) ; Kirkl and 19 91 (CE N in B lack M esa); Leckie et al. 1 991 (C EN in Black Mesa); Olesen 1991 ( CEN in Black Mesa) ; Carr 19 91 (CE N in B lack M esa); P age & Repenn ing 195 8 (equi v to Gr aneros in CO = C EN in Black Mesa); Agasi e 1969 (CEN ); Tibe rt et al. 2009 ( CEN); Macro strat (A PT-TU R "Fm /Grp", BERR -TUR "Grp") ; COSU NA (C EN) AZ Manco s Fm CEN/T UR Heaton 1950 ( CEN-C AM); C obban & Ree side 19 52a (C EN/TU R); Ea ton & Nation s 1991 (CEN /TUR i n Blac k Mesa Basin) ; Kirkl and 19 91 (CE N/TUR in Black Mesa); Leckie et al. 1 991 (C EN/TU R in B lack M esa); O lesen 1 991 (CEN/ TUR in Black Mesa) ; Carr 1 991 (C EN/TU R in B lack M esa); P age & Repenn ing 195 8 (equi v to Gr eenhor n Fm i n CO = CEN/T UR in Black Mesa); Shanle y & M cCabe 1995 ( TUR); Bratt 1 993 (C EN/TU R at le ast); M acrostr at (CEN- CAM) ; COSU NA (T UR) AZ Twowe lls SS (Manco s Sh) CEN USGS DB (lo wer up CEN); Sagem an 199 6 (upC EN) 121 AZ Mesav erde G rp TUR-S AN Heaton 1950 ( MAA) ; Youn g 1957 (lowT UR/up CEN lo west M esaverd e); Cobba n & Re eside 1 952a (T UR/CO N); Ea ton & N ations 1991 ( TUR-S AN in Black Mesa B asin); C arr 199 1 (mid /upSAN Yale P t SS, u pCON /midSA N Wep o Fm, m idCON Torev a Fm); Edwar ds et al . 2005 (Yale P t SS/W epo Fm equiv w/ Emery SS in UT = S AN); S hanley & Mc Cabe 1 995 (S AN Ya le Pt S S, SAN/C ON W epo Fm , TUR/ CON T oreva); Irby & Albrig ht 2005 (lowTU R/midC ON To reva Fm ); Leck ie et al . 1991 (TUR Toreva Fm); B ecker et al. 2 010 (T UR To reva Fm ); Brat t 1993 (midTU R Tore va SS) ; Macr ostrat (TUR- MAA) ; COSU NA (C ON-M AA M esaverd e Grp, CAM/M AA Ya le Pt S S, SAN/C AM W epo Fm , CON /SAN T oreva F m); NO TE: Tr uini & Thom as 2003 a nd Lei dig et a l 2005 say Me saverd e Grp = Yale Pt SS, Wepo Fm, & Toreva Fm AZ Pinkard Fm CEN Cobba n & Re eside 1 952a (C EN) CO Benton Group CEN/T UR Schum acher & Everh art 200 5 (CEN /TUR f or "old Fort B enton G rp" in K S); Bambu rak & N icolas 2009 ( ALB/C EN Be nton "F m" or " Sh" in Manito ba); Hattin 1982 ( old Be nton F m = Gr aneros /Grnhr n/Carli le com bined); Cobba n & Reesid e 1952 a (CEN /TUR B enton " Sh"); C OSUN A (CE N/TUR ) CO Burro C anyon Fm ALB/C EN Simmo ns 195 7 (corr elates w / Ceda r Mtn F m in U T; Cife lli 199 9: Ced ar Mtn Fm in UT = ALB /CEN) ; Aubr ey 198 9 (ALB ); Kirk land et al. 199 9 (corr elates w / Cedar Mtn Fm in UT ; Cifell i 1999: Cedar Mtn F m in U T = AL B/CEN ); Elde r & Kirklan d 1993 (ALB ); Mill er 1987 (corre lates w / Ceda r Mtn F m in U T; Cife lli 1999: C edar M tn Fm in UT = ALB /CEN) ; Macr ostrat ( HAUT -ALB) ; COSU NA (BARR -ALB) ; NON MARI NE CO Carlile Sh CEN/T UR Hattin 1986 ( TUR); Elder & Kirk land 19 93 (TU R); He aton 19 50 (CE N); Weime r 1960 (at lea st TUR ); Brat t 1993 (midTU R Fairp ort, Blu e Hill, Codell mbrs / Carlile ); Tibe rt et al. 2009 ( TUR); Macro strat (T UR-CO N); Co bban & Reesid e 1952 a (TUR ); Lock ridge & Scholl e 1978 (midT UR); S agema n 1996 (TUR) ; COSU NA (T UR) CO Un-nam ed Mbr (Carlile Sh) TUR Hattin 1986 ( upTUR ); Shur r et al. 1994 ( TUR) CO Castleg ate SS CAM Johnso n 2003 (CAM ); Kirs chbaum & Het tinger 2004 ( CAM) ; USGS DB (lateCA M); Ab bott et al. 200 7 (CAM ); Robi nson 2 005 (m id/upC AM in UT); Maiall & Aru sh 200 1 (CAM in UT ); Robi nson & Slinge rland 1 998 (C AM in UT); M iall 199 3 (CAM in UT ); Med eros et al. 200 5 (CAM ); Lose th et al . 2006 (CAM ); McL aurin & Steel 2 000 (m idCAM in UT ); York et al. 2 011 (mid/u pCAM ); Asch off & S teel 20 11 (mi d/upCA M); Jin nah et al. 200 9 (mid/u pCAM ); John son 19 87 (CA M); Ur oza 20 08 (mi dCAM ); Krys tinik & DeJarn ett 199 5 (mid /upCA M) 122 CO Colora do Grp CEN-C AM see Io wa; C obban & Re eside 1 952a ( CEN-C AM); COSU NA (C EN-CO N) CO Dakot a SS ALB/C EN Aubre y 1989 (CEN ); Hatt in 198 6 (AL B/CEN ); Step henson & Re eside 1 938 (ALB/ CEN); Elder & Kir kland 1993 ( CEN); Ellis & Tschu dy 196 4 (CE N); Heato n 1950 (CEN ); John son 20 03 (CE N); Do nselaa r 1989 (CEN in NM ); Loren z & C ooper 2001 ( CEN); Mede ros et al. 200 5 (CE N); Br att 199 3 (AL B); Tibert et al. 2009 ( CEN); Macr ostrat (ALB/ CEN f or Dak ota SS in NM , APT - TUR f or Dak ota Fm /Dako ta Grp , BER R-TUR for D akota Grp); Molen aar 19 83 (CEN) ; COS UNA (APT- TUR D akota) ; Cobb an & R eeside 1952a (APT -CEN Dakot a); Ke nt 196 8 (upA LB); E icher 1 965 (C EN to p of D akota) ; LOW ER DAKO TA CA N BE N ONMA RINE CO Fox H ills SS MAA Landm an & C obban 2003 (MAA ); Carp enter 1 979 (M AA); W eimer 1960 (MAA ); Hau n 1961 (MAA ); Cob ban & Reesi de 195 2a (M AA); U SGS D B (MAA ); Nich ols & Flemin g 2002 (MAA ); Carv ajal & Steel 2009 ( MAA in WY); Mede ros et al. 200 5 (MA A); M acrost rat (CA M/MA A); CO SUNA (CAM ) CO Fronti er SS CEN/T UR Kent 1 968 (u pTUR ); Eich er 196 5 (Fro ntier = Grane ros/Gr eenho rn/low est Carlile ~ CEN /TUR) ; Barlo w & H aun 19 66 (CE N/TUR in WY ); Cob ban & Reesid e 1952 b (CE N NO NMAR INE lo wer 1/ 2; TU R/low estCO N mar ine up per 1/2); Y oung 1 951 (T UR in MT); Johns on 200 3 (TU R); M ederos et al. 2005 (CEN/ TUR); Macr ostrat (TUR for "S S" or A LB-SA N for "Fm") ; COS UNA (CEN/ TUR) CO Fruitla nd Fm CAM/ MAA Stephe nson & Reesi de 193 8 (CA M/MA A); El der & Kirkla nd 199 3 (CAM /MAA ); O'Sh ea 200 9 (CA M); A rmstro ng-Zie gler 19 78 (CA M in N M); Cobba n 1973 (CAM ); Wei mer 19 60 (CA M); W illiams on 199 6 (CA M/MA A in NM); Donse laar 19 89 (M AA in NM); Palme r & Sc ott 198 4 (MA A in N M); Willia mson et al. 2 009 (C AM/M AA in NM); Olsen et al. 1999 ( CAM at leas t part); Ambro se & A yers 2 007 (C AM); Loren z & C ooper 2001 ( CAM) ; Macro strat (C AM); Cobba n & R eeside 1952a (MAA ); Mol enaar 1983 (CAM /MAA ); Jinn ah et a l. 2009 (upCA M); C OSUN A (CA M); NO NMAR INE CO Grane ros Sh CEN/T UR Aubre y 1989 (CEN ); Hatt in 198 6 (CE N); Ph illips e t al. 20 07 (CE N); El der & Kirkla nd 199 3 (CE N); El lis & T schudy 1964 (CEN) ; Heat on 195 0 (CE N); Weim er 196 0 (at le ast TU R); Lo renz & Coop er 200 1 (CE N); Br att 199 3 (CE N); Tibert et al. 2009 ( CEN); Macr ostrat (CEN) ; Cobb an & R eeside 1952a (CEN ); Lockr idge & Schol le 197 8 (mid /upCE N); Ha ncock 2004 (low/m idCEN ); Sagem an 199 6 (mid CEN); COSU NA (C EN) CO Thatch er Lm st Mbr (Grane ros Sh ) CEN Lockr idge & Schol le 197 8 (mid /upCE N); Ha ttin 19 86 (CE N); Br att 199 3 (midC EN); E lder & Kirkl and 19 93 (CE N) 123 CO Greenh orn Lm st CEN/T UR Hattin 1986 ( CEN/T UR); P hillips et al. 2 007 (C EN/TU R); Eld er & K irkland 1993 ( CEN/T UR Gr nhrn); Heaton 1950 ( CEN); Weim er 1960 (at lea st TUR ); Lorenz & Coo per 200 1 (CEN /TUR) ; Bratt 1993 ( CEN L incoln Mbr/G reenho rn); Ti bert et al. 200 9 (CEN /TUR) ; Macr ostrat ( CEN/T UR); Cobba n & Re eside 1 952a (C EN/TU R); Lo ckridge & Sch olle 19 78 (upCE N/midT UR); M olenaa r 1983 (TUR ); Sage man 19 96 (mi dCEN/ midTU R); COSU NA (C EN/TU R) CO Bridge Crk Lm st Mbr (Grnhr n Lmst ) CEN/T UR Lockri dge & Scholle 1978 ( equiv t o Pfeif er, Jetm ore, & part-H artland Sh Mb rs / Greenh orn = l atestCE N-mid TUR); Hattin 1986 ( upmos tCEN- TUR); Bratt 1 993 (lateCE N-mid TUR); Merew ether e t al. 19 75 (CE N/TUR ); USG S DB ( lateCE N- TUR); Elder & Kirk land 19 93 (CE N/TUR ); Cadr in et al . 1995 (TUR) ; Sagem an 1996 ( upCEN /midTU R) CO Hunter Canyo n Fm CAM/M AA Pranter et al. 2 009 (H unter C anyon Fm = W illiams Fork F m); Pa yne et al. 200 0 (CAM /MAA Willia ms For k); Nel son 20 03 (CA M Wil liams F ork); S eidler & Steel 2 001 (C AM W illiams Fork); Johnso n 2003 (CAM /MAA ); prob ably NONM ARINE (Willi ams Fo rk is d omina ntly no nmarin e) CO Iles Fm CAM Pranter et al. 2 009 (Il es Fm used to be cal led Mt Garfie ld Fm) ; USGS DB (CAM ); John son & Rice 1 990 (C AM/M AA); P ayne e t al. 20 00 (CA M/MA A); Gomez -Veroi za & S teel 20 10 (Ba culites perpl exus to bottom B. cun eatus z ones = mid/ up CA M); Ne lson 20 03 (CA M/MA A); Se idler & Steel 2 001 (CAM /MAA ); Abb ott et a l. 2007 (CAM /MAA ); Diem & Arc hibald 2005 (CAM /MAA ); Lose th et al . 2006 (CAM /MAA ); Cobb an & R eeside 1952a (CAM ); John son 19 87 (CA M); Ur oza 20 08 (mi d/upCA M); Kr ystinik & DeJarn ett 199 5 (mid /upCA M) CO Trout C rk SS M br (Iles Fm ) CAM Diem & Archib ald 200 5 (Exit olocer as jen neyi zo ne is ju st belo w Trou t Crk = upCAM , Didym oceras cheye nnens e zone just ab ove Tr out Crk = upC AM); Warne r 1964 (Trout Crk eq uiv to R ollins S S = E. jenney i zone = upCA M); Fi nn & John son 20 05 (CA M); He ttinger & Kir schbau m 2002 (equiv to Rol lins SS ); Johnso n et al. 2005a ,b (CA M); Co bban & Reesid e 1952 a (CAM ); John son & Rice 1 990 (u pCAM ); John son 19 87 (CA M); Kr ystinik & DeJ arnett 1 995 (upCA M) CO Kirtlan d Sh CAM/M AA Stephe nson & Reesid e 1938 (CAM /MAA ); Elde r & Ki rkland 1993 ( MAA) ; O'Shea 2009 ( upmos t CAM /MAA ); Cobb an 197 3 (CAM ); Weim er 1960 (CAM ); Will iamson 1996 ( CAM/M AA in NM); W illiams on et a l. 2009 (CAM /MAA in NM ); Amb rose & Ayers 2007 ( CAM/M AA); L orenz & Coope r 2001 ( MAA) ; Tiber t et al. 2009 ( CAM/M AA); M acrostr at (CA M/MA A); Cobba n & Re eside 1 952a (M AA); M olenaa r 1983 (CAM /MAA ); Jinna h et al. 2009 ( upCAM in part ); COS UNA ( CAM/M AA); N ONMA RINE 124 CO Larami e Fm MAA Carpen ter 197 9 (MA A); Lo ckley & Hunt 1 995 (M AA); W eimer 1 960 (M AA); USGS DB (la teMAA ); Nich ols & F leming 2002 ( MAA) ; Cobb an & R eeside 1952a (MAA ); Eato n & Ki rkland 2008 ( MAA) ; Macr ostrat ( CAM/M AA); COSU NA (C AM/M AA); L andma n & Co bban 2 003 (M AA); N ONMA RINE CO Lewis Sh CAM/M AA Stephe nson & Reesid e 1938 (MAA ); Elde r & Ki rkland 1993 ( CAM) ; Seidl er & Steel 2 001 (M AA); O 'Shea 2 009 (C AM); C obban 1973 ( CAM) ; Weim er 1960 (CAM ); Haun 1961 ( CAM/M AA); W illiams on 199 6 (CAM in NM ); Don selaar 1989 ( CAM/M AA in NM); P almer & Scott 1 984 (C AM in NM); USGS DB (upCA M/low MAA) ; Willi amson et al. 2 009 (C AM in NM); Olsen et al. 1 999 (CAM at leas t part); Loren z & Co oper 20 01 (CA M); Ca rvajal & Steel 2 009 (MAA in WY ); Med eros et al. 200 5 (MA A); Tib ert et a l. 2009 (CAM ); Lose th et al. 2 006 (M AA); M acrostr at (CO N-CAM ); Mole naar 19 83 (CA M); Jin nah et al. 200 9 (mid CAM) ; Uroza 2008 ( lowMA A); Kr ystinik & DeJ arnett 1 995 (CAM /MAA ); COS UNA ( CON/S AN) CO Manco s Sh CEN-C AM Kent 1 968 (u pALB- SAN in part); Cobba n & Re eside 1 952a,b (ALB -CAM ); Aubrey 1989 ( starts u pCEN) ; Eiche r 1965 (Manc os = up Dakota thru N iobrara ~ CEN-C AM); S tephen son & Reesid e 1938 (TUR -CAM ); Elde r & Ki rkland 1993 (CEN- CAM) ; Heato n 1950 (TUR -SAN) ; Prant er et al . 2009 (into C AM); P ayne et al. 2 000 (in to CAM ); Gom ez-Ver oiza & Steel 2 010 (in to upC AM); C obban 1973 ( into CA M); W eimer 1 960 (at least T UR-CA M); Jo hnson 2003 ( TUR- CAM) ; Dons elaar 1 989 (C EN-CA M in N M); Pa lmer & Scott 1 984 (in to CAM in NM ); Lore nz & C ooper 2 001 (u p into C AM); M ederos et al. 2 005 (C EN- CAM) ; Tiber t et al. 2009 ( CEN-C AM); M acrostr at (CE N-CAM ); Mole naar 1983 ( CEN-C AM); C OSUN A (CE N-MA A) CO Buck T ongue (Manco s Sh) CAM Johnso n 2003 (CAM ); Kirs chbaum & Het tinger 2004 ( midCA M); US GS DB (midCA M); He ttinger & Kir schbau m 2002 (CAM ); Robi nson 2 005 (m idCAM in UT) ; Maia ll & Ar ush 20 01 (CA M in U T); Ro binson & Slin gerland 1998 (CAM in UT ); Mac rostrat (CEN- CAM M ancos) ; McLa urin & Steel 2 000 (midCA M in U T); Yo rk et al . 2011 (midCA M); As choff & Steel 2 011 (midCA M); Jo hnson 1987 ( CAM) ; Kryst inik & DeJar nett 19 95 (mi d/upCA M); COSU NA (C EN-MA A Man cos) CO Corcor an SS M br (Manco s Sh) CAM Willis & Gab el 2001 (above Sego S S = CA M+); K irschba um & H ettinge r 2004 (mid/u pCAM ); Hett inger & Kirsch baum 2 002 (eq uiv to M t Garfi eld = C AM); USGS DB (C AM); A schoff & Stee l 2011 (upCA M); M acrostr at (SA N/CAM ); Nelson 2003 ( Corcor an Mb r of Ile s Fm, I les Fm = CAM ); Payn e et al. 2000 (upCA M); Pr anter e t al. 20 09 (CA M, as m br of Il es Fm) ; Warn er 1964 (btwn Bacul ites sc otti & Exitol oceras jenne yi zone s = mid /upCA M); Jo hnson 1987 (CAM ); Krys tinik & DeJar nett 19 95 (mi d/upCA M); CO SUNA (SAN ) 125 CO Cozzet te SS M br (Manco s Sh) CAM Willis & Gab el 2001 (above Sego S S = CA M+); K irschba um & H ettinge r 2004 (upCA M); M iall 199 3 (abov e Sego SS, bu t w/in P rice Ri v Fm = CAM) ; Hetting er & K irschba um 200 2 (equi v to Ile s Fm = CAM) ; USGS DB (C AM); Aschof f & Ste el 2011 (upCA M); M acrostr at (CA M); Ne lson 20 03 (Co zzette Mbr of Iles Fm , Iles F m = CA M); Pa yne et al. 200 0 (upC AM); P ranter et al. 2009 ( CAM, as mbr of Iles Fm); W arner 1 964 (to p of Co zzette = Exito locera s jenney i zone = upCA M); Jo hnson 2003 ( mid/up CAM) ; Johns on 198 7 (CAM ); Krystin ik & D eJarnet t 1995 (mid/u pCAM ); COS UNA ( CAM) CO Juana L opez M br (Manco s Sh) TUR Hattin 1986 ( TUR); Elder & Kirk land 19 93 (TU R); Joh nson 2 003 (T UR); USGS DB (la teTUR ); Will iamson et al. 2 009 (T UR in NM); T ibert et al. 200 9 (CEN- CAM M ancos) ; Edwa rds et a l. 2005 (upTU R in U T); Mo lenaar 1983 (TUR) CO Morap os SS M br (Manco s Sh) CAM Finn & Johnso n 2005 (CAM ); John son et al. 200 5a,b (C AM); C obban & Reesid e 1952 a (CAM ); John son 19 87 (CA M); Ur oza 20 08 (mi dCAM ); Krystin ik & D eJarnet t 1995 (midCA M) CO Mowry Sh Mb r (Manco s Sh) ALB/C EN Kent 1 968 (u pALB) ; Eiche r 1965 (Mow ry Sh = top bit Dakot a ~ CE N); Ph illips et al. 2 007 (A LB); Jo hnson 2003 ( CEN); Tibert et al. 2 009 (C EN-CA M Manco s); Ma crostra t (APT -CEN Mowry Sh/Co lorado Grp); M olenaa r 1983 (CEN- CAM M ancos) ; COSU NA (A LB/CE N); Au brey 19 89 (low CEN M owry, CEN s tart of Manco s); Cob ban & Reesid e 1952 b (ALB ) CO Rollins SS Mb r (Manco s Sh) CAM Willis & Gab el 2001 (above Sego S S = CA M+); K irschba um & H ettinge r 2004 (upCA M); US GS DB (CAM ); Asch off & S teel 20 11 (up CAM) ; Macr ostrat (CAM /MAA ); Payn e et al. 2000 ( upCAM ); Pran ter et a l. 2009 (CAM , as mb r of Iles Fm ); War ner 196 4 (Roll ins SS = Exito locera s jenn eyi zon e = upC AM); Johnso n 2003 (upCA M); Jo hnson et al. 2 005 (eq uiv to T rout Cr k = CA M); Cobba n & Re eside 1 952a (C AM); J ohnson & Ric e 1990 (upCA M); Jo hnson 1987 ( CAM) ; Kryst inik & DeJar nett 19 95 (up CAM) ; COSU NA (C AM/M AA) CO Menefe e Fm CAM Cobba n & Re eside 1 952a (C AM); W eimer 1 960 (C AM); W illiams on 199 6 (CAM in NM ); Don selaar 1989 ( CAM i n NM) ; Palm er & S cott 19 84 (CA M in NM); U SGS D B (SAN ); Will iamson et al. 2 009 (S AN/CA M in N M); Ol sen et al. 199 9 (CAM ); Lore nz & C ooper 2 001 (C AM); M acrostr at (CO N for " Fm, CON/S AN for "Sh Fm "); Mo lenaar 1983 ( CAM) ; Jinna h et al. 2009 (low/m idCAM ); MEN EFEE IS AT L EAST PARTI ALLY NONM ARINE 126 CO Mesav erde Fm /Grp CAM/M AA Stephe nson & Reesid e 1938 (CAM /MAA ); Cobb an & R eeside 1952a (CAM /MAA ); Heat on 195 0 (CAM ); Pran ter et a l. 2009 (CAM /MAA ); USG S DB (SA N/CAM ); Payn e et al. 2000 ( CAM/M AA); N elson 2 003 (C AM pa rts contain ing Ile s and W illiams Fork F m); Se idler & Steel 2 001 (C AM/M AA); Weime r 1960 (CAM ); Don selaar 1989 ( CAM i n NM) ; Palm er & S cott 19 84 (SAN/ CAM i n NM) ; Olsen et al. 1 999 (C AM); L orenz & Coope r 2001 (CAM ); Miall 1 993 (C AM/M AA in UT); M ederos et al. 2 005 (C AM/M AA); T ibert et al. 200 9 (CAM ); Mac rostrat (TUR- MAA) ; Mole naar 19 83 (CA M); Kr ystinik & DeJarn ett 199 5 (CAM /MAA ); COS UNA ( SAN-M AA); E lder & Kirkla nd 199 3 (CAM ); UPPE R 1/2 M ESAVE RDE G RP (W ILLIA MS FO RK FM ) NONM ARINE CO Mount Garfie ld CAM Pranter et al. 2 009 (Il es Fm = Mt G arfield Fm in the Bo ok Clif fs); Co bban 1 973 (CAM ); John son 20 03 (CA M/MA A); Ki rschba um & H ettinge r 2004 (upCA M); Cobba n & Re eside 1 952a (C AM/M AA); W arner 1 964 (m idCAM ); Asch off & Steel 2 011 (m idCAM ) CO Niobra ra Fm CON-C AM Kauffm an et a l. 2007 (CON -CAM ); Dean & Art hur 19 98 (lat estTUR -CAM ); Hattin 1986 ( CON-C AM); E lder & Kirkla nd 199 3 (CON -CAM ); Heat on 195 0 (CON) ; Cobb an & R eeside 1952a (CON/ SAN); USGS DB (u pTUR- lowCA M); Tibert et al. 2 009 (C ON-CA M); M acrostr at (CE N-SAN ); Lock ridge & Scholl e 1978 ( lowCO N/lowC AM); C OSUN A (TU R-SAN ) CO Picture d Cliff s SS CAM Stephe nson & Reesid e 1938 (MAA ); Elde r & Ki rkland 1993 ( CAM) ; O'She a 2009 ( CAM) ; Cobb an 197 3 (CAM ); Weim er 1960 (CAM ); Will iamson 1996 (CAM in NM ); Don selaar 1989 ( CAM/M AA in NM); P almer & Scott 1 984 (CAM /MAA in NM ); Will iamson et al. 2 009 (C AM in NM); Olsen et al. 1 999 (CAM at leas t part); Ambr ose & Ayers 2007 ( CAM) ; Mole naar et al. 200 2 (CAM ); Lore nz & C ooper 2 001 (C AM); M acrostr at (SA N); Mo lenaar 1983 (CAM ); Jinna h et al. 2009 ( upCAM ); COS UNA ( SAN) CO Pierre Sh CAM/M AA Landm an & C obban 2003 ( Dougla s to W eld Co = lowe stMAA ); Dean & Art hur 1998 ( CAM t o start) ; Bergs tresser & Kre bs 198 3 (CAM /MAA ); Hatt in 1986 (CAM low Pi erre at least); Elder & Kirkla nd 199 3 (CAM ); Heat on 195 0 (CAM /MAA ); Cobb an & R eeside 1952a (CAM /MAA ); Weim er 1960 (CAM ); USGS DB (C AM/M AA); T ibert et al. 200 9 (CAM ); Mac rostrat (CON- MAA "Fm" o r SAN -MAA "Sh Fm "); Loc kridge & Scho lle 197 8 (midCA M/low MAA) ; COSU NA (C ON-CA M in p art) CO Beeche r Island Sh (Pierre Sh) MAA Cobba n 1951 (Bacu lites cl inoloba tus zon e = low MAA in MT/ SD); G riffitts 1949 ( equiv t o Mob ridge M br = M AA); C obban & Ree side 19 52a (B aculite s baculu s to B. grandi s zones = lowM AA); L ockridg e & Sc holle 1 978 (u pCAM ; Beeche r Island "zone" in KS/ CO na med fo r upper most N iobrara Fm - t he "produ ctive z one" in Niobr ara fiel ds) 127 CO Loyd S S Mbr (Pierre Sh) CAM USGS DB (C AM); Cobba n 1962 (Bacu lites p erplex us = m idCAM ); Uro za 200 8 (midC AM); Krysti nik & DeJarn ett 199 5 (mid CAM) CO Sharon Sprin gs Sh (Pierre Sh) CAM Cobba n & R eeside 1952a (Bacu lites g regory ensis t o B. a sperifo rmis z ones = midCA M); B ertog 2 002 (l ow/mi dCAM ) CO Point L ookou t SS CAM Cobba n & R eeside 1952a (CAM ); Elde r & Ki rkland 1993 (CAM ); Wei mer 1960 ( CAM) ; Willi amson 1996 (CAM in NM ); Don selaar 1989 ( SAN/C AM in NM); Palme r & Sc ott 198 4 (SA N/CA M in N M); W illiams on et a l. 2009 (CAM in NM ); Olse n et al . 1999 (CAM ); Lore nz & C ooper 2001 ( CAM) ; Macr ostrat (TUR- CON) ; Mole naar 1 983 (C AM); Jinnah et al. 2009 ( upCA M) CO Purgat oire Fm ALB/C EN Ellis & Tschu dy 196 4 (AL B); Sc ott 197 0 (AL B); He aton 1 950 (A LB - correla tes w/ Kiow a Sh o f KS); Macr ostrat (BERR -CEN) ; COS UNA (BERR - CEN) CO Sego S S CAM Johnso n 2003 (CAM /MAA ); Kirs chbau m & H ettinge r 2004 (midC AM); USGS DB (la teCAM ); Cob ban & Reesi de 195 2a (CA M); Y ork et al. 201 1 (mid CAM) ; Warne r 1964 (midC AM); Ascho ff & S teel 20 11 (m idCAM ); John son 19 87 (CAM ); Kry stinik & DeJ arnett 1995 ( mip/up CAM) ; Robi nson 2 005 (m idCAM in UT ); Mai all & A rush 2 001 (C AM in UT); Robin son & Sling erland 1998 (CAM in UT ); McL aurin & Steel 2000 ( midCA M in U T) CO Trinid ad SS MAA Cobba n & R eeside 1952a (MAA ); Elde r & Ki rkland 1993 (MAA ); Mey ers & Simon eit 199 9 (MA A); Ti bert et al. 20 09 (CA M/MA A); M acrost rat (SAN/ CAM) ; COS UNA (CAM ) CO Verme jo Fm MAA Cobba n & R eeside 1952a (MAA ); Elde r & Ki rkland 1993 (MAA ); Wei mer 1960 ( CAM) ; Mey ers & Simon eit 199 9 (MA A); W olfe & Upch urch 1 987 (MAA ); Tibe rt et al . 2009 (MAA ); Mac rostrat (SAN /CAM ); COS UNA (CAM ); NONM ARINE CO Willia ms Fo rk Fm CAM/ MAA Cobba n & R eeside 1952a (CAM /MAA ); Pay ne et a l. 2000 (CAM /MAA ); Nelson 2003 (CAM ); Seid ler & S teel 20 01 (CA M); A bbott e t al. 20 07 (CAM /MAA ); Diem & Arc hibald 2005 (MAA ); Los eth et al. 200 6 (CAM /MAA ); Uro za 200 8 (upC AM/lo wMAA ); Kry stinik & DeJ arnett 1995 (CAM /MAA ); DOM INANT LY NO NMAR INE CO Lion C anyon SS M br (Willi ams F ork Fm ) MAA Elder & Kir kland 1993 ( upper lowM AA); C obban & Re eside 1 952a ( MAA) ; Johnso n 1987 (MAA ); Hau n 1961 (MAA ); Daly 1997 (equiv to Fox Hills SS = MAA) ; Krys tinik & DeJar nett 19 95 (lo wMAA ) IA Carlile Sh TUR COSU NA (T UR) IA Blue H ill Sh (Carlil e Sh) TUR Shurr et al. 1 994 (T UR); S ethi & Leith old 19 97 (m idTUR in CO ) IA Codel l SS TUR Shurr et al. 1 994 (T UR) 128 (Carlile Sh) IA Fairpor t Chk (Carlile Sh) TUR Shurr e t al. 19 94 (TU R); Set hi & L eithold 1997 ( midTU R in C O) IA Colora do Grp CEN-C AM Schem el 1950 (equiv to Gre enhorn /Grane ros = C EN/TU R in ot her sta tes); Logan 1899 ( CEN-C AM Co lorado Fm - e quiv to Linco ln Lms t Mbr/N iobrara Chk in KS); I owa G eologic al Surv ey says "uppe r Color ado Gr p" = N iobrara Chk & Fort B enton, "lower Colora do Grp " = Gra neros/G reenho rn/Carl ile --> overall = CEN -CAM ; USGS DB (C EN/TU R); Ma crostra t (HAU T-SAN Colora do Grp ) IA Dakota Fm/Gr p ALB/C EN Schem el 1950 (CEN ); Step henson & Ree side 19 38 (CE N in G reat Pl ains); USGS DB (A LB/CE N); Ma crostra t (APT -TUR for "Da kota Fm /Dakot a Grp" , BERR -TUR for "Da kota G rp"); S hurr et al. 199 4 (ALB /CEN) ; COSU NA (ALB/ CEN) IA Graner os Fm CEN Shurr e t al. 19 94 (CE N); CO SUNA (CEN ) IA Greenh orn Fm CEN/T UR Shurr e t al. 19 94 (CE N/TUR ); COS UNA ( CEN/T UR) IA Niobra ra Chk CON-C AM Shurr e t al. (C ON-CA M) IA Smoky Hills C hk (Niobr ara Ch k) SAN/C AM Shurr e t al. (S AN/CA M) IA Ft Hay s Lmst (Niobr ara Ch k) CON Shurr e t al. (C ON) IA Pierre Sh CAM/M AA Shurr e t al. 19 94 (CA M/MA A) IA Mobrid ge Mbr (Pierre Sh) MAA Shurr e t al. 19 94 (MA A) IA Virgin Mbr (Pierre Sh) CAM Shurr e t al. 19 94 (CA M) IA Verend rye Mb r (Pierre Sh) CAM Shurr e t al. 19 94 (CA M) IA De Gre y Mbr (Pierre Sh) CAM Shurr e t al. 19 94 (CA M) IA Crow C rk Mbr (Pierre Sh) CAM Shurr e t al. 19 94 (CA M) IA Gregor y Mbr (Pierre Sh) CAM Shurr e t al. 19 94 (CA M) IA Sharon Spring s Sh CAM Shurr e t al. 19 94 (CA M) 129 (Pierre Sh) KS Carlile Sh TUR Hattin 1995 ( TUR); Hattin 1986 ( TUR); Everh art 200 5 (TUR ); Cobb an & Reesid e 1952 a (TUR ); Shur r et al. 1994 ( TUR); Stephe nson & Reesid e 1938 (TUR in Grea t Plain s); Ma crostra t (TUR -CON) ; Schum acher & Everh art 200 5 (TUR) ; Hattin & Siem ers 198 7 (TUR ); Lock ridge & Scholl e 1978 (midT UR); Cobba n et al. 1959 ( TUR); Sagem an 199 6 (TUR ); COS UNA ( TUR) KS Blue H ill Sh (Carlile Sh) TUR (m id) Bratt 1 993 (m idTUR ); Hatt in 1995 (mid T UR); H attin 19 86 (TU R); Schum acher & Everh art 200 5 (mid TUR); Hattin & Siem ers 198 7 (TUR ); Shur r et al. 1 994 (T UR); C obban & Ree side 19 52a (T UR); L ockridg e & Sc holle 1 978 (midTU R); Set hi & L eithold 1997 ( midTU R in pa rt in CO ); Cobb an et a l. 1959 (TUR) KS Codell SS (Carlile Sh) TUR (m id) Bratt 1 993 (m idTUR ); Hatt in 1995 (mid T UR); H attin 19 86 (TU R); Ma crostra t (TUR) ; Schum acher & Everh art 200 5 (upT UR); H attin & Sieme rs 1987 (TUR ); Shurr e t al. 19 94 (TU R); Co bban & Reesid e 1952 a (TUR ); Lock ridge & Scholl e 1978 ( midTU R); Co bban e t al. 19 59 (TU R) KS Fairpor t Chk (Carlile Sh) TUR (m id) Bratt 1 993 (m idTUR ); Hatt in 1995 (mid T UR); H attin 19 86 (TU R); Schum acher & Everh art 200 5 (mid TUR)) ; Hattin & Siem ers 198 7 (TUR ); Shur r et al. 1 994 (T UR); C obban & Ree side 19 52a (T UR); L ockridg e & Sc holle 1 978 (midTU R); Set hi & L eithold 1997 ( midTU R in C O); Co bban e t al. 19 59 (TU R) KS Juana L opez M br (Carlile Sh) TUR Hattin 1986 T UR); E lder & Kirkla nd 199 3 (TUR ); John son 20 03 (TU R); US GS DB (la teTUR ); Will iamson et al. 2 009 (T UR in NM); T ibert et al. 200 9 (CEN - CAM M ancos) ; Edwa rds et a l. 2005 (upTU R in U T); Jua na Lop ez is a mbr of Manco s Sh in CO KS Dakota Fm ALB/C EN Hattin 1995 ( ALB/C EN); S hurr et al. 199 4 (ALB /CEN) ; Cobb an & R eeside 1952a (CEN) ; Sagem an 199 6 (mid CEN); COSU NA (C EN) KS Graner os Sh CEN/T UR Hattin 1995 ( midCE N); Ha ttin 19 86 (CE N); Br enner e t al. 20 00 (CE N); Lig gett et al. 2 005 (C EN); C obban & Ree side 19 52a (m idCEN ); Shur r et al. 1994 (CEN) ; Hami lton 19 94 (CE N); Ste phenso n & Re eside 1 938 (C EN/TU R in Great P lains); Macro strat (C EN); S chuma cher & Everh art 200 5 (mid CEN); Hattin & Siem ers 198 7 (CEN ); Lock ridge & Scholl e 1978 (mid/u pCEN) ; Cobba n et al. 1959 ( CEN); Sagem an 199 6 (CEN ); COS UNA ( CEN) KS Greenh orn Lm st CEN/T UR Hattin 1995 ( CEN/T UR); H attin 19 86 (CE N/TUR ); Bren ner et a l. 2000 (CEN/ TUR); Ligge tt et al. 2005 ( CEN L incoln Lmst M br); Sc humac her 200 8 (TUR upGree nhorn) ; Cobb an & R eeside 1952a (midCE N/lowT UR); S hurr et al. 1994 ( CEN/T UR); S tephen son & Reesid e 1938 (TUR in Gre at Plain s); Macro strat (C EN/TU R); Sch umach er & E verhart 2005 ( CEN/lo wTUR ); Hatt in & Siem ers 198 7 (CEN /TUR) ; Lock ridge & Scholl e 1978 (upCE N/midT UR); Cobba n et al. 1959 ( CEN/T UR); S agema n 1996 (CEN /TUR) ; COSU NA 130 (CEN/ TUR) KS Hartlan d Sh (Green horn L mst) CEN (u p)/TUR (low) Hattin 1995 ( upCEN /lowTU R); Ha ttin 19 86 (CE N/TUR ); Schu mache r & Everha rt 2005 (upCE N)); H attin & Sieme rs 1987 (CEN /TUR) ; Cobb an & Reesid e 1952 a (CEN ); Lock ridge & Scholl e 1978 (upCE N/lowT UR); C obban et al. 195 9 (upC EN); S agema n 1996 (upCE N/lowT UR) KS Jetmor e Sh (Green horn L mst) TUR (l ow) Hattin 1995 ( lowTU R); Ha ttin 19 86 (TU R); Sch umach er & E verhart 2005 (upCE N/lowT UR)); Hattin & Siem ers 198 7 (TUR ); Bott jer 197 8 (low TUR); Cobba n & Re eside 1 952a (T UR); L ockridg e & Sc holle 1 978 (lo wTUR ); Bott jer et al. 1 978 (lo wTUR ); Sage man 19 96 (low TUR) KS Lincoln Lmst (Green horn L mst) CEN (u p) Hattin 1995 ( upCEN ); Hatt in 1986 (CEN ); Schu mache r & Ev erhart 2005 (mid/u pCEN) ); Hatt in & S iemers 1987 ( CEN); Cobba n & Re eside 1 952a (CEN) ; Lock ridge & Scholl e 1978 (upCE N); Lig gett et al. 200 5 (CEN ); Cobb an et al. 1 959 (C EN); S agema n 1996 (upCE N) KS Pfeifer Sh (Green horn L mst) TUR (l ow/mid ) Hat tin 199 5 (low /midTU R); Ha ttin 19 86 (TU R); Sch umach er & E verhart 2005 (lowTU R)); H attin & Sieme rs 1987 (TUR ); Cobb an & R eeside 1952a (TUR) ; Lockri dge & Scholle 1978 ( low/mi dTUR) ; Sagem an 199 6 (low /midTU R) KS Niobra ra Chk CON-C AM Hattin 1995 ( CON-C AM); E verhart 2005 ( CON-C AM); E verhart 2001 ( CON- CAM) ; Hattin 1982 ( CON-C AM Sm okey H ill Chk /NIO); Carpe nter et al. 199 5 (CON- CAM) ; Cobb an & R eeside 1952a (CON- SAN); Shurr et al. 1 994 (C ON- CAM) ; Steph enson & Ree side 19 38 (CO N/SAN in Gre at Plain s); Ma crostra t (CEN- SAN); Hattin & Siem ers 198 7 (TUR -CAM ); Shur r et al. (CON- CAM i n MT/M N/IA); Bertog 2010 ( ends lo wCAM ); Lock ridge & Scholl e 1978 (CON/ lowCA M); Co bban e t al. 19 59 (CO N/SAN in part ); COS UNA ( TUR- SAN in part) KS Ft Hay s Lmst (Niobr ara Ch k) CON Hattin & Siem ers 198 7 (CON ), Hatti n 1995 (CON ); Shur r et al. 1994 ( CON i n MT/M N/IA); Hattin 1986 ( CON); Everh art 200 1 (CON ); Cobb an & R eeside 1952a (CON) ; Cobb an et a l. 1959 (CON ); COS UNA ( CON) KS Smoky Hills C hk (Niobr ara Ch k) CON-C AM Hattin 1995 ( CON-C AM); M acrostr at (SA N "Chk ", CON /SAN " Mbr"); Hattin & Siem ers 198 7 (CON -CAM ); Shur r et al. 1994 ( SAN-C AM in MT/AL /SD/M N/IA); Hattin 1986 ( SAN/C AM)); Everha rt 2001 (CON -CAM ); Cobba n & Re eside 1 952a (C ON/SA N); Co bban e t al. 19 59 (CO N/SAN in part ); COSU NA (S AN in part) 131 KS Pierre Sh CAM/M AA Shurr e t al. 19 94 (CA M/MA A in M T/AL/S D/MN /IA), H attin & Sieme rs 1987 (CAM lower part); H attin 19 86 (CA M to st art); B ertog 2 010 (C AM to start); Cobba n & Re eside 1 952a (C AM/M AA); L ockridg e & Sc holle 1 978 (midCA M/low MAA) ; Koch 1967 ( Pierre in wes tern KS /easter n CO = Judith Riv/Cl aggett Fm in MT = C AM/M AA); C OSUN A (CO N-CAM in part ) KS Beeche r Island Sh (Pierre Sh) MAA Cobba n 1951 (lowM AA - B aculite s clino lobatu s zone in MT/ SD); G riffitts 1949 ( equiv t o Mob ridge M br = M AA); C obban & Ree side 19 52a (lo wMAA – equiv t o Mob ridge, B . bacul us/B. g randis zones) ; Lock ridge & Scholl e 1978 (upCA M; Bee cher Is land "z one" in KS/CO named for up permos t Nio F m - the "produ ctive z one" in Nio fi elds) KS Gamm on Ferr uginou s Mbr (Pierre Sh) CAM ( low) Bertog 2010 ( lowCA M); Be rtog 20 02 (low CAM) KS Lake C reek Sh (Pierre Sh) CAM ( up) Cobba n & Re eside 1 952a (B aculite s comp ressus zone = up CA M); Ha ttin & Siemer s 1987 (B. ree sidei z one = u pCAM ); Land man et al. 201 0 (B. r eeside i zone = upCA M); Gr iffitts 1 949 (L ake Cr eek ov erlies W eskan, underli es Salt Grass i n CO = CAM) ; Koch 1967 ( Lake C rk in w es KS/ east CO = Judi th Rive r Fm in MT = C AM/M AA) KS Salt Gr ass Sh (Pierre Sh) CAM ( up) Cobba n & Re eside 1 952a (B aculite s comp ressus zone = upCA M); Ha ttin & Siemer s 1987 (B. eli asi zon e = upC AM) KS Sharon Spring s Sh (Pierre Sh) CAM ( mid) Hattin & Siem ers 198 7 (Bac ulites o btusus zone = midCA M); Sh urr et a l. 1994 (CAM in MT /AL/SD /MN/IA ); Hatt in 1986 (CAM ); Bert og et a l. 2007 (low/m idCAM in Bla ck Hill s); Ber tog 201 0 (mid CAM) ; Cobb an & R eeside 1952a (Bacul ites gr egorye nsis to B. asp eriform is zone s = mid CAM) ; Koch 1967 ( Weska n in we stern K S/easte rn CO = Clag gett Fm in MT = CAM ) KS Weska n Sh (Pierre Sh) CAM Hattin & Siem ers 198 7 (CAM ); Bert og et a l. 2007 (midC AM in Black Hills); Bertog 2010 ( midCA M); Be rtog 20 02 (mi dCAM ); Cobb an & R eeside 1952a (Bacul ites gr egorye nsis zo ne = m idCAM ); Land man et al. 201 0 (B. compr essus/B . cunea tus zon es = up CAM) ; Koch 1967 ( Sharon Spgs i n west KS/eas t CO = Judith River Fm in MT = C AM/M AA) LA Annon a Chalk CAM COSU NA (C AM) LA Arkade lphia MAA COSU NA (M AA) LA Austin Group CON-C AM COSU NA (C ON-CA M, sam e for A ustin C hk) LA Brown stown Fm CAM/M AA COSU NA (C AM/M AA) LA Eagle F ord Gr p CEN/T UR COSU NA (C EN/TU R) LA Frederi cksbur g Grp ALB COSU NA (A LB) 132 LA Benbr ook M br (Good land L mst) (Frede ricksb urg Gr p) ALB COSU NA (A LB) LA Goodl and Lm st (Frede ricksb urg Gr p) ALB COSU NA (A LB) LA Mary's Creek (Frede ricksb urg Gr p) ALB COSU NA (A LB) LA Marlb rook M arl CAM COSU NA (C AM) LA Nacato ch Fm MAA COSU NA (M AA) LA Navar ro Grp MAA COSU NA (M AA sa me for Nava rro Fm ) LA Ozan F m CAM COSU NA (C AM) LA Paluxy Fm ALB COSU NA (A LB) LA Peppe r Sh CEN COSU NA (C EN) LA Rapid es Fm CON/S AN COSU NA (C ON/SA N) LA Sarato ga Fm CAM/ MAA COSU NA (C AM/M AA) LA Selma Grp SAN-M AA COSU NA (S AN-M AA) LA Selma Chk Selma Grp CAM/ MAA COSU NA (C AM/M AA) LA Taylor Grp CAM/ MAA COSU NA (C AM/M AA) LA Tokio Fm SAN COSU NA (S AN) LA Tuscal oosa G rp CEN/T UR COSU NA (C EN/TU R) LA lower Tuscal oosa F m (Tusca loosa G rp) CEN COSU NA (e quiv to Wood bine F m = C EN) LA middle Tusca loosa F m (Tusca loosa G rp) CEN/T UR COSU NA (C EN/TU R) LA Harris Sand (Tusca loosa G rp) CEN/T UR COSU NA (C EN/TU R) LA upper Tuscal oosa F m (Tusca loosa G rp) TUR COSU NA (T UR) LA Washi ta Grp ALB/C EN COSU NA (A LB/CE N) LA Buda L mst (Wash ita Grp ) CEN COSU NA (C EN) 133 LA Denton Sh (Washi ta Grp) ALB COSU NA (A LB) LA Duck C reek Fm (Washi ta Grp) ALB COSU NA (A LB) LA Fort W orth Lm st (Washi ta Grp) ALB COSU NA (A LB) LA Grayso n Marl (Washi ta Grp) CEN COSU NA (C EN) LA Kiamic hi Fm (Washi ta Grp) ALB COSU NA (A LB) LA Main S treet L mst (Washi ta Grp) CEN COSU NA (C EN) LA Pawpa w-Wen o Fm's (Washi ta Grp) ALB COSU NA (A LB) LA South T yler Fm (Washi ta Grp) CEN COSU NA (C EN) MO McNai ry Sand MAA Gallag her et a l. 2005 ; fieldw ork - C rowley 's Ridg e & Pu rina ki tty litte r mine MO Owl C rk Fm MAA Gallag her et a l. 2005 ; fieldw ork - C rowley 's Ridg e & Pu rina ki tty litte r mine MS Coffee Sand CAM Case & Schwi mmer 1988 ( CAM) ; Harri son & Litwin 1997 ( CAM i n TN); Kenne dy & C obban 1991 ( CAM) ; Macr ostrat ( SAN/C AM) MS Eutaw Fm SAN/C AM Kaye & Russe l 1973 (SAN) ; Heyd ari 200 0, 2001 (SAN /CAM) ; Pucke tt 1992 (SAN/ CAM) ; Case & Schw immer 1988 ( SAN/C AM, m ainly S AN); M acrostr at (CON- CAM) ; Manc ini & P uckett 2005 ( CON/S AN in NE Gu lf); Ha zel & Paulso n 1964 (CON /SAN l ower E utaw); COSU NA (S AN/CA M) MS Moore ville C hk CAM Heyda ri 2000 , 2001 (CAM ); Puck ett 199 2 (CAM ); Puck ett & M ancini 2000 (CAM ); Kenn edy & Cobba n 1991 (CAM ); Beck er et al . 2009 (SAN/ CAM central AR); M acrostr at (CA M); M ancini & Puck ett 200 5 (mid SAN/m idCAM in NE Gulf); Hazel & Paul son 19 64 (CA M) MS Prairie Bluff Chk (Owl C reek Fm ) MAA Heyda ri 2000 , 2001 (MAA ); Puck ett 199 2 (MA A); Ca se & S chwim mer 19 88 (MAA Owl C rk); Co bban & Kenne dy 199 5 (MA A); Ste phenso n & Re eside 1938 ( MAA Prairie Bluff in east ern Gu lf Regi on); M acrostr at (MA A); Ma ncini & Puck ett 200 5 (MA A); Ha ncock 1993 ( upMA A) 134 MS Ripley Fm MAA Verme ij & Du dley 19 82 (CA M/MA A); He ydari 2 000, 20 01 (MA A); Pu ckett 1992 ( MAA) ; Pucke tt & M ancini 2000 ( MAA) ; Case & Schw immer 1988 (MAA ); Man cini et al. 200 8 (CAM /MAA in east ern Gu lf Coas t); Mac rostrat (CAM /MAA ); Man cini & Pucket t 2005 (upCA M/low MAA in NE Gulf); Hanco ck 199 3 (low MAA) MS McNai ry Sand Mbr (Ripley Fm) MAA Harriso n & Li twin 19 97 (MA A); He ydari 2 000, 20 01 (MA A); Ca se & Schwim mer 19 88 (MA A); Ma crostra t (MAA ); Man cini & Pucket t 2005 (upCA M/low MAA Ripley in NE Gulf) MS Rotten Lmst CAM/M AA Loebli ch et a l. 1962 (Rotte n Lmst = old name f or Selm a Chk) ; Harpe r 1910 (Rotten Lmst = Selma Chk); Salisbu ry 189 5 (Rott en = Se lma Ch k); Wh ite 188 7 (Rotten = Aus tin Chk ) MS Selma Chalk CAM/M AA Macro strat (C AM/M AA; C OSUN A (CA M/MA A for S elma G rp); NO TE: if same a s Selm a Grp i n AL & TN, th en defi nitely C AM/M AA MS Tupelo Marl CAM Case 1 991 (u pCAM - Tupe lo "Ton gue" o f Coffe e Sand Fm); M onroe 1 947 (CAM , Tupel o "Ton gue" o f Coffe e Sand overli es Moo reville Chk in AL/M S); Stephe nson & Monro e 1938 (Tupe lo "Ton gue" o verlies Coffee Sand = CAM) ; Mancin i et al. 1995 ( CAM, Tupelo "Tong ue" un derlies Dermo polis c hk & overlie s Coffe e Sand ); Mac rostrat (CAM for Tu pelo M br/Cof fee San d); Liu 2007 ( CAM T upelo " Tongu e"); He ydari 2 000 (T upelo " Tongu e" = lo west m br Dermo polis C hk = T ibbee C rk Mbr = CAM ); Man cini et al. 200 8 (mid CAM Tupelo "Tong ue"); M ancini & Puck ett 200 5 (mid CAM " Tongu e"); Ha zel & Paulso n 1964 (CAM ) MS Tuscal oosa F m CEN-C ON Heyda ri 2000 , 2001 (CEN- CON); Case & Schwi mmer 1988 ( CEN); Kenne dy & Cobba n 1991 (upCE N Tusc aloosa Grp in AL/M S); Ma crostra t (CEN -SAN) ; Mancin i & Pu ckett 2 005 (m idCEN /TUR T uscaloo sa Fm in NE Gulf); COSU NA (C EN-CO N Tusc aloosa Grp, up per Tu scaloos a = TU R/CON , "marin e Tusc aloosa" = CEN , lower Tusca loosa = CEN) MT Belle F ourche Fm CEN UMPC strat c hart (C EN/TU R); Co ndon 2 000 (m idCEN ); USG S DB ( CEN); Farquh arson & Grotb o 1981 (CEN ); Rice & Cob ban 19 77 (CE N); Ma crostra t (ALB/ CEN " Fm", C EN "Sh "); Cob ban & Larson 1997 ( low/mi dCEN) ; Yang 2011 ( mid/up CEN in southe rn Alb erta); Y ang & Miall 2 010 (m id/upC EN in southe rn Alb erta); O boh-Ik uenobe et al. 2 007 (C EN); R ice 198 4 (CEN ); COSU NA (C EN) MT Mosby SS Mb r (Belle Fourch e Fm) CEN Condo n 2000 (late-m idCEN ); Obo h-Ikue nobe e t al. 20 07 (CE N); Ric e 1984 (CEN) 135 MT Bearpa w Sh CAM/M AA Heaton 1950 ( MAA) ; Steph enson & Ree side 19 38 (MA A); Ni chols & Sweet 1993 ( CAM/M AA); T ibert et al. 200 9 (CAM /MAA in nor thern P lains); Robert s et al. 2 005 (u pCAM ); Swif t et al. 1985 ( MAA in cent ral roc kies); U SGS D B (upCA M/low MAA) ; Hicks et al. 1 995 (C AM/M AA in WY); C ondon 2000 (upCA M/low MAA) ; Wilso n 2006 (CAM /MAA ); Finn 2010 ( MAA) ; Rice & Cobba n 1977 ; Bible r 1985 (CAM /MAA ); Mac rostrat (CAM /MAA ); UMP C strat ch art (CA M); Fa rquhar son & Grotbo 1981 ( CAM/l owMA A); Mc Manni s 1965 ( upper M ontana n = upp er 1/3 L ateCre t); Fue ntes et al. 201 1 (CAM ); Rice 1980 ( CAM) ; Scher zer & V arricch io 2010 (CAM /MAA ); Hanc ock 19 93 (upCA M); Jin nah et al. 200 9 (upC AM at least i n part) ; Kryst inik & DeJar nett 1995 ( upCAM /lowM AA); C OSUN A (CA M/MA A) MT Carlile Sh TUR Shurr e t al. 19 94 (TU R); UM PC stra t chart (TUR/ CON); Farqu harson & Gro tbo 1981 ( TUR/C ON); C obban & Lars on 199 7 (mid /upTU R); Ya ng 201 1 (TUR/ CON i n south ern Alb erta); N ielsen 2008 ( TUR/lo wCON ); COS UNA (TUR/ CON) MT Blue H ill Sh (Carlile Sh) TUR Shurr e t al. 19 94 (TU R); UM PC stra t chart (TUR/ CON C arlile); Sethi & Leitho ld 1997 (midT UR in part in CO) MT Codell SS (Carlile Sh) TUR Shurr e t al. 19 94 (TU R); UM PC stra t chart (TUR/ CON C arlile) MT Fairpor t Chk (Carlile Sh) TUR Shurr e t al. 19 94 (TU R); UM PC stra t chart (TUR/ CON C arlile); Sethi & Leitho ld 1997 (midT UR in CO) MT Un-nam ed Mbr (Carlile Sh) TUR Hattin 1986 ( upTUR ); Shur r et al. 1994 ( TUR); UMPC strat c hart (T UR/CO N Carlile ) MT Cody S h CON-C AM Heaton 1950 ( midSA N in W Y); Ni chols & Sweet 1993 ( CEN-S AN); T ibert et al. 200 9 (CON in nor thern P lains); USGS DB (C EN-CA M); Fi nn 201 0 (CON - CAM) ; Macr ostrat ( CEN-S AN); F arquha rson & Grotb o 1981 (CON /SAN) ; COSU NA (C ON-CA M) MT Clagge tt Fm CAM Heaton 1950 ( CAM) ; Steph enson & Ree side 19 38 (CA M); Ni chols & Sweet 1993 ( CAM) ; Tiber t et al. 2009 ( CAM i n north ern Pla ins) (C AM); R oberts et al. 2005 ( CAM) ; Swift et al. 1 985 (C AM in centra l rocki es); Sh elton 1 965 (C AM start); Hicks et al. 1 995 (C AM in WY); Payenb erg et a l. 2002 (CAM ); Payenb erg et a l. 2003 (CAM ); He e t al. 20 05 (CA M); Co ndon 2 000 (m idCAM ); Roger & Brad y 2010 (CAM ); Finn 2010 ( CAM) ; Rice & Cob ban 19 77 (CA M); Macro strat (C AM); B ertog e t al. 20 07 (mi dCAM ); Bert og 200 2 (mid CAM) ; UMPC strat c hart (C AM); F arquha rson & Grotb o 1981 (CAM ); McM annis 1965 ( mid-M ontana n = upp er 1/3 L ateCre t); Pay enberg et al. 2 002 (C AM); Scherz er & V arricch io 2010 (CAM ); Hanc ock 19 93 (low /midCA M); Jin nah et al. 200 9 (low /midCA M); Kr ystinik & DeJ arnett 1 995 (m idCAM ); COS UNA 136 (CAM ) MT Cober ly Gul ch Fm (Color ado G rp) CEN/T UR USGS DB (e arly L ate Cr et ~ C EN/TU R); M acrost rat (CE N/TUR ); Wal lace et al. 199 0 (~91 -89Ma , up-m ostCE N-mid TUR); Farqu harson & Gro tbo 19 81 (TUR) ; McM annis 1965 ( lowest LateC ret ~ C EN/TU R); W allace et al. 1 990 (upCE N/mid TUR); COSU NA (C EN-SA N CO Grp, C EN/TU R Cob erly F m) MT Eagle SS SAN/C AM Heato n 1950 (SAN /CAM ); Step henson & Re eside 1 938 (S AN/C AM); Nicho ls & Swe et 199 3 (CA M); R oberts et al. 2005 ( into C AM); Asqui th 197 0 (CA M in WY); Shelto n 1965 (CAM ); Hick s et al. 1995 (CAM in WY ); Pay enberg et al. 2002 ( SAN/C AM); Payen berg e t al. 20 03 (SA N/CA M); R obinso n et al . 1959 (CAM ); He e t al. 20 05 (CA M); C ondon 2000 (upSA N/low CAM) ; Roge r & Brady 2010 (CAM ); Fore man e t al. 20 08 (CA M); Fi nn 201 0 (CA M); R ice & Cobba n 1977 (SAN /CAM ); Mac rostrat (TUR -CAM ); Bert og et a l. 2007 (top = lowCA M); B ertog 2 002 (t op = lo wCAM ); UM PC str at cha rt (CA M); Farquh arson & Gro tbo 19 81 (up SAN/l owCA M); M cMann is 196 5 (low Monta nan = mid-L ateCre t); Nie lsen 2 008 (C AM); Rice 1 980 (l owCA M); Jinnah et al. 2009 ( lowCA M); K rystini k & D eJarne tt 1995 (lowC AM); COSU NA (C AM) MT Fox H ills SS MAA Heato n 1950 (MAA in WY ); Step henson & Re eside 1 938 (M AA in Great Plains ); Nich ols & Sweet 1993 (MAA ); Tibe rt et al . 2009 (MAA in nor thern Plains ); USG S DB (MAA ); Asq uith 19 70 (M AA in WY); Hicks et al. 1995 (MAA in WY ); Con don 20 00 (lo wMAA ); Rus sell 19 30 (M AA); W ilson 2 006 (MAA ); Rice & Co bban 1 977 (M AA); M acrost rat (CA M/MA A); UM PC str at chart ( CAM) ; Cobb an & L arson 1997 ( upCA M/low MAA) ; Rice 1980 (upmo stCAM /MAA ); Han cock 1 993 (l owMA A); Kr ystinik & De Jarnet t 1995 (MAA ); COS UNA (MAA ) MT Fronti er Fm CEN/T UR Farquh arson & Gro tbo 19 81 (CE N/TUR ); Dym an et a l. 1996 (CEN /TUR) ; Young 1951 (TUR) ; USG S DB (ALB- CON) ; Macr ostrat (ALB- SAN) MT Dakot a Fm ALB/C EN Shurr et al. 1 994 (A LB/CE N); CO SUNA (ALB ) MT Grane ros Sh CEN Shurr et al. 1 994 (C EN); U MPC strat c hart (A LB/CE N); Fa rquhar son & Grotb o 1981 ( ALB/C EN) 137 MT Green horn F m CEN/T UR Heato n 1950 (TUR in WY ); Step henson & Re eside 1 938 (T UR in Great Plains ); Tibert et al. 2009 ( CEN/T UR in north ern Pl ains); Swift et al. 1 985 (C EN/TU R in cen tral ro ckies) ; USG S DB (CEN/ TUR); Cond on 200 0 (CE N/TUR ); Rice & Cobba n 1977 (CEN /TUR) ; Macr ostrat (CEN/ TUR); Shurr et al. 1994 (CEN/ TUR); UMP C stra t chart (TUR ); Farq uharso n & G rotbo 1981 ( TUR); Young 1951 (TUR) ; Cobb an & L arson 1997 ( upCEN /lowT UR); N ielsen 2008 (TUR) ; Rice 1984 (CEN/ TUR) MT Hell C reek F m MAA COSU NA (M AA) MT Horset hief SS CAM/ MAA Heato n 1950 (CAM /MAA ); Rob erts et al. 20 05; US GS DB (lateC AM/ea rlyMA A); Ro ger & Brady 2010 (CAM /MAA ); Carp enter & Alf 1994 ( CAM) ; Thom as 197 8 (CA M/MA A); Ri ce & C obban 1977 (MAA ); Bibler 1985 (CAM /MAA ); Mac rostrat (CAM /MAA ); Farq uharso n & G rotbo 1981 ( CAM) ; Fuen tes et a l. 2011 (CAM ); Mud ge & S heppa rd 196 8 (CA M); Rice 1 980 (C AM/lo westM AA); K rystini k & D eJarne tt 1995 (upCA M); COSU NA (C AM/M AA); C OSUN A (CE N/TUR ) MT Judith River Fm (= Par kman Fm) CAM/ MAA Heato n 1950 ; Steph enson & Ree side 1 938; N ichols & Sw eet 19 93 (CA M); Tibert et al. 2009 ( CAM in nor thern P lains); Robe rts et a l. 2005 (CAM ); Rice & Shurr 1980 ( CAM/ MAA) ; Hick s et al. 1995 (CAM in WY ); Bec ker et al. 200 9 (CAM /MAA ); Con don 20 00 (lat eCAM ); Rog er & B rady 2 010 (C AM); Roger s et al. 2 010 (C AM); Forem an et a l. 2008 (CAM ); Koe nig et al. 200 9 (CA M); Finn 2 010 (C AM/M AA); M acrost rat (CA M); B ertog e t al. 20 07 (m idCAM lower part); Bertog 2002 (midC AM at least) ; UMP C stra t chart (CAM ); Farquh arson & Gro tbo 19 81 (CA M); M cMann is 196 5 (mid dle M ontana n = upper 1/3 La teCret ); Niel sen 20 08 (CA M); R ice 19 80 (m id/upC AM); Scherz er & Var ricchio 2010 (CAM ); Han cock 1 993 (P arkma n = mi dCAM ); Jinn ah et a l. 2009 ( midCA M in W Y, mid /upCA M in M T); Kr ystinik & De Jarnet t 1995 (upCA M); C OSUN A (CA M); pr edomin antly N ONMA RINE MT Lenne p SS CAM/ MAA Stephe nson & Reesi de 193 8; USG S DB (lateC AM); lots of pubs say it's broad ly equiv to Fox Hills = MA A; Fin n 2010 (MAA ); Farq uharso n & G rotbo 1981 (CAM /MAA ) MT Marias River Sh CEN-S AN Walla ce et a l. 1990 (TUR -SAN) ; USG S DB (CEN- SAN); Farqu harson & Grotbo 1981 (TUR- SAN); Dyma n et al . 1996 (CEN /TUR) ; McM annis 1965 (upper Color adan = lowes t 1/3 o f Late Cret); Rice & Cobb an 197 7 (CE N-SAN ); Macro strat (C EN-SA N); Ni elsen 2 008 (T UR-SA N); Co bban e t al. 20 05 (CON /SAN in part ); Cob ban et al. 19 59 (CE N-SAN ); Lan dman 1994 ( contai ns CON/ SAN a mmon ites); C obban 1990 (Scipo nocera s graci le from SAN portio n); Fu entes e t al. 20 11 (CE N-SAN ); Mud ge & S heppa rd 196 8 (CE N- SAN); Rice 1 980 (i nto the SAN) ; Jinna h et al . 2009 (CON /SAN at leas t in pa rt); COSU NA (C EN-SA N) 138 MT Kevin Mbr (Maria s Riv S h) CON/S AN Wallac e et al. 1990 ( CON/S AN); F arquha rson & Grotb o 1981 (CON /SAN & equiv t o Niob rara Ch k); Ric e & Co bban 1 977 (C ON/SA N); Wa llace e t al. 19 90 (lowSA N); Ma crostra t (CON /SAN) ; Niels en 200 8 (CON /SAN) ; Cobb an et a l. 2005 ( CON/S AN in part); C obban et al. 1 959 (C ON/SA N); Vu ke 200 0 (CON/ SAN); Mudg e & Sh eppard 1968 ( CON/S AN); R ice 198 0 (into SAN) ; COSU NA (C ON/SA N) MT Ferdig Mbr (Maria s Riv S h) TUR Wallac e et al. 1990 ( TUR/C ON); U SGS D B (mid /lateTU R); Far quhars on & Grotbo 1981 ( TUR/C ON & equiv t o Carli le Sh); Rice & Cobba n 1977 (TUR ); Macro strat (T UR); N ielsen 2008 ( TUR); Cobba n et al. 1959 ( TUR); Vuke 2000 (TUR) ; Mudg e & Sh eppard 1968 ( TUR); COSU NA (T UR) MT Cone M br (Maria s Riv S h) CEN/T UR Wallac e et al. 1990 ( TUR); USGS DB (u pCEN/ lowTU R); Far quhars on & Grotbo 1981 ( TUR & equiv to Gree nhorn Lmst); Rice & Cobba n 1977 (CEN/ TUR); Macro strat (C EN/TU R); Nie lsen 20 08 (TU R); Co bban e t al. 19 59 (TUR) ; Vuke 2000 ( CEN); Mudg e & Sh eppard 1968 ( TUR); COSU NA (CEN/ TUR) MT Flower ee Mbr (Maria s Riv S h) CEN Farquh arson & Grotb o 1981 (TUR & equ iv to M osby M br/Gre enhorn Lmst) ; Rice & Cobba n 1977 (CEN ); Wall ace et a l. 1990 (CEN ); Mac rostrat (CEN) ; Eicher 1967 ( upCEN ); Cobb an et a l. 1959 (CEN ); Vuk e 2000 (CEN ); Mud ge & Sheppa rd 196 8 (CEN ); COS UNA ( CEN) MT Mowry Sh ALB/C EN UMPC strat c hart (A LB/CE N); Co ndon 2 000 (lo wCEN ); USG S DB ( lowCE N); Farquh arson & Grotb o 1981 (ALB ); Dym an et a l. 1996 (lowC EN); R ice & Cobba n 1977 (ALB ); Mac rostrat (APT-C EN "Sh ", ALB /CEN " Fm"); Cobba n & Larson 1997 ( lowCE N); Ob oh-Iku enobe et al. 2 007 (A LB/CE N); CO SUNA (ALB) MT Montan a Grp SAN-M AA Heaton 1950 ( SAN-M AA in WY); U SGS D B (upS AN-low MAA) ; Asqu ith 1970 ( SAN-M AA in WY); M acrostr at (TU R-Than etian); UMPC strat c hart (SAN/ CAM) ; COSU NA (S AN-M AA) MT Niobra ra Chk CON-C AM Shurr e t al. (C ON-CA M); UM PC stra t chart (CON/ SAN); Farqu harson & Grotbo 1981 ( CON/S AN); C obban & Lars on 199 7 (upC ON-low CAM) ; Niels en 2008 ( CON/S AN); R ice 198 0 (into SAN) ; Jinna h et al. 2009 ( CON-C AM); Krystin ik & D eJarnet t 1995 (into lo wCAM ); COS UNA ( CON/S AN) MT Smoky Hills C hk (Niobr ara Ch k) SAN/C AM Shurr e t al. (S AN/CA M) MT Ft Hay s Lmst (Niobr ara Ch k) CON Shurr e t al. (C ON) 139 MT Pierre Sh CAM/M AA Stephe nson & Reesid e 1938 (CAM /MAA in Gre at Plain s); Tib ert et a l. 2009 (CAM /MAA in nor thern P lains); USGS DB (C AM/M AA); A squith 1970 (SAN/ CAM i n WY) ; Hicks et al. 1 995 (C AM/M AA in WY); H e et al. 2005 (CAM /MAA ); Mac rostrat (CON- MAA "Fm" o r SAN -MAA "Sh Fm "); UM PC strat ch art (CA M); Fa rquhar son & Grotbo 1981 ( SAN a t least to start ); Niel sen 2008 ( CAM) ; Rice 1980 ( CAM) MT Crow C rk Mbr Pierre Sh CAM Shurr e t al. 19 94 (CA M); US GS DB (CAM ); Asqu ith 197 0 (CAM ) MT De Gre y Mbr Pierre Sh CAM Shurr e t al. 19 94 (CA M); US GS DB (upCA M); As quith 1 970 (C AM) MT Gamm on Sh (= Gam mon Fe rrugino us Mbr) (Pierre Sh) CAM ( low) Condo n 2000 (lowC AM); U SGS D B (low CAM) ; Cobb an & L arson 1 997 (lowCA M); Ri ce 198 0 (low CAM) ; Kryst inik & DeJar nett 19 95 (low /midCA M) MT Grand SS bed Gamm on Sh Pierre Sh Rice 1 980 ("G roat SS bed" i s lowC AM… ) MT Gregor y Mbr Pierre Sh CAM Shurr e t al. 19 94 (CA M); US GS DB (CAM ); Asqu ith 197 0 (CAM ) MT Mobrid ge Mbr Pierre Sh MAA Shurr e t al. 19 94 (MA A); US GS DB (MAA ); Asqu ith 197 0 (MA A) MT Sharon Spring s Sh Pierre Sh CAM Shurr e t al. 19 94 (CA M); US GS DB (CAM ); Asqu ith 197 0 (CAM ) MT Virgin Crk M br Pierre Sh CAM Shurr e t al. 19 94 (CA M); US GS DB (CAM ); Asqu ith 197 0 (CAM ) MT Verend rye Mb r Pierre SH CAM Shurr e t al. 19 94 (CA M); US GS DB (CAM ); Asqu ith 197 0 (CAM ) MT St. Ma ry Rive r Fm MAA Robert s et al. 2005 ( MAA) ; Lock ley et a l. 2003 (MAA in Can ada); U SGS D B (upMA A); Na don 19 93 (MA A); Ro gers & Brady 2010 ( MAA) ; Hunte r et al. 2010 ( CAM/M AA); R ice & C obban 1977 ( MAA) ; Bible r 1985 (MAA ); Macro strat (M AA); F arquha rson & Grotb o 1981 (CAM /MAA ); McM annis 1965 ( highes t Mont anan = upper 1/3 La teCret, but be low La ncian w hich = MAA) ; Walla ce et al . 1990 (upCA M/low MAA) ; Fuent es et al . 2011 (CAM /MAA ); Mud ge & S heppar d 1968 (up-m ostCAM /MAA ); Rice 1980 (MAA ); Sche rzer & Varric chio 20 10 (MA A); CO SUNA (MAA ); 140 NONM ARINE MT Telegra ph Cre ek Fm SAN/C AM Heaton 1950 ( SAN/C AM); S tephen son & Reesid e 1938 (SAN /CAM) ; Nicho ls & Swe et 1993 (SAN /CAM) ; USGS DB (S AN/CA M); As quith 1 970 (SAN/ CAM i n WY) ; Rice & Shu rr 1980 (shelf ss); Hi cks et a l. 1995 (CAM in WY); P ayenbe rg et al . 2002 (SAN) ; Payen berg et al. 200 3 (SAN ); Robi nson e t al. 195 9 (CAM ); Cond on 200 0 (upS AN/low CAM) ; Roge r & Br ady 20 10 (CAM ); Land man & Cobba n 2007 (SAN ); Finn 2010 ( CAM) ; Rice & Cob ban 1977 ( SAN); Walla ce et al . 1990 (SAN) ; Macr ostrat ( TUR-C AM); U MPC s trat chart ( SAN); Farqu harson & Gro tbo 198 1 (SAN ); McM annis 1 965 (lo west Monta nan = m id-Late Cret); Nielsen 2008 ( CAM) ; Cobb an et a l. 2005 (upSA N); Cobbn et al. 1 959 (S AN); F uentes et al. 2 011 (S AN/CA M); M udge & Shepp ard 1968 ( SAN); Rice 1 980 (S AN); C OSUN A (SA N/CAM ) MT Two M edicine Fm CAM Bertog et al. 2 007 (lo w/upC AM); B ertog 2 002 (m idCAM ); Farq uharso n & Grotbo 1981 ( upSAN /CAM) ; McM annis 1 965 (m iddle M ontana n = middle /upper 1/3 La teCret) ; Nado n 1993 (CAM ); Rice & Cob ban 19 77 (CA M); Rogers et al. 2 010 (C AM); W allace et al. 1 990 (C AM); U SGS D B (CA M); Macro strat (S AN-M AA); F uentes et al. 2 011 (C AM); M udge & Shepp ard 196 8 (CAM ); Rice 1980 ( CAM) ; Oheim 2007 ( CAM) ; Scher zer & V arricch io 2010 (CAM ); Jinna h et al. 2009 ( CAM) ; Kryst inik & DeJar nett 19 95 (CA M); COSU NA (C AM/lo westM AA); N ONMA RINE MT Virgell e SS SAN/C AM Wallac e et al. 1990 ( upSAN ); Farq uharso n & Gr otbo 19 81 (SA N/lowC AM); McMa nnis 19 65 (Mo ntanan just ab ove Te legraph Crk = low mi ddle 1/ 3 LateCr et); Pa yenber g et al. 2002 ( CAM i n Sout hern M T, SAN in Alb erta); Payenb erg et a l. 2003 (SAN in MT /Albert a); Ric e & Co bban 1 977 (S AN); USGS DB (lo wCAM ); Mac rostrat (SAN/ CAM) ; Fuent es et al . 2011 (CAM ); Mudge & She ppard 1 968 (C AM); R ice 198 0 (SAN /lowCA M); Sc herzer & Varricc hio 201 0 (CAM ); Hanc ock 19 93 (low CAM) ; Heato n 1950 (SAN ); Jinnah et al. 2 009 (lo wCAM ); Krys tinik & DeJar nett 19 95 (low CAM) ; COSU NA (S AN/CA M) MT Warm Creek Sh Stephe nson & Reesid e 1938 (TUR -SAN) 141 MT Willow Creek Fm MAA+ USGS DB (M AA+); Nado n 1993 (MAA includ ing KT bound ary); H unter e t al. 2010 ( MAA) ; Russ ell 195 0 (MA A+); J erzyki ewicz 1992 ( MAA+ ); Leh man 1987 ( MAA) ; McM annis 1965 ( MAA+ ); Con steniu s 1996 (MAA +); Ma ck & Cole 2 005 (M AA+); Rice & Cobb an 197 7 (MA A+); M acrost rat (M AA- Thane tian); Farquh arson & Gro tbo 19 81 (M AA to start); McM annis 1965 (Lanci an+ = MAA+ ); Fue ntes et al. 20 11 (CA M/MA A); M udge & Shepp ard 1968 ( up-mo stCAM /MAA +); Ri ce 198 0 (MA A+); C OSUN A (MA A+); NONM ARINE NE Carlile Sh TUR Joecke l et al. 2004; Hattin 1986 (gener al WIS ); Shu rr et al . 1994 ; Steph enson & Reesid e 1938 (TUR in Gre at Plai ns); M acrost rat (TU R-CO N); CO SUNA (TUR) NE Dakot a Grp ALB/C EN COSU NA (A LB/CE N) NE Fox H ills SS MAA Kenne dy et a l. 1998 ; Steph enson & Ree side 1 938 (M AA in Great Plains ); Macro strat (C AM/M AA) NE Grane ros Sh CEN/T UR Joecke l et al. 2004 (CEN) ; Hatti n 1986 (gene ral WI S); Sh urr et al. 199 4 (CE N); Stephe nson & Reesi de 193 8 (CE N/TUR in Gre at Plai ns); M acrost rat (CE N); COSU NA (C EN) NE Green horn L mst CEN/T UR Joecke l et al. 2004 (CEN/ TUR); Arrat ia & C horn 1 998 (T UR); H attin 1 986 (gener al WIS ); Shim ada et al. 20 09 (CE N/TUR ); Shu rr et al . 1994 (CEN /TUR) ; Stephe nson & Reesi de 193 8 (CE N/TUR in Gre at Plai ns); M acrost rat (CEN/ TUR); COSU NA (C EN/TU R) NE Niobra ra Chk CON- CAM Hattin 1986 (gener al WIS ); Shu rr et al . 1994 ; Steph enson & Ree side 1 938 (CON /SAN in Gre at Plai ns); M acrost rat (CE N-SAN ); COS UNA (TUR- SAN i n part) NE Pierre Sh CAM/ MAA Izett 1 998 (C AM C row C reek M br/Pie rre in SD/NE ); Hatt in 198 6 (CA M genera l WIS ); Diff endal & Flo werda y 1995 (CAM /lowes tMAA in KS , NE, SD); S hurr e t al. 19 94; St ephen son & Reesi de 193 8 (CA M/MA A in G reat Plains ); Mac rostrat (CON -MAA "Fm" or SA N-MA A "Sh Fm"); COSU NA (CAM in par t) NM Atarqu e SS TUR Hook & Cob ban 20 07 (TU R); M ack 19 87 (TU R); US GS DB (TUR ); Mac k 1992 ( TUR); Wolb erg 19 85a,b (TUR) ; Kirk land e t al. 20 05 (Co llignon iceras woolga ri zone = mid TUR); Spielm an & L ucas 2 006 (T UR); C harmb erlain et al. 1994 ( TUR); Shanl ey & M cCabe 1995 (midT UR); M olenaa r 1983 (TUR ); Irby 1995 ( low/m idTUR ) NM Bearto oth Qu artzite ALB/C EN Mack 1987 ( ALB/C EN); C hafetz 1982 (early/ midCE N - eq uiv to early D akota SS); L ucas & Lawto n 2005 (CEN Beart ooth); Cobb an et a l. 2008 (lowC EN); Gorrel l 1958 (ALB /CEN) ; Macr ostrat (ALB/ CEN " Fm"); Mole naar 1 983 142 (CEN) ; COS UNA (ALB/ CEN); most papers say is equiv to low er Ma ncos NM Carlile Sh TUR Hattin 1986 (TUR) ; Mere wethe r et al. 2007 (mid/u pTUR ); You ng 196 0 (TU R); Macro strat (T UR or CEN- CON) ; Ridg eley 2 000 (T UR); C OSUN A (TU R); Camp bell 19 71 (TU R); US GS DB (TUR /SAN) ; Bratt 1993 (midT UR Fa irport Sh, Bl ue Hil l, Cod ell mb rs of C arlile) NM Cliff H ouse S S CAM Camp bell 19 71 (CA M); D onsela ar 198 9 (CA M); Pa lmer & Scott 1984 ( CAM) ; Willia mson 1996 ( CAM) ; Willi amson et al. 2009 ( CAM) ; Wrig ht 198 6 (CA M); Cobba n 1973 (CAM ); Sixs mith e t al. 20 08 (CA M); R idgele y 2000 (CAM ); Molen aar 19 83 (CA M); M artinse n 2003 (lowC AM); Numm edal & Mole naar 1995 ( CAM) ; Jenn ette & Jones 1995 (CAM ); COS UNA (CON ) NM Crevas se Can yon Fm CON Hook & Cob ban 20 07; Ho ok 201 0 (mid ); Wil liamso n et al . 2009 (TUR /CON ); Sixsm ith et a l. 2008 (TUR /CON ); Cha mberla in et a l. 2008 (CON /SAN) ; Mack 1992 ( SAN/C AM); USGS DB (C ON/SA N); Ki rkland et al. 2005 ( TUR/C ON); Cham berlain et al. 1994 ( TUR-S AN?); Macr ostrat (TUR/ CON) ; Ridg eley 2 000 (TUR/ CON) ; Mole naar 1 983 (C ON/SA N); Jin nah et al. 20 09 (CO N/low SAN); Martin sen 20 03 (CO N-CA M); C ather & Osbu rn 200 7 (CO N-SAN ?); Numm edal & Mole naar 1 995 (T UR-SA N); Je nnette & Jon es 199 5 (CO N/SAN ); COSU NA (C ON); N ONMA RINE NM Dilco Mbr (Creva sse Ca nyon F m) CON USGS DB (C ON, a s mbr of Cre vasse Canyo n or M esaver de); C hambe rlain e t al. 200 8 (CO N "Di lco Co al Mb r" of C revass e Cany on); H ook 20 10 (low/m idCON ); Ridg eley 2 000 (T UR); N umme dal & Molen aar 19 95 (TU R); Jennet te & J ones 1 995 (C ON); N ONMA RINE NM Dakot a SS/G rp ALB/C EN Hattin 1986 (ALB/ CEN); Heato n 1950 (CEN ); Sco tt et al . 2004 (ALB /CEN) ; Camp bell 19 71 (CE N); Do nselaa r 1989 (CEN ); Hoo k & C obban 2007 (CEN Dakot a); Wr ight 19 86 (CE N); Si xsmith et al. 2008 ( CEN); Cham berlin et al. 2008 ( lowCE N); Ch armbe rlain e t al. 19 94 (CE N); Br att 199 3 (mid CEN); Macro strat (A PT-TU R for " Fm/Gr p", BE RR-TU R for " Grp", ALB/C EN fo r "SS" i n NM ); Ridg eley 2 000 (C EN); M olenaa r 1983 (CEN ); Mar tinsen 2003 (CEN) ; Num medal & Mo lenaar 1995 (CEN at leas t in pa rt); Jen nette & Jones 1995 ( CEN a t least in par t); CO SUNA (APT -CEN) ; Cath er & O sburn 2007 (midC EN) NM Pagua te SS (Dako ta SS) CEN ( mid/up ) US GS DB (uppe r midC EN); C hambe rlain 1 994 (C EN); R idgele y 2000 (CEN ); Sagem an 199 6 (mid /upCE N); Lu cas & Rineh art 200 9 (mid CEN); Lucas 2002 (midC EN); I rby 19 95 (m id/upC EN); M ellere 1994 ( mid/up CEN); Numm edal & Molen aar 19 95 (CE N); CO SUNA (CEN as Ma ncos S h mbr ) 143 NM Twow ells SS (Dako ta SS) CEN ( up) USGS DB (l ow up CEN); Cham berlain 1994 (upCE N); Ho ok & C obban 2007 (CEN) ; Ridg eley 2 000 (C EN/TU R); Sa geman 1996 (upCE N); Lu cas 20 02 (upCE N); Irb y 1995 (upCE N); M ellere 1994 ( upCEN ); Num medal & Mo lenaar 1995 ( CEN); Numm edal e t al. 19 93 (m id upC EN); C OSUN A (CE N as M ancos Sh mb r) NM Fruitla nd Fm CAM/ MAA Ambro se & A yers 2 007 (C AM); Heato n 1950 (MAA in NW -NM); Linds ay et al. 198 1 (Bac ulites c ompre ssus zo ne = u pCAM ); Arm strong -Ziegl er 197 8 (CAM ); Cam pbell 1 971 (M AA); D onsela ar 198 9 (MA A); M ilner e t al. 20 04 (CAM /MAA ); Palm er & S cott 19 84 (CA M/MA A); W illiams on et a l. 2009 (CAM /MAA ); Luc as & M ateer 1 983 (C AM); Eaton & Kir kland 2008 (upCA M); R oberts et al. 2005 ( CAM in coa stal pl ain); M acrost rat (CA M); Ridge ley 20 00 (CA M); M olenaa r 1983 (CAM /MAA ); Jinn ah et a l. 2009 (upCA M); M artinse n 2003 (CAM ); Num medal & Mo lenaar 1995 (CAM /MAA ); Jenn ette & Jones 1995 (CAM /MAA ); COS UNA (CAM ); NONM ARINE NM Gallup SS TUR/C ON Camp bell 19 71 (CO N); Do nselaa r 1989 (CON ); Hoo k & C obban 2007 (CON ); Jennet te et a l. 1991 (upTU R/low CON) ; Hook 2010 (lowC ON); S ixsmit h et al . 2008 ( TUR); Cham berlin et al. 2 008 (l owCO N); US GS DB (TUR /CON ); Mac k 1992 ( CON/ SAN); Mole naar 1 974 (T UR/CO N); Ki rkland et al. 2005 ( upTUR ); Numm edal e t al 19 93 (up TUR/l owCO N); Sh anley & Mc Cabe 1 995 (u pTUR ); Macro strat (T UR); R idgele y 2000 (TUR ); Mol enaar 1983 ( TUR); Marti nsen 2003 ( TUR/l owestC ON); C ather & Osbu rn 200 7 (low CON) ; Irby 1995 (upTU R); Nu mmed al & M olenaa r 1995 (TUR ); Jenn ette & Jones 1995 (CEN/ TUR); COSU NA (T UR/CO N) NM Galleg o SS (Gallu p SS) TUR/C ON Macro strat (T UR); C OSUN A (TU R/CON ) NM Grane ros Sh CEN Hattin 1986 (CEN) ; Scott et al. 2004 ( CEN); USGS DB (C EN); B ratt 19 93 (CEN) ; Macr ostrat (CEN) ; Ridg eley 2 000 (C EN/TU R); Nu mmed al & M olenaa r 1995 ( CEN); COSU NA (C EN) NM Green horn F m CEN/T UR Hattin 1986 (CEN/ TUR); Mere wethe r et al. 2007 (CEN/ TUR); Youn g 1960 (CEN/ TUR); Camp bell 19 71 (CE N/TUR ); USG S DB (CEN/ TUR); Spielm an & Lucas 2006 (CEN) ; Bratt 1993 (CEN/ TUR); Macr ostrat (CEN/ TUR); Ridge ley 2000 ( CEN/T UR); M olenaa r 1983 (TUR ); Jenn ette & Jones 1995 (CEN/ TUR); COSU NA (C EN) NM Kirtlan d Fm CAM/ MAA Ambro se & A yers 2 007 (C AM/M AA); H eaton 1950 ( MAA in NW -NM); Camp bell 19 71 (M AA); M ilner e t al. 20 04 (CA M/MA A); W illiams on et a l. 2009 ( CAM/ MAA) ; Eato n & K irkland 2008 (upCA M/MA A); Ro berts e t al. 2005 ( CAM in coa stal pl ain); M acrost rat (CA M/MA A); Ri dgeley 2000 (CAM /MAA ); Mol enaar 1983 ( CAM/ MAA) ; Jinna h et al . 2009 (upCA M in 144 part); Martin sen 20 03 (CA M/MA A); Nu mmed al & M olenaa r 1995 (CAM /MAA ); Jenn ette & Jones 1995 (CAM /MAA ); COS UNA (CAM /MAA ); NONM ARINE NM Lewis Sh CAM Heato n 1950 (MAA in NW -NM); Linds ay et a l. 1981 (Didy mocer as cheyen nense zone = upCA M); C ampbe ll 1971 (CAM ); Palm er & S cott 19 84 (CAM /MAA ); Wil liamso n 1996 (CAM ); Wil liamso n et al . 2009 (CAM ); Cobba n 1973 (CAM ); Sixs mith e t al. 20 08 (CA M); U SGS D B (CA M/MA A); Lucas & Ma teer 19 83 (CA M); Sp ielman & Lu cas 20 06 (CA M); R oberts et al. 2005 ( midCA M); M acrost rat (CO N-CA M); R idgele y 2000 (CAM ); Mol enaar 1983 ( CAM in CO ); Mar tinsen 2003 (CAM ); Num medal & Mo lenaar 1995 (CAM ); Jenn ette & Jones 1995 (CAM ); COS UNA (SAN) NM Manco s Sh/F m CEN-C AM Heato n 1950 (TUR -SAN in NW -NM); Camp bell 19 71 (TU R-SAN ); Wri ght 1986 ( CEN-C AM); Mack 1987 ( CEN+ ); Sixs mith e t al. 20 08 (CE N-CA M); Macro strat (C EN-CA M); R idgele y 2000 (CEN -SAN) ; Mole naar 1 983 (C EN- CAM) ; Mart insen 2003 ( CEN-C AM); COSU NA (C EN-SA N); Yo ung 19 60 (TUR begins ); Don selaar 1989 ( CEN-C AM); Willia mson et al. 2 009 (C EN- CAM) ; Palm er & S cott 19 84 (in to CA M); W illiams on 199 6 (into SAN) ; Numm edal & Mole naar 1 995 (C EN-CA M); Je nnette & Jon es 199 5 (CE N- CAM) ; Hook & Co bban 2 007 (C EN "lo wer to ngue") ; USG S DB (CEN- CAM) ; Cather & Os burn 2 007 (m idCEN /lowT UR lo wer M ancos) NM D-Cro ss Ton gue (Manc os Sh) TUR/C ON Hook & Cob ban 20 07 (TU R); Ho ok 201 0 (upT UR/lo wCON ); Cob ban et al. 2008 ( upTUR ); Cha mberli n et al . 2008 (midT UR/lo wCON ); USG S DB (lateT UR); M ack 19 92 (CO N/SAN ); Spie lman & Lucas 2006 (TUR) ; Macro strat (T UR, C EN-CA M wh ole M ancos) ; Ridg eley 2 000 (T UR); C ather & Osbur n 2007 (midT UR/lo wCON ); COS UNA (TUR) NM La Ve ntana Tongu e (Manc os Sh) CAM Palme r & Sc ott 198 4 (CA M); W illiams on 199 6 (CA M); W right 1 986 (C AM); Ridge ley 20 00 (CA M); M olenaa r 1983 (CAM ); Num medal & Mo lenaar 1995 (CAM ) NM Mulat to Ton gue (Manc os Sh) CON Hook & Cob ban 20 07 (CO N); Ho ok 201 0 (low CON) ; USG S DB; Spielm an & Lucas 2006; Kirkl and et al. 20 05 (CO N); W illiams on & L ucas 1 990 (l owSA N); Macro strat (C EN-CA M Ma ncos); Ridge ley 20 00 (CO N); M olenaa r 1983 (CON ); Num medal & Mo lenaar 1995 (CON ) NM Pescad o Tong ue (Manc os Sh) TUR/C ON USGS DB (T UR); C obban & Re eside 1 952a ( TUR); Kirkl and et al. 20 05 (TUR) ; Macr ostrat (CEN- CAM Manco s); Rid geley 2000 ( TUR); Mole naar 1983 ( TUR) 145 NM Rio Sa lado T ongue (Manc os Sh) TUR Hook & Cob ban 20 07 (TU R); Ke nnedy et al. 2001 ( TUR); USGS DB (upCE N/TUR ); Spie lman & Lucas 2006 (TUR) ; Kirk land e t al. 20 05 (TU R); Charm berlain et al. 1994 ( CEN/T UR); M acrost rat (CE N-CA M Ma ncos); Molen aar 19 83 (CE N/TUR ); Irby 1995 (lowT UR) NM Tocito SS Le ntil M br (Manc os Sh) CON Molen aar 19 83 (CO N); Sh anley & Mc Cabe 1 995 (l ow/mi dCON ); Jenn ette et al. 1991 ( CON) ; Mou toux 2 000 (e quiv to Mula to Ton gue = CON ); Ridg ely 20 00 (TUR) ; Mole naar 1 983 (C ON); V alasek 1995 (low/m idCON ); Elde r & Ki rkland (CON ); Mar tinsen 2003 (CON ); Num medal & Mo lenaar 1995 (CON ); Jenn ette & Jon es 199 5 (TU R/CON ); Num medal et al. 1993 ( CON) NM White water Arroy o Sh (Manc os Sh) CEN ( mid/up ) US GS DB (mid/ upCEN ); Cha mberla in 199 4 (upC EN); R idgele y 2000 (CEN ); Lucas 2002 (mid/u pCEN ); Irby 1995 (upCE N); M ellere 1994 ( mid/up CEN); Numm edal & Mole naar 1 995 (C EN); C OSUN A (CE N) NM McRa e Fm MAA Mack 1992 ( MAA) ; Buck & Ma ck 199 5 (MA A); Se ager e t al. 19 97 (M AA); Lehma n 1987 (MAA ); Bog ner et al. 200 7 (MA A); NO NMAR INE (f ull of paleos ols and dinos) NM Menef ee Fm CAM Camp bell 19 71 (CA M); D onsela ar 198 9 (CA M); Pa lmer & Scott 1984 ( CAM) ; Willia mson 1996 ( CAM) ; Wrig ht 198 6 (SA N/CA M); Si xsmith et al. 2008 (CAM ); USG S DB (SAN) ; Shan ley & McCa be 199 5 (CA M); M acrost rat (CO N "Fm, C ON/SA N "Sh Fm"); Ridge ley 20 00 (SA N/CA M); M olenaa r 1983 (CAM ); Jinn ah et a l. 2009 (low/ midCA M); M artinse n 2003 (CAM ); Num medal & Mo lenaar 1995 (CAM ); Jenn ette & Jones 1995 (CAM ); COS UNA (CON ); partial ly, if n ot mos tly, no nmarin e NM Mesav erde G rp CON- CAM Heato n 1950 (SAN /CAM in NW -NM); Camp bell 19 71 (SA N/CA M); Pa lmer & Scott 1 984 (S AN/C AM); Wrigh t 1986 (SAN /CAM ); Cob ban 19 73 (CA M); USGS DB; M acrost rat (TU R-MA A); M olenaa r 1983 (CAM ); Mar tinsen 2003 (TUR- CAM) ; COS UNA (TUR/ CON "Grp" SAN- MAA "Fm") ; Num medal & Molen aar 19 95 (CA M); Je nnette & Jon es 199 5 (SA N/CA M); up per 1/2 (Willia ms For k Fm) is nonm arine; adding CON becaus e Dalto n SS/Me saverd e Grp is CON NM Dalton SS (Mesa verde Grp) CON USGS DB (C ON); D ane et al. 19 57 (CO N+, D alton o verlies Mula to Tongu e/Man cos = CON) ; Dons elaar 1 989 (C ON); M cCubb in 196 9 (~ C ON, equiv to low er Nio brara = CON , overl ies Mu llato T ongue = CO N, und erlies Point Looko ut = S AN/C AM); Sixsm ith et a l. 2008 (CON /SAN) ; Spiel man & Lucas 2006 (midC ON); S hanley & Mc Cabe 1 995 (u pCON ); Vala sek 19 95 (upCO N); M outoux 2000 (SAN) ; Ridg eley 2 000 (C ON); E dward s et al. 2005 (equiv to Em ery SS in UT = SAN ); Mol enaar 1983 ( CON/ SAN); Shanl ey & McCa be 199 5 (low SAN); Numm edal & Mole naar 1 995 (S AN); s ome p ubs sa y Dalton SS is a mbr of the Creva see Ca nyon F m (oth ers say Mesa verde Grp) 146 NM Hosta SS Mb r (Dalto n SS) (Mesa verde Grp) SAN USGS DB (S AN); D onsela ar 198 9 (CO N); M cCubb in 196 9 (CO N/SAN , equiv to mid -NIO = SAN , overl ies Da lton S S = CO N, und erlies Point Looko ut = SAN/C AM); Sixsm ith et a l. 2008 (SAN ); Spie lman & Lucas 2006 (midS AN); Shanle y & M cCabe (lowS AN); V alasek 1995 (lowS AN); M outoux 2000 (SAN) ; Ridg eley 2 000 (C ON); M olenaa r 1983 (SAN ); Num medal & Mo lenaar 1995 ( CAM) ; Luca s et al. 2000 (SAN) ; NOT E: som e artic les say Hosta SS is a mbr o f Poin t Look out Fm NM Moren o Hill Fm TUR Mack 1987 ( TUR); USGS DB (m id/late TUR); Mack 1992 (TUR) ; Kirk land & Wolfe 2001 (TUR) ; Wolf e et al . 2010 (TUR ); Eato n & K irkland 2008 (TUR) ; Sween ey et a l. 2009 (TUR ); Kirk land e t al. 20 05 (TU R); Ch armbe rlain e t al. 1994 ( TUR); Mole naar 1 983 (T UR); I rby 19 95 (m id/upT UR) NM Niobra ra Fm TUR-S AN Hattin 1986 (CON -CAM ); Hea ton 19 50 (CO N/SAN ); Mac rostrat (CEN -SAN) ; Ridge ley 20 00 (TU R-SAN ); COS UNA (TUR- SAN) NM Fort H ays (Niobr ara Fm ) CON Hattin 1986 (CON ); Hea ton 19 50 (CO N/SAN Niobr ara); U SGS D B (upTU R/low CON) ; Macr ostrat (TUR- CON) ; Schu mache r & Ev erhart 2005 (CON ); COS UNA (TUR/ CON) ; other states is pre domin antly C ON NM Pictur ed Cli ffs SS CAM/ MAA Ambro se & A yers 2 007 (u pCAM /lowM AA); H eaton 1950 ( MAA) ; Mole naar e t al. 200 2 (CA M); L indsay et al. 1981 ( CAM) ; Cam pbell 1 971 (C AM); Donse laar 1989 ( CAM/ lowest MAA) ; Miln er et a l. 2004 (CAM ); Palm er & S cott 19 84 (CAM /MAA ); Wil liamso n 1996 (CAM ); Wil liamso n et al . 2009 (CAM ); Cobba n 1973 (CAM ); Sixs mith e t al. 20 08 (CA M); L ucas & Matee r 1983 ; Spielm an & L ucas 2 006 (C AM); Macro strat (S AN); R idgele y 2000 (CAM ); Molen aar 19 83 (CA M); Ji nnah e t al. 20 09 (up CAM) ; Mart insen 2003 (upCA M); N umme dal & Molen aar 19 95 (CA M); Je nnette & Jon es 199 5 (CAM /MAA ); COS UNA (SAN/ CAM) NM Pierre Sh CAM/ MAA Hattin 1986 (CAM in par t); Hea ton 19 50 (CA M/MA A); Ca mpbel l 1971 (CAM /MAA ); Spie lman & Lucas 2006 (CAM ); Mac rostrat (CON -MAA "Fm" or SA N-MA A "Sh Fm"); Ridge ley 20 00 (CA M/MA A) NM Point L ookou t SS SAN/C AM Camp bell 19 71 (SA N/CA M); D onsela ar 198 9 (SA N/CA M); Pa lmer & Scott 1984 ( up-mo stSAN /CAM ); Wil liamso n 1996 (SAN /CAM ); Wil liamso n et al . 2009 ( lowCA M); W right 1 986 (C ON-C AM); Cobba n 1973 (SAN /CAM ); Sixsm ith et a l. 2008 (SAN /CAM ); Spie lman & Lucas 2006 (SAN Hosta Tongu e/Poin t Look out); S hanley & Mc Cabe 1 995 (S AN); M acrost rat (TU R- CON) ; Ridg eley 2 000 (S AN); M olenaa r 1983 (SAN /CAM , main ly CA M); Martin sen 20 03 (lo wCAM ); Num medal & Mo lenaar 1995 (CAM ); Jenn ette & Jones 1995 ( SAN/C AM); COSU NA (C ON) NM Tres H erman os TUR Macro strat (T UR), C ather & Osbu rn 200 7 (mid TUR); Cham berlain et al. 2008 (midT UR); H ook & Cobb an 200 7 (TU R); Ho ok 201 0 (TU R at le ast in part - Atarqu e SS M br = T UR); M ack 19 92 (TU R); Sp ielman & Lu cas 20 06 (TU R); 147 Toolso n & K ues 19 96 (TU R at le ast in part) NM Trinid ad SS MAA Heato n 1950 (MAA ); Leh man 1 987 (M AA); M acrost rat (SA N/CA M); is MAA in CO ; NONM ARINE NM Verme jo Fm MAA Heato n 1950 (MAA ); Wol fe & U pchurc h 1987 (MAA ); Leh man 1 987 (M AA); Macro strat (C AM) ND Belle F ourche Fm CEN COSU NA (C EN) ND Carlile Fm TUR/C ON COSU NA (T UR/CO N) ND Colora do Grp CEN-S AN COSU NA (C EN-SA N) ND Fox H ills Fm MAA Stephe nson & Reesi de 193 8 (MA A in G reat Pl ains); Tibert et al. 2009 ( MAA in northe rn Pla ins); U SGS D B; He et al. 2005 ( MAA) ; Beck er et a l. 2009 (MAA ); Crawf ord et al. 200 6 (MA A); Pe ppe et al. 20 07 (M AA); W ilson 2 006 (M AA); Macro strat (C AM/M AA); C OSUN A (MA A) ND Green horn F m CEN/T UR COSU NA (C EN/TU R) ND Hell C reek F m MAA Stephe nson & Reesi de 193 8 (DA N in G reat Pl ains); Tibert et al. 2009 ( MAA in northe rn Pla ins); U SGS D B (low est Pa leocen e); He et al. 2005; Fox 19 71 (MAA in MT ); Bec ker et al. 200 9 (MA A); Ca rlson & Ande rson 1 965 (M AA); Condo n 2000 (lateM AA in MT); Wilso n 2006 (MAA ); Finn 2010 (MAA in MT); Macro strat (M AA); C OSUN A (MA A); NO NMAR INE ND Monta na Gro up SAN-M AA COSU NA (S AN-M AA) ND Niobra ra Chk CON- CAM Bertog et al. 2007 ( ends l owCA M); C OSUN A (CO N/SAN ) ND Pierre Sh CAM/ MAA Stephe nson & Reesi de 193 8 (CA M/MA A in G reat Pl ains); Tibert et al. 2009 (CAM /MAA in nor thern P lains); USGS DB (C AM/M AA); H e et al . 2005 (CAM /MAA ); Bec ker et al. 200 4 (into MAA ); Han czaryk & Ga llaghe r 2007 (CAM ); Patr ick et al. 200 4 (CA M/MA A); St offer 2 003 (C AM/M AA); B ishop 1985 ( CAM/ MAA) ; Macr ostrat (CON -MAA "Fm" or SA N-MA A "Sh Fm"); Bertog 2010 (CAM to sta rt); CO SUNA (SAN -MAA ) ND Sharon Sprin gs Sh (Pierre Sh) CAM Bertog 2010 (low/m idCAM ) ND Grego ry Mb r (Pierre Sh) CAM (mid) Shurr et al. 1 994 (C AM in SD); Bertog et al. 2007 ( midCA M in B lack H ills); Hancz ark & Gallag her 20 07 (m idCAM in SD ); Patr ick et al. 200 7 (mid CAM in SD); B ertog 2 010 (m idCAM ) 148 OK Brown stown Marl SAN/C AM Akers & Ak ers 19 97 (SA N in T X); US GS DB (CAM ); Eme rson e t al. 19 94 (CAM in N T X); Ha zel & Paulso n 1964 (CAM in nor theast TX); M acrost rat (SAN/ CAM for "F m"…C AM/M AA fo r "Mar l"…); Manci ni & P uckett 2005 (low/m idCAM in NW Gulf) ; Wag goner 2006 ( lowCA M in G ulf reg ion) OK Caddo Fm ALB Tappa n 1943 (ALB ); Huf fman e t al. 19 75 (Co manch ean; e quival ent to lower Washi ta Grp - ALB ?); Bu llard 1 925 (l ower W ashita Grp ju st abo ve Kia michi - ALB/C EN?) OK Eagle Ford F m CEN/T UR USGS DB (C EN/TU R); Ak ers & Akers 1997 (CEN/ TUR i n TX) ; Eme rson e t al. 199 4 (CE N/TUR in TX ); Am brose et al. 2 009 (C EN/TU R in e ast TX Basin ); Macro strat (A LB-TU R); M ancini & Puc kett 20 05 (up CEN/T UR in NW G ulf) OK Ozan F m CAM Akers & Ak ers 19 97 (CA M in T X); Em erson et al. ( CAM in TX ); Clar k 2009 (upmo stSAN /CAM in TX ); Mac rostrat (CAM /MAA ); USG S DB (LateC ret) OK Tokio Fm CON Benso n & T atro 19 64 (als o nort hern L A); Sh aw 19 67 (CO N in A R); M ancini et al. 200 8 (CO N/SAN in cen tral Gu lf Coa st); Ha zel & Paulso n 1964 (CON /SAN in AR ); Mac rostrat (CON /SAN "Fm"… TUR-S AN "T okio S and Fm "…); U SGS DB (L ateCre t) OK Wood bine F m CEN USGS DB (C EN); R avn & Witzk e 1994 (CEN ); Ake rs & A kers 1 997 (C EN in TX); E merso n et al . 1994 (CEN in TX ); Am brose et al. 2 009 (C EN in easter n TX Ba sin); A llmon & Coh en 200 8 (CE N in n orthea st TX) ; Macr ostrat (CEN/ TUR); Manc ini & P uckett 2005 (mid/u pCEN in NW Gulf) OK Dexter Mbr (Wood bine F m) CEN USGS DB (C EN); R avn & Witzk e 1994 (CEN Wood bine); Emers on et a l. 1994 (CEN in N T X); Am brose et al. 2 009 (C EN in east T X Bas in); A llmon & Coh en 2008 ( lowCE N in n orthea st TX) ; Macr ostrat (CEN) ; Man cini & Pucke tt 2005 (mid/u pCEN Wood bine in NW G ulf) OK Lewis ville M br (Wood bine F m) CEN USGS DB (C EN); R avn & Witzk e 1994 (CEN Wood bine); Emers on et a l. 1994 (CEN in N T X); Am brose et al. 2 009 (C EN in east T X Bas in); A llmon & Coh en 2008 ( lowCE N in n orthea st TX) ; Macr ostrat (CEN) ; Man cini & Pucke tt 2005 (mid/u pCEN Wood bine in NW G ulf) OK Red B ranch Mbr (Wood ibine F m) CEN USGS DB (C EN); R avn & Witzk e 1994 (CEN Wood bine); Manci ni & P uckett 2005 ( mid/up CEN W oodbin e in N W Gu lf) OK Templ eton M br (Wood bine F m) CEN USGS DB (C EN); R avn & Witzk e 1994 (CEN Wood bine); Emers on et a l. 1994 (CEN in N T X); Al lmon & Cohe n 2008 (lowC EN in north east T X); M ancini & Pucke tt 2005 (mid/ upCEN Wood bine in NW G ulf) SD Belle F ourche Fm CEN Kirkla nd et a l. 1999 (CAN ); Tibe rt et al . 2009 (CEN in nor thern P lains); Yang & Mia ll 2009 (CEN in nor thern G reat Pl ains); USGS DB (C EN); C adrin e t al. 1995 ( CEN i n ND & Can ada); M acrost rat (CE N "Sh ", ALB /CEN "Fm") ; Cobba n & L arson 1997 ( low/m idCEN ); Han cock 2 004 (l ow/mi dCEN ); COSU NA (A LB/CE N); Co ndon 2 000 (C EN) 149 SD Carlile Sh TUR Kirkla nd et a l. 1999 (TUR ); Step henson & Re eside 1 938 (T UR in Great Plains ); Tibert et al. 2009 ( TUR i n nort hern P lains); Yang & Mi all 200 9 (TU R in northe rn Gre at Plai ns); U SGS D B (TU R-SAN ); Con don 20 00 (TU R in M T); Cadrin et al. 1995 ( TUR i n ND) ; Shur r et al. 1994 (TUR) ; Macr ostrat (TUR or CEN-C ON); C obban & Lar son 19 97 (m id/upT UR); C OSUN A (TU R/CON ) SD Blue H ill Sh (Carlil e Sh) TUR Shurr et al. 1 994 (T UR); S ethi & Leith old 19 97 (m idTUR in par t in CO ) SD Codel l SS (Carlil e Sh) TUR Shurr et al. 1 994 (T UR) SD Fairpo rt Chk (Carlil e Sh) TUR Shurr et al. 1 994 (T UR); S ethi & Leith old 19 97 (m idTUR in CO ) SD Un-na med M br (Carlil e Sh) TUR Hattin 1986 (upTU R); Sh urr et al. 199 4 (TU R) SD Mowr y Sh ALB/C EN Kirkla nd et a l. 1999 (ALB /CEN) ; Heat on 195 0 (CE N); St ephen son & Reesi de 1938 ( CEN M owry i n MT) ; Tibe rt et al . 2009 (CEN in nor thern P lains); Yang & Mia ll 2009 (ALB /CEN in nor thern G reat Pl ains); USGS DB (C EN); C ondon 2000 ( CEN i n MT) ; Dutto n 1997 (ALB ); Cad rin et a l. 1995 (CEN in ND & Canad a); Fin n 2010 (ALB /CEN) ; Macr ostrat (APT- CEN " Sh/CO Grp", ALB- CEN " Fm/CO Grp") ; Cobb an & L arson 1997 ( lowCE N) SD Newca stle SS ALB Kirkla nd et a l. 1999 (ALB ); Hea ton 19 50 (CE N); US GS DB (ALB ); Dut ton 1997 ( ALB); Cadri n et al . 1995 (ALB in ND & Ca nada); Finn 2 010 (e quiv to Mudd y SS = ALB) ; Macr ostrat (ALB) ; COS UNA (ALB) SD Fox H ills SS MAA Stephe nson & Reesi de 193 8 (MA A in G reat Pl ains); Tibert et al. 2009 ( MAA in northe rn Pla ins); U SGS D B (MA A); Co bban & Kenn edy 19 92 (M AA); B ecker et al. 2 004 (M AA); S toffer 2003 ( MAA/ Paleoc ene); C rawfor d et al . 2006 (MAA ); Bish op 198 5 (MA A); M acrost rat (CA M/MA A); Co bban & Larso n 1997 ( upCA M/low MAA) ; COS UNA (MAA ) SD Dakot a Fm ALB/C EN Shurr et al. 1 994 (A LB/CE N); CO SUNA (ALB /APT) SD Grane ros Sh CEN Shurr et al. 1 994 (C EN); C OSUN A (CE N) SD Green horn F m CEN/T UR Kirkla nd et a l. 1999 (CEN /TUR) ; Steph enson & Ree side 1 938 (T UR in Great Plains ); Tibe rt et al . 2009 (CEN /TUR in nor thern P lains); Yang & Mi all 200 9 (TUR in nor thern G reat Pl ains); USGS DB (C EN/TU R); Co ndon 2 000 (CEN/ TUR i n MT) ; Cadr in et a l. 1995 (CEN /TUR in ND ); Mac rostrat (CEN/ TUR); Shurr et al. 1994 ( CEN/T UR); C obban & Lar son 19 97 (upCE N/low TUR); COSU NA (C EN/TU R) 150 SD Hell C reek F m MAA Stephe nson & Reesi de 193 8 (DA N In G reat Pl ains); USGS DB (l owest Paleoc ene); H e et al . 2005 (MAA ); Fox 1971 (MAA in MT ); Con don 20 00 (lateM AA in MT); Finn 2 010 (M AA in MT); Macr ostrat (MAA ); COS UNA (MAA ); NON MARIN E SD Niobra ra Chk /Fm CON- CAM Stephe nson & Reesi de 193 8 (CO N/SAN in Gre at Plai ns); T ibert e t al. 20 09 (CON -CAM in nor thern P lains); USGS DB (T UR-C AM); Becke r et al. 2009 (CON -CAM ); Con don 20 00 (CO N/SAN in MT ); Bish op 198 5 (top Niobr ara = SAN/l owCA M); M acrost rat (CE N-SAN ); Cob ban & Larso n 1997 (upCO N- lowCA M); C OSUN A (CO N/SAN ); Shu rr et al . (CON -CAM ); Bert og 201 0 (lowC AM at top) SD Smoky Hills Chk (Niobr ara Ch k) SAN/C AM Shurr et al. ( SAN/C AM); COSU NA (C ON/SA N for Niobra ra Fm ) SD Pierre Sh CAM/ MAA Stephe nson & Reesi de 193 8 (CA M/MA A in G reat Pl ains); Tibert et al. 2009 (CAM /MAA in nor thern P lains); USGS DB (C AM/M AA); H e et al . 2005 (CAM /MAA ); Bec ker et al. 200 4 (into MAA ); Han czaryk & Ga llaghe r 2007 (CAM ); Patr ick et al. 200 4 (CA M/MA A); St offer 2 003 (C AM/M AA); B ishop 1985 ( CAM/ MAA) ; Macr ostrat (CON -MAA "Fm" or SA N-MA A "Sh Fm"); Bertog 2010 (CAM to sta rt); CO SUNA (CAM /MAA ) SD Crow Crk M br (Pierre Sh) CAM Shurr et al. 1 994 (C AM); Hancz ark & Gallag her 20 07 (up CAM) ; Patri ck et a l. 2007 ( midCA M); U SGS D B (CA M) SD De Gr ey Mb r (Pierre Sh) CAM (up) Hancz ark & Gallag her 20 07 (up CAM) ; Patri ck et a l. 2007 (upCA M); U SGS D B (upCA M) SD Gamm on Fer rugino us Mbr (Pierre Sh) CAM (low) Bishop 1985 (lowC AM); Bertog et al. 2007 ( low/m idCAM in Bla ck Hil ls); Bertog 2010 (lowC AM); Bertog 2002 (low/m idCAM ); USG S DB (lowC AM); Cobba n & L arson 1997 ( lowCA M) SD Grego ry Mb r (Pierre Sh) CAM (mid) Shurr et al. 1 994 (C AM); Bertog et al. 2007 ( midCA M in B lack H ills); Hancz ark & Gallag her 20 07 (m idCAM ); Patr ick et al. 200 7 (mid CAM) ; Berto g 2010 ( midCA M); B ertog 2 002 (m idCAM ); USG S DB (CAM ) SD Kara B entoni tic Mb r (Pierre Sh) CAM (up) Bishop 1985 (up-m ostCA M) SD Mitten Black Sh (Pierre Sh) CAM Bishop 1985 (midC AM); Bertog et al. 2007 ( midCA M in B lack H ills); B ertog 2010 ( midCA M); B ertog 2 002 (m idCAM ); Cob ban & Larso n 1997 (midC AM) SD Mobri dge M br (Pierre Sh) MAA Shurr et al. 1 994 (M AA); U SGS D B (MA A) SD Monu ment H ill Bento nite CAM Bishop 1985 (mid/u pCam ); Cob ban & Larso n 1997 (upCA M) 151 (Pierre Sh) SD Red Bi rd Silty Mbr (Pierre Sh) CAM Bishop 1985 ( midCa m); Be rtog et al. 200 7 (mid CAM i n Blac k Hills ); Bert og 2010 ( midCA M); Be rtog 20 02 (mi dCAM ); Cobb an & L arson 1 997 (m idCAM ) SD Sharon Spring s Sh (Pierre Sh) CAM Shurr e t al. 19 94 (CA M); Be rtog et al. 200 7 (mid CAM i n Blac k Hills ); Bert og 2010 ( midCA M); Be rtog 20 02 (mi dCAM ); USG S DB ( CAM) SD Verend rye Mb r (Pierre Sh) CAM ( up) Hancza rk & G allaghe r 2007 (upCA M); Pa trick et al. 200 7 (upC AM); U SGS D B (CAM ) SD Virgin Crk M br (Pierre Sh) CAM Shurr e t al. 19 94 (CA M); US GS DB (CAM ) SD Skull C reek Sh ALB Kirklan d et al. 1999 ( ALB); Heato n 1950 (CEN ); Tibe rt et al. 2009 ( ALB in norther n Plain s); Yan g & M iall 200 9 (ALB in nor thern G reat Pl ains); U SGS DB (A LB); C ondon 2000 ( ALB in MT); Dutton 1997 ( ALB); Cadrin et al. 1 995 (ALB in ND/ Canada ); Mac rostrat (HAUT -ALB, mostly ALB) ; COSU NA (ALB/ APT) TN Coffee Sand CAM Harriso n & Li twin 19 97 (CA M); Ke nnedy & Cob ban 19 91 (CA M in M S); Macro strat (S AN/CA M); CO SUNA (in the middl e of the "TUR -SAN" bin) TN Eutaw Fm SAN/C AM Macro strat (C ON-CA M); M ancini & Puck ett 200 5 (CON /SAN i n NE G ulf); COSU NA (in the mi ddle of the "T UR-SA N" bin ); and s ee pap ers per taining to AL/MS with th ese fm 's TN Owl C rk Fm MAA Macro strat (M AA); a nd see papers pertain ing to A L/MS with th ese fm 's TN Coon C reek To ngue (Ripley Fm) CAM/M AA Verme ij & Du dley 19 82 (CA M/MA A); He ydari 2 001 (M AA in MS); K ennedy et al. 2 000 (C AM); M acrostr at (MA A); Co bban & Kenne dy 199 3 (CAM /MAA ); COS UNA ( CAM) TN McNai ry Sand (Ripley Fm) MAA Heyda ri 2001 (MAA ); Mac rostrat (MAA ); Harr ison & Litwin 1997 ( MAA in MS); H eydari 2000, 2 001 (M AA in MS); C ase & S chwim mer 19 88 (MA A in MS); M ancini & Puck ett 200 5 (upC AM/lo wMAA Ripley in NE Gulf); COSU NA (M AA) TN Tuscal oosa F m CEN-C ON Kenne dy & C obban 1991 ( upCEN Tusca loosa G rp in A L/MS) ; Macr ostrat (CEN- SAN); Manci ni & P uckett 2005 ( midCE N/TUR Tusca loosa F m in N E Gulf); COSU NA (C EN); a nd see papers pertain ing to A L/MS with th ese fm 's TX Anacac ho Lm st CAM Emerso n et al. 1994; Akers & Ake rs 1997 ; Cobb an et a l. 2008 (upCA M); Sweze y & Su llivan 2 004 (C AM); E lder 19 96; Ke nnedy & Cob ban 20 01 (midCA M); M acrostr at (SA N/CAM “lmst, CAM “Fm”); Hence y 1987 (CAM ); Elder 1 996 (lo w/midC AM); C OSUN A (CA M) 152 TX Aguja Fm CAM/M AA Emerso n et al. 1994 ( CAM) ; Akers & Ake rs 1997 (SAN /CAM) ; Rowe et al. 1992 ( CAM) ; Cobb an et a l. 2008 (CAM ); Wag ner & L ehman 2009 ( CAM) ; Longri ch et a l. 2010 (CAM /MAA for up per sh) ; Horto n 2006 (CAM /MAA ); Erdlac Jr. 199 0 (CAM ); Ashm ore 200 3 (CAM /MAA ); Lehm an 198 9a (MA A in Brewst er Co, TX); L ehman 1985 ( in Torn illo Ba sin, TX = CAM ); Wag ner 200 1 (CAM /MAA Big B end reg ion); L ehman 2010 ( CAM i n Brew ster Co ); Robe rts et al. 2 005 (u pCAM ); Mac rostrat (CAM /MAA ); Henc ey 198 7 (CAM /MAA ); Waggo ner 200 6 (CAM /MAA ); Jinna h et al. 2009 ( SAN-m idCAM ); COS UNA (CAM -MAA ) TX Austin Chk CON-C AM Barrier 1980 ( CON-C AM); E merson et al. 1 994 (S AN); M ancini et al. 2 008 (CON/ SAN A ustin G rp for W rn Gul f Coas t); Ake rs & A kers 19 97 (CO N); Alshua ibi 200 6 (CON -lowes t CAM ); Gale et al. 2 008 (u p-most TUR- lowest CAM) ; Cobb an et a l. 2008 (CAM "Fm") ; Elder 1996 ( SAN/C AM "G rp"); Trevin o et al. 2007 ( top = l owCA M in R io Gran de/cen tral TX ); Mark s & Sta m 1983; Y oung 1 986; A mbrose et al. 2 009 (C ON+); Stephe nson & Reesid e 1938 (CON/ SAN); Clark 2009 ( CON/S AN); M acrostr at (TU R-CAM ); Man cini & Pucket t 2005 (midCO N-lowC AM in NW G ulf); C orbett et al. 1 987 (CON/ SAN); Hence y 1987 (CON -CAM ); Brow n & Pi erce 19 62 (CO N-CAM = "Austi nian"); COSU NA (T UR-CA M) TX Atco M br (Austin Chk) CON Barrier 1980 ( CON/S AN); M arks & Stam 1 983 (C ON/SA N); Ak ers & A kers 1997 ( CON); Emers on et a l. 1994 (CON ); You ng 198 6 (mid /upCO N); US GS DB (C ON/SA N = ea rly "Au stinian "); Ma crostra t (CON ); Henc ey 198 7 (CON ); Kenne dy et a l. 2004 (CON ); COS UNA ( TUR/C ON) TX Big Ho use (= Pflu gerville Mbr) (Austin Chk) CAM Barrier 1980 ( SAN); Marks & Stam 1983 ( SAN B ig Hou se); Ak ers & A kers 1997 ( SAN P flugerv ille); E merson et al. 1 994 (C AM); Y oung 1 986 (lo wCAM ); Macro strat (C AM Pf lugervi lle); Be ikirch & Feld mann 1 980 (lo wCAM Pfluge rville); COSU NA ("P elunge rville F m" = C AM) TX Burditt Marl (Austin Chk) SAN/C AM Barrier 1980 ( SAN); Hazel & Pau lson 19 64 (CA M); M arks & Stam 1 983 (SAN) ; Akers & Ake rs 1997 (SAN ); Eme rson et al. 199 4 (CAM ); You ng 198 6 (lowCA M); M acrostr at (SA N); Sw ezey & Sulliv an 200 4 (low CAM) ; Youn g & Marks 1952 ( SAN); Hence y 1987 (CAM ); Ross & Ma ddocks 1983 ( CAM) ; Beikirc h & Fe ldmann 1980 ( CAM) ; COSU NA (S AN/CA M) TX Dessau Mbr (Austin Chk) SAN Barrier 1980 ( SAN); Hazel & Pau lson 19 64 (SA N/CAM ); Mark s & Sta m 1983 (SAN) ; Akers & Ake rs 1997 (CON /SAN b oundar y); Em erson e t al. 19 94 (SAN) ; Youn g 1986 (upSA N/lowC AM); U SGS D B (SAN /CAM = late "Austi nian"); Macro strat (S AN); H encey 1987 ( SAN/C AM); R oss & M addock s 1983 ( SAN/C AM); B eikirch & Feld mann 1 980 (C AM); K ennedy et al. 2 004 (mostly upSAN ); Wag goner 2 006 (u pSAN) ; COSU NA (S AN) 153 TX Jonah L mst (Austin Chk) SAN Barrier 1980 ( SAN); Marks & Stam 1983 ( SAN); Akers & Ake rs 1997 (CON ); Emerso n et al. 1994 ( SAN); Young 1986 ( lowSA N); US GS DB (late "Austi nian" = SAN/C AM); M acrostr at (SA N); He ncey 1 987 (C ON/SA N); Kenne dy et a l. 2004 (midS AN); C OSUN A (SA N) TX San M artine M br (Borac ho Lm st) ALB Emerso n et al. 1994 ( ALB B oracho ); Aker s & Ak ers 199 7 (ALB ) TX Vinson Chk (Austin Chk) CON/S AN Barrier 1980 ( SAN); Marks & Stam 1983 ( CON); Akers & Ake rs 1997 (CON ); Emerso n et al. 1994 ( SAN); Young 1986 ( lowSA N); US GS DB (mid "Austi nian"… SAN?) ; Macr ostrat ( SAN); Hence y 1987 (CON ); Kenn edy et al. 2004 ( upCON /lowSA N); CO SUNA (SAN ) TX Buda L mst CEN Kues 1 989 (lo wCEN ); Tapp an 194 3 (ALB ); Barr ier 198 0 (CEN ); Eme rson et al. 1994 ( CEN); Manci ni et al . 2008 (lowCE N in W rn Gul f Coas t); Ake rs & A kers 1997 ( CEN); Cobba n et al. 2008 ( CEN); Huffm an 196 0 (low CEN); Getzen daner 1 930 (C EN); Im lay 194 5 (CEN ); You ng 198 6 (low CEN); Ambro se et al . 2009 (CEN) ; Allm on & C ohen 2 008 (lo wCEN ); Clar k 2009 (CEN) ; Macr ostrat ( CEN); Hopki ns et al . 1999 (CEN) ; Scott 1977 ( CEN); Mancin i & Pu ckett 2 005 (lo wCEN in NW Gulf); Hence y 1987 (CEN ); COSU NA (C EN); P owell 1 965 (C EN); E rdlac J r. 1990 (CEN ) TX Blosso m Sand SAN Emerso n et al. 1994 ( CAM) ; Akers & Ake rs 1997 (SAN ); Kenn edy et al. 200 1 (latest SAN); Hazel & Pau lson 19 64 (SA N); Ma crostra t (SAN ); Henc ey 198 7 (CON/ SAN); Wagg oner 20 06 (up SAN); COSU NA (S AN) TX Bonham Fm CON/S AN Alshua ibi 200 6 (SAN & sam e age B rucevil le Mbr /Austin Chk); Kenne dy et a l. 2001 ( SAN); Hazel & Pau lson 19 64 (CO N/SAN ); Mac rostrat (CON/ SAN); Hencey 1987 ( CON) TX Boquil las Fm CEN/T UR Barrier 1980; Emerso n et al. 1994; Akers & Ake rs 1997 ; Cobb an et a l. 2008 (CEN- SAN); Powel l 1965 (CEN/ TUR); Young 1958 ( CEN/T UR); E rdlac J r. 1990 ( CEN/T UR); H uffman 1960 ( CEN/T UR); A shmore 2003 ( TUR/C ON); Lehma n 1985 (CEN -lowCA M for B oquilla s + Pen Fm's); Wagn er 2001 (CEN - SAN " Boquil las Fla gs" Big Bend region) ; Macr ostrat ( CEN-C AM); H encey 1987 ( CEN-S AN); J innah e t al. 20 09 (TU R/CON ); COS UNA ( CEN-C AM, S an Vicent e Mbr = TUR -CAM ) TX Corsica na Mar l MAA Barrier 1980 ( MAA) ; Emer son et al. 199 4 (MA A); Ak ers & A kers 19 97 (MAA ); Man cini et al. 200 8 (MA A in W rn Gul f Coas t); Swe zey & Sulliva n 2004 ( MAA) ; Elder 1996 ( upMA A); Ke nnedy & Cob ban 19 93 (MA A); Tre vino et al. 2 007 (u pMAA ); You ng 198 6 (low /midM AA); S tephen son & Reesid e 1938 ( MAA) ; Clark 2009 ( MAA) ; Manc ini & P uckett 2005 ( MAA) ; Hanc ock 1993 ( upMA A); He ncey 1 987 (M AA) TX Dakota Fm CEN Macro strat (A PT-TU R for “ Fm/Gr p”, BE RR-TU R for “ Grp”); most o ther sta tes is CEN 154 TX Del Ri o Clay CEN Tappan 1943 ( ALB); Barrie r 1980 (ALB /CEN) ; Akers & Ake rs 1997 (CEN ); Cobba n et al. 2008 ( lowCE N); Erd lac Jr. 1990 ( CEN); Getze ndaner 1930 (CEN) ; Youn g 1986 (lowC EN); A llmon & Coh en 200 8 (low CEN); Macro strat (ALB/ CEN); Scott 1 977 (C EN); H encey 1987 ( CEN); COSU NA (A LB/CE N); Emerso n et al. 1994 ( CEN) TX Eagle F ord Fm CEN/T UR Barrier 1980 ( CEN/T UR); E merson et al. 1 994 (C EN/TU R); Ma ncini e t al. 2008 ( upCEN /TUR) ; Akers & Ake rs 1997 (CEN /TUR) ; Myer s 2010 (CEN/ TUR); Huffm an 196 0 (CEN /TUR) ; Youn g 1986 (CEN /TUR) ; Ambr ose et al. 2 009 (C EN/TU R); All mon & Cohen 2008 ( midCE N lowe r Eagle Ford); Stephe nson & Reesid e 1938 (CEN /TUR) ; Kirkl and et al. 199 9 (CEN /TUR) ; Clark 2 009 (C EN/TU R); Ma crostra t (ALB -TUR) ; Manc ini & P uckett 2005 (upCE N/TUR ); Daw son 19 97 (CE N/TUR ); Henc ey 198 7 (CEN -CON) ; Liro e t al. 199 4 (CEN /TUR) ; Brow n & Pi erce 19 62 (CE N/TUR = "Ea gleford ian"); Dawso n 2000 (CEN /TUR) ; Chris topher 1982 ( CEN/T UR); C OSUN A (AL B- TUR) TX Arcadi a Park Mbr (Eagle Ford) TUR Huffm an 196 0 (TUR ); Mye rs 2010 (TUR ); Aker s & Ak ers 199 7 (TUR ); Emerso n et al. 1994 ( TUR); USGS DB (T UR); M oreman 1942 ( upTUR ); Dawso n 1997 (TUR ); Liro et al. 1 994 (T UR); B rown & Pierce 1962 (mid/la teTUR ); Daw son 20 00 (TU R); Ch ristoph er 1982 (upTU R) TX Britton Clay (Eagle Ford) CEN/T UR Allmon & Coh en 200 8 (mid CEN); Huffm an 196 0 (CEN /TUR) ; Myer s 2010 (CEN/ TUR); Akers & Ake rs 1997 (CEN /TUR) ; Emer son et al. 199 4 (CEN/ TUR); USGS DB (m iddle u pCEN) ; More man 19 42 (low TUR); Dawso n 1997 ( CEN/T UR); L iro et a l. 1994 (CEN /TUR) ; Brow n & Pi erce 19 62 (upCE N/lowT UR); B ishop e t al. 19 92 (CE N); Da wson 2 000 (C EN/TU R); Christo pher 19 82 (CE N/lowT UR); B ishop & Brann en 199 2 (CEN ); Blak e 2010 (CEN/ TUR) TX Eagle M tn SS CEN Emerso n et al. 1994 ( CEN); Akers & Ake rs 1997 (CEN ); Cobb an et a l. 2008 (lowCE N); Sc ott 197 7 (CEN ) TX Edward s Lmst ALB Pittma n 1959 (ALB ); Clar k 2009 (ALB ); Allm on & C ohen 2 008 (A LB); Macro strat (A LB); S cott 19 77 (AL B); Ma ncini & Pucke tt 2005 (mid/u pALB in NW G ulf); C OSUN A (AL B) TX El Pica cho Fm CAM/M AA Emerso n et al. 1994; Akers & Ake rs 1997 ; Lehm an 198 9a,b (M AA); L ehman 1985 ( upMA A, equ iv to Ja velina Fm); W agner 2 001 (M AA Sie rra Vie ja Reg ion = Jave lina Fm in Big Bend Region ); Lehm an 201 0 (MA A, corr w/ Jav elina F m in Brew ster Co ); NON MARIN E TX Escond ido Fm MAA Barrier 1980; Emerso n et al. 1994; Akers & Ake rs 1997 ; Swez ey & S ullivan 2004; E lder 19 96; Sn edden 1991 ( MAA/ DAN); Trevin o et al. 2007 ( upMA A); Stephe nson & Reesid e 1938 (MAA ); Mac rostrat (MAA /DAN) ; Henc ey 198 7 (MAA ); Elde r 1996 (upMA A); CO SUNA (MAA ) 155 TX Frederi cksbur g Grp ALB Kues 1 989 (m id/upA LB); T appan 1943 ( ALB); Emers on et a l. 1994 (ALB ); Akers & Ake rs 1997 (ALB ); Clar k 2009 (ALB ); Allm on & C ohen 2 008 (ALB) ; Macr ostrat ( ALB/C EN); S cott 19 77 (AL B); Ma ncini & Pucke tt 2005 (midA LB in N E Gulf ) TX Coman che Pe ak (Freder icksbur g Grp) ALB Kues 1 989 (A LB Fre dericks burg); Tappan 1943 ( ALB); Emers on et a l. 1994 (ALB) ; Akers & Ake rs 1997 (ALB ); Clar k 2009 (ALB ); Allm on & C ohen 2 008 (midA LB); M acrostr at (AL B); Sco tt 1977 (ALB ); Man cini & Pucket t 2005 (midA LB Fre dericks burg G rp in N E Gulf ); COS UNA ( ALB) TX Goodla nd Lm st (Freder icksbur g Grp) ALB Kues 1 989 (A LB); T appan 1943 ( ALB); Emers on et a l. 1994 (mid/u pALB) ; Akers & Ake rs 1997 (ALB ); Clar k 2009 (ALB Freder icksbu rg); Al lmon & Cohen 2008 ( ALB F rederic ksburg ); Mac rostrat (ALB) ; Scott 1977 ( ALB); Mancin i & Pu ckett 2 005 (m idALB Freder icksbu rg Grp in NE Gulf); COSU NA (ALB) TX Walnu t Clay (Freder icksbur g Grp) ALB Kues 1 989 (m idALB ); Tapp an 194 3 (ALB ); Eme rson et al. 199 4 (ALB ); Aker s & Ake rs 1997 (ALB ); Clar k 2009 (ALB ); Allm on & C ohen 2 008 (A LB); Macro strat (A LB); S cott 19 77 (AL B); Ma ncini & Pucke tt 2005 (midA LB in NW G ulf); C OSUN A (AL B) TX Gober Chk CAM Alshua ibi 200 6 (low est CA M); Em erson e t al. 19 94 (CA M); Ak ers & A kers 1997 ( CAM) ; Haze l & Pau lson 19 64 (CA M); M acrostr at (SA N/CAM "Fm") ; Hanco ck 199 3 (low CAM) ; Henc ey 198 7 (CAM ); COS UNA ( SAN/C AM "Tongu e") TX Kemp Clay MAA Barrier 1980; Emerso n et al. 1994; Akers & Ake rs 1997 ; Manc ini et a l. 2008 (upMA A for w estern Gulf C oast); E lder 19 96; Yo ung 19 86 (up MAA) ; Stephe nson & Reesid e 1938 ; Clark 2009 ( MAA) ; Macr ostrat ( MAA) ; Henc ey 1987 ( MAA) ; Elder 1996 ( upMA A); CO SUNA (MAA ) TX Kiamic hi Fm ALB Kues 1 989 (u pALB) ; Tapp an 194 3 (ALB ); Eme rson et al. 199 4 (ALB Freder icksbu rg Grp ); Aker s & Ak ers 199 7 (ALB Freder icksbu rg Grp ); Allm on & Coh en 200 8 (ALB ); Mac rostrat (ALB/ CEN a s Wash ita Grp ); Scot t 1977 (ALB) ; COSU NA (A LB) TX Marlbr ook M arl CAM Emerso n et al. 1994 ( CAM) ; Akers & Ake rs 1997 (CAM ); Man cini et al. 200 8 (upCA M for w estern Gulf C oast); T revino et al. 2 007 (lo wMAA ); Mark s & Stam 1 983 (C AM/M AA in SW AR ); Clar k 2009 (CAM ); Mac rostrat (CAM /MAA ); Man cini & Pucket t 2005 (CAM ); Elde r 1996 (midC AM); COSU NA (C AM/M AA) TX Nacato ch San d CAM ( up)/MA A Ke nnedy et al. 2 000 (u ppermo st CAM in TX , lower most M AA in AR); M ancini et al. 2 008 (u pCAM for we stern G ulf Coa st); Ba rrier 19 80 (MA A); Em erson e t al. 199 4 (CAM ); Aker s & Ak ers 199 7 (CAM ); Mark s & Sta m 1983 (MAA ); Stephe nson & Reesid e 1938 (MAA ); Mac rostrat (MAA ); Man cini & Pucket t 2005 ( upCAM in NW Gulf); Hence y 1987 (MAA ); COS UNA ( MAA) 156 TX Navar ro Grp CAM/ MAA Akers & Ak ers 19 97 (CA M/MA A); Em erson et al. 1 994 (C AM/M AA); Y oung 1986 ( MAA) ; Steph enson & Ree side 1 938 (M AA); C lark 20 09 (M AA); Macro strat (C AM-D AN); C OSUN A (MA A); US GS DB (CAM /MAA ) TX Neylan dville Marl Navar ro Grp CAM/ MAA Emers on et a l. 1994 (CAM ); Ake rs & A kers 1 997 (C AM); Clark 2009 ( MAA) ; Macro strat (M AA); M arks & Stam 1983 ( MAA) ; Henc ey 198 7 (MA A); COSU NA (M AA) TX Ojinag a Fm CEN-C AM Emers on et a l. 1994 ; Aker s & A kers 1 997; C obban et al. 2008 ( CEN-S AN); Powel l 1965 (CEN /CON ); Leh man 1 989b ( upCEN -lowC AM); Lehma n 1985 ; Wagn er 200 1 (CE N-CA M Sie rra Vi eja Re gion); Lehm an 201 0 (CE N- lowCA M); W aggon er 200 6 (low CAM) TX Olmos Fm MAA Barrie r 1980 (MAA ); Eme rson e t al. 19 94 (M AA); A kers & Akers 1997 (MAA ); Elde r 1996 (CAM /MAA ); Sne dden 1 991 (M AA); E strada -Ruiz et al. 2010 ( upCA M/low MAA in Me xico); Trevin o et al . 2007 (lowM AA); M arks & Stam 1 983; S tephen son & Reesi de 193 8 (MA A); M acrost rat (CA M/MA A); Hence y 1987 (MAA ); Elde r 1996 (upCA M/low MAA) ; COS UNA (CAM /MAA ) TX Pecan Gap F m CAM Barrie r 1980 ; Eme rson e t al. 19 94; Ak ers & Akers 1997; Manc ini et a l. 2008 (midC AM fo r Wrn Gulf C oast); Sweze y & Su llivan 2004; Elder 1996; Trevin o et al. 2 007 (u pCAM ); Mar ks & S tam 19 83; Yo ung 19 86 (m idCAM ); Haz el & Paulso n 1964 ; Steph enson & Ree side 1 938; M acrost rat (CA M); H ancock 1993 (midC AM); Hence y 1987 (CAM ); Chim ene & Madd ocks 1 984 (C AM); Locke & Gar tner 19 94 (CA M); E lder 19 96 (m idCAM ); COS UNA (CAM ) TX Pen Fm CON- CAM Emers on et a l. 1994 (CON /SAN) ; Aker s & A kers 1 997 (C ON); C obban et al. 2008 ( CAM) ; Hort on 200 6 (SA N/CA M); K enned y & C obban 2001 (midC AM at leas t in pa rt); Ke nnedy & Co bban 1 991 (S AN m iddle P en, ex tends to lowCA M); E rdlac J r. 1990 (CON -CAM ); Ash more 2 003 (S AN/C AM); Lehma n 1985 ( Pen + Boqui llas sp ans CE N-low CAM) ; Wag ner 20 01 (SA N/CA M in B ig Bend region ); Leh man 2 010 (C EN-lo wCAM in Bre wster Co TX ); Rob erts et al. 2005 ( midCA M); M acrost rat (CO N/SAN ); Wag goner 2006 ( lowCA M = Terlin gua Fm ); Jinn ah et a l. 2009 (low/ midCA M); C OSUN A (CO N/SAN ) TX Roxto n Lms t CAM Cobba n & K enned y 1992 (CAM Roxto n Mbr of Go ber Ch k); all other ref's fo r Gober Chk = CAM , so if is a m br, the n is CA M TX San C arlos S S CON- CAM Emers on et a l. 1994 ; Aker s & A kers 1 997; C obban et al. 2008 ( CAM) ; Lehm an 1989b (CAM ); Leh man 1 985 (C AM, e quiv to Aguja Fm in Torni llo Ba sin); Wagn er 200 1 (CA M Sie rra Vi eja Re gion); Lehm an 201 0 (CA M); W aggon er 2006 ( lowCA M); PR EDOM INATE LY NO NMAR INE TX San M iguel F m CAM/ MAA Barrie r 1980 (MAA ); Eme rson e t al. 19 94 (CA M); A kers & Akers 1997 (CAM ); Sne dden 1 991 (M AA); T revino et al. 2007 ( lowM AA); M arks & Stam 1983 ( MAA) ; Steph enson & Ree side 1 938 (C AM); Macro strat (C AM); Hence y 1987 ( CAM/ MAA) ; Elde r 1996 (mid/ upCA M); C OSUN A (CA M) 157 TX Sprink le Fm CAM Akers & Ake rs 1997 (CAM ); Eme rson et al. 199 4 (CAM ); You ng 198 6 (lowCA M); US GS DB (CAM ); Henc ey 198 7 (CAM ); Chim ene & Maddo cks 1984 ( CAM) ; Ross & Mad docks 1983 ( CAM) ; Elder 1996 ( low/mi dCAM ) TX Taylor Grp CAM Barrier 1980 ( CAM “ Fm”); Emerso n et al. 1994 ( CAM/M AA); A kers & Akers 1997 ( MAA) ; Youn g 1986 (mid/u pCAM ); Haze l & Pau lson 19 64 (CA M low er Taylor ); Step henson & Ree side 19 38 (CA M); Cl ark 200 9 (SAN /CAM) ; Macro strat (C AM-D AN); U SGS D B (CA M); M arks & Stam 1 983 (C AM); Emerso n et al. 1994 ( CAM) ; Henc ey 198 7 (CAM lower Taylor ); Chim ene & Maddo cks 19 84 (CA M); Ro ss & M addock s 1983 (CAM ); Lock e & Ga rtner 1994 ( CAM) ; COSU NA (C AM/M AA) TX Bergstr om Fm (Taylo r Grp) CAM Akers & Ake rs 1997 (CAM ); Eme rson et al. 199 4 (CAM ); You ng 198 6 (upCA M); US GS DB (CAM ); Henc ey 198 7 (MA A); Ch imene & Mad docks 1984 ( CAM) ; Kenn edy & Cobba n 1999 (CAM ) TX Terling ua Fm CEN-C AM?? Ashmo re 2003 (TUR -CAM ); Aker s & Ak ers 199 7 (CEN -CON) ; Horto n 2006 (Terlin gua Cr k SS M br/Agu ja Fm = CAM) ; Lehm an 199 1 (upC AM Te rlingua Crk SS Mbr/A guja Fm ); Row e et al. 1992 ( CAM) ; Emer son et al. 199 4 (CEN - SAN); Wagn er 2001 (CAM Terlin gua SS Mbr/A guja Fm ); USG S DB ( CEN- SAN); Hence y 1987 (CEM -CAM ); Wag goner 2 006 (= Pen Fm which is lowCA M, Ter lingua Crk SS /Aguja = CAM ); COS UNA ( CEN-S AN) TX Washit a Grp ALB/C EN Kues 1 989 (A LB/CE N); Ta ppan 1 943 (A LB); A kers & Akers 1997 (ALB/ CEN); Emers on et a l. 1994 (ALB /CEN) ; Manc ini et a l. 2008 (lowC EN for we stern G ulf Coa st); Hu ffman 1960 ( lowCE N); Im lay 194 5 (ALB /CEN) ; Young 1986 ( upALB /lowCE N); Am brose e t al. 20 09 (CE N); Al lmon & Cohen 2008 ( ALB/C EN); K irkland et al. 1 999 (A LB/CE N); Cla rk 200 9 (up- mostA LB/CE N); Ma crostra t (ALB /CEN) ; Hopk ins et a l. 1999 (ALB /CEN) ; Scott 1 977 (A LB/CE N); Ma ncini & Pucke tt 2005 (upAL B/lowC EN in NE Gulf); COSU NA (A LB/CE N) TX Denton Fm Washit a Grp) ALB Kues 1 989 (A LB); T appan 1943 ( ALB); Emers on et a l. 1994 (ALB ); Aker s & Akers 1997 ( ALB); Allmo n & Co hen 20 08 (up ALB); Macro strat (A LB); Hopkin s et al. 1999 ( upALB ); Scot t 1977 (ALB) ; Manc ini & P uckett 2005 (upAL B/lowC EN Wa shita G rp in N E Gulf ); COS UNA ( ALB) TX Duck C rk Fm (Washi ta Grp) ALB Kues 1 989 (A LB); E merson et al. 1 994 (A LB); A kers & Akers 1997 ( ALB); Allmon & Coh en 200 8 (upA LB); M acrostr at (AL B/CEN ); Hop kins et al. 199 9 (upAL B); Sco tt 1977 (ALB ); Man cini & Pucket t 2005 (upAL B/lowC EN Washit a Grp i n NE G ulf); C OSUN A (AL B) TX Fort W orth Lm st (Washi ta Grp) ALB Emerso n et al. 1994 ( ALB); Akers & Ake rs 1997 (ALB ); Allm on & C ohen 2008 ( upALB ); Mac rostrat (ALB) ; Hopk ins et a l. 1999 (upCE N); Sc ott 197 7 (ALB) ; Manc ini & P uckett 2005 ( upALB /lowCE N Was hita Gr p in NE Gulf); COSU NA (A LB) 158 TX Grayso n Marl (Washi ta Grp) CEN Kues 1 989 (lo wCEN ); Barr ier 198 0 (ALB /CEN) ; Emer son et al. 199 4 (ALB/ CEN); Akers & Ake rs 1997 (CEN ); Imla y 1945 (CEN ); Amb rose et al. 2009 ( CEN); Allmo n & Co hen 20 08 (low CEN); Tappa n 1943 (ALB ); Clar k 2009 ( CEN); Macro strat D B (CEN ); Hop kins et al. 199 9 (CEN ); Scot t 1977 (CEN) ; Manc ini & P uckett 2005 ( lowCE N in N W Gul f); Hen cey 19 87 (CE N); COSU NA (C EN) TX George town L mst (Washi ta Grp) ALB/C EN Emerso n et al. 1994 ( ALB/C EN); M ancini et al. 2 008 (lo wCEN Georg etown for Wrn G ulf Coa st); Ak ers & A kers 19 97 (AL B/CEN ); Clar k 2009 (ALB /CEN) ; Getzen daner 1 930 (A LB/CE N); Im lay 194 5 (ALB ); You ng 198 6 (ALB /CEN) ; Ambro se et al . 2009 (ALB/ CEN); Allmo n & Co hen 20 08 (AL B/CEN ); Macro strat (A LB/CE N); Sc ott 197 7 (ALB /CEN) ; Manc ini & P uckett 2005 (upAL B in N W Gul f); CO SUNA (ALB /CEN) TX Main S treet L mst (Washi ta Grp) ALB/C EN Kues 1 989 (lo wCEN ); Eme rson et al. 199 4 (ALB /CEN) ; Akers & Ake rs 1997 (CEN/ ALB); Imlay 1945 ( ALB); Allmo n & Co hen 20 08 (low CEN); Tappa n 1943 ( ALB); Sivers on et a l. 2007 (upAL B); Ma crostra t DB (A LB/CE N); Hopkin s et al. 1999 ( CEN); Scott 1 977 (C EN); C OSUN A (CE N) TX Pawpa w (Washi ta Grp (Denis on)) ALB Kues 1 989 (A LB/low estCEN ); Tapp an 194 3 (ALB ); Eme rson et al. 199 4 (ALB) ; Akers & Ake rs 1997 (ALB ); Span gler & Peters on 195 0 (ALB ); Allm on & Coh en 200 8 (ALB /CEN) ; Siver son et al. 200 7 (upA LB); H opkins et al. 1 999 (ALB/ CEN); Scott 1 977 (A LB); M ancini & Puck ett 200 5 (upA LB/low CEN Washit a Grp i n NE G ulf); C OSUN A (AL B) TX Weno Fm ALB Allmon & Coh en 200 8 (ALB ); Sive rson et al. 200 7 (upA LB); B eikirch & Feldma nn 198 0 (ALB ); Hop kins et al. 199 9 (upA LB); S cott 19 77 (AL B); Allmon 2004 ( ALB); COSU NA (A LB) TX Woodb ine Fm CEN/T UR Barrier 1980 ( CEN); Emers on et a l. 1994 (CEN ); Man cini et al. 200 8 (upC EN in wes tern Gu lf Coas t); Ake rs & A kers 19 97 (CE N); My ers 201 0 (CEN ); Huffm an 196 0 (CEN ); Amb rose et al. 200 9 (CEN ); Allm on & C ohen 2 008 (CEN) ; Steph enson & Ree side 19 38 (CE N); Ki rkland et al. 1 999 (C EN); Macro strat (C EN/TU R); Ma ncini & Pucke tt 2005 (mid/u pCEN in NW Gulf); Dawso n 1997 (CEN in part ); Liro et al. 1 994 (C EN); B rown & Pierce 1962 (CEN) ; Daws on 200 0 (CEN ); Chri stophe r 1982 (CEN in part ); COS UNA (CEN) ; Hanc ock 20 04 (low /midCE N) TX Wolfe City Fm CAM Barrier 1980 ( CAM) ; Emer son et al. 199 4 (CAM ); Aker s & Ak ers 199 7 (CAM ); Man cini et al. 200 8 (mid CAM f or Wrn Gulf C oast); C obban & Kenne dy 199 3 (mid CAM) ; Mark s & Sta m 1983 (CAM ); Haze l & Pau lson 19 64 (CAM ); Step henson & Ree side 19 38 (CA M); Cl ark 200 9 (CAM ); Mac rostrat (CAM ); Man cini & Pucket t 2005 (midCA M); He ncey 1 987 (C AM); L ocke & Gartne r 1994 (CAM ); COS UNA ( CAM) 159 UT Blair F m CAM Finn 2 005 (C AM in WY); Loseth et al. 2 006 (lo wCAM ); Finn & Joh nson 2 005 (CAM ); Mac rostrat (TUR) ; Jinna h et al. 2009 ( lowCA M) UT Burro C anyon Fm APT-C EN Simmo ns 195 7 (corr elates w / Ceda r Mtn F m in U T = AL B/CEN ); Mill er 1987 (correl ates w/ Cedar Mtn F m in U T = AL B/CEN ); Aub rey 198 9 (ALB /APT); Kirklan d et al. 1999 ( equiv t o Ruby Ranch Mbr/C edar M tn Fm = APT /ALB) ; Eaton & Cife lli 200 1 (ALB /CEN) ; USGS DB (B ARR-A LB); D eCelles & Cooga n 2006 (HAU T-ALB ); Mac rostrat (HAUT -ALB) ; NON MARI NE in CO UT Castleg ate SS CAM Lawton et al. 2 003 (m idCAM ); Robi nson 2 005 (m id/upC AM); M aiall & Arush 2001 ( CAM) ; Robin son & Slinger land 19 98 (CA M); M iall 199 3 (CAM ); McLau rin & S teel 20 00 (mi dCAM ); Gall in et al . 2010 (CAM ); Asch off & S teel 2011 ( mid/up CAM) ; Jinna h et al. 2009 ( mid/up CAM) ; Johns on 198 7 (CAM ); Krystin ik & D eJarnet t 1995 (mid/u pCAM ) UT Cedar Mtn Fm ALB/C EN Cifelli 1999 ( ALB/C EN); A ubrey 1 989 (A LB); Y oung 1 960 (A LB/CE N); Ry er 1983 ( ALB/C EN); K irkland et al. 1 999 (B ARR-C EN); E aton & Cifelli 2001 (ALB/ CEN); Nydam & Cife lli 200 2 (ALB /CEN) ; USGS DB (A LB/CE N); DeCell es & C oogan 2006 ( HAUT -ALB) ; Macr ostrat ( APT/A LB); C OSUN A (APT/A LB); N ONMA RINE UT Dakota SS ALB/C EN Heaton 1950 ( CEN); Aubre y 1989 (CEN ); John son 20 03 (CE N); Co bban & Reesid e 1952 a (CEN ); Edw ards et al. 200 5 (CEN ); Ryer 1983 ( ALB/C EN); Kirklan d et al. 1999 ( CEN); USGS DB (A LB/CE N); Ki rschba um & R oberts 2005 ( CEN); Eaton 1991 ( CEN); Eaton et al. 1 999 (C EN); M acrostr at (ALB/ CEN in NM, A PT-TU R "Fm /Grp", BERR -TUR for "Gr p"); CO SUNA (ALB/ CEN); Edwar ds et al . 2005 (CEN) ; Golds trand 1 994 (C EN); T ibert et al. 2009 ( CEN); Leitho ld 1994 (into u pCEN) ; Cobb an et a l. 2000 (CEN /TUR) ; Sethi & Leitho ld 1997 (into u pCEN) ; Sagem an 199 6 (CEN ); lowe r 1/2 D akota is NON MARI NE UT Echo C anyon Conglo merate CON-M AA Lehma n 1987 (MAA , correl ates w/ Price R iver = CAM/M AA); K ilbourn e 1969 (correl ates w/ Ericso n SS/M esaverd e in W Y = CA M/MA A); US GS DB (CON - SAN); Wiltsc hko & Dorr 1 983 (C ON); D eCelles 1994 ( CON/S AN); D eCelles & Cav azza 19 99 (SA N); Ma crostra t (CAM ); COS UNA ( CAM) ; NONM ARINE UT Frontie r Fm CEN-C ON Johnso n 2003 (TUR ); Cobb an & R eeside 1952a, b (TUR ); You ng 196 0 (TUR ); USGS DB (A LB-CO N); Bh attacha rya & W illis 20 01 (CE N/TUR in WY ); Willis et al. 1 999 (C EN/TU R in W Y); Ry er 1977 (ALB -CON) ; Finn 2005 (CEN- CON); DeCel les & C avazza 1999 ( CEN/T UR); K irschba um & R oberts 2005 ( CEN/T UR); M acrostr at (TU R "SS" or AL B-SAN "Fm") ; COSU NA (CEN- SAN); Nicho ls & Sw eet 199 3 (CEN /TUR i n WY) ; Wilts chko & Dorr 1983 ( TUR/C ON); N ichols & Jaco bson 1 982 (C EN/TU R Fron tier); F inn & Johnso n 2005 (CEN -CON) 160 UT Henefe r Fm TUR-C AM Cobba n & Re eside 1 952a (C ON/SA N); Co bban & Reesid e 1952 b (CON/ SAN+) ; USGS DB (P aleocen e); DeC elles 1 994 (T UR/CO N); De Celles & Cav azza 19 99 (TU R/CON ); Mac rostrat (SAN/ CAM) ; COSU NA (S AN); at least pa rtially NONM ARINE UT Hilliard Sh CON/S AN Heaton 1950 ( MAA in WY ); Nich ols & S weet 1 993 (C ON/SA N in W Y); USGS DB (C ON/SA N); Wi ltschko & Dor r 1983 (TUR -SAN) ; DeCe lles 19 94 (SAN) ; Finn 2005 ( CON/S AN); K irschba um & R oberts 2005 ( TUR/C ON); Finn & Johnso n 2005 (CON /SAN) ; COSU NA (C ON) UT Indiano la Grp ALB-C AM Stephe nson & Reesid e 1938 (CEN -SAN) ; Cobb an & R eeside 1952a (CEN- SAN); Horto n et al. 2004 ( ALB-C AM); M aiall & Arush 2001 ( into CA M); Robins on & S lingerl and 19 98 (TU R-CAM at leas t); USG S DB ( CEN-C AM); Dickin son et al. 198 6 (SAN /CAM at least ); DeC elles & Cooga n 2006 (ALB - CAM) ; Lawt on 198 5 (ALB -CAM ); Talli ng et a l. 1995 (SAN /CAM at least ); Macro strat (B ERR-S AN); C OSUN A (CO N/SAN ); PRE DOMI NATEL Y NONM ARINE UT Iron Sp rings F m CEN/T UR Cobba n & Re eside 1 952a (C EN/TU R); Ea ton 199 9 (CEN -SAN) ; Golds trand 1994 ( CEN-C AM); T ibert et al. 200 9 (TUR -CON) ; USGS DB (C EN/TU R); Macro strat (C EN-MA A); CO SUNA (CEN -MAA ); Ryer 1983 ( CEN/T UR) NONM ARINE UT Kaipar owits F m CAM/M AA Heaton 1950 ( DAN); Cobba n & Re eside 1 952a (M AA); M iall 199 3 (CAM /MAA ); Robi nson 2 005 (C AM at least); Yoshi da 200 0 (CAM /MAA ); Eaton 1999 ( CAM a t least) ; Golds trand 1 994 (C AM); T ibert et al. 200 9 (CAM ); USGS DB (C AM); C ifelli 1 990 (C AM); R oberts et al. 2 005 (C AM); E aton et al. 1999 ( CAM) ; Gates & Sam pson 2 007 (u pCAM ); Mac rostrat (SAN- MAA) ; Gallin et al. 2 010 (C AM); J innah e t al. 20 09 (up CAM) ; COSU NA (M AA); NONM ARINE UT Manco s Sh CEN-C AM Heaton 1950 ( CEN-S AN); K irkland et al. 1 999 (st arts CE N/TUR ); Aub rey 198 9 (starts CEN); Hettin ger & K irschba um 200 2 (CEN -CAM ); John son 20 03 (CE N- CAM) ; Shanl ey & M cCabe 1995 ( into SA N); Co bban & Reesid e 1952 a,b (ALB- CAM) ; Youn g 1960 (starts TUR) ; Birkh ead 20 05 (int o midC AM); Edwar ds et al . 2005 (into u pSAN) ; Hettin ger & K irschba um 200 2 (CEN -CAM ); Johnso n et al. 2005 ( into CA M); Pa ttison 1 995 (in to CAM ); Robi nson & Slinger land 19 98 (TU R-CAM at leas t); Rob inson 2 005 (in to CAM ); Ryer 1983 (CEN- CAM) ; Taylo r et al. 2002 ( into CA M); Ki rkland et al. 1 999 (C EN sta rt); USGS DB (A LB-CA M); Ro berts e t al. 20 05 (int o CAM ); Mac rostrat (CEN- CAM) ; COSU NA (C EN-CA M) 161 UT Ancho r Mine Tongu e (Manco s Sh) CAM Birkhe ad 200 5 (Bac ulites s cotti zo ne = m idCAM ); Robi nson 2 005 (u nderlie s Sego S S = CA M); W illis & Gabel 2001 ( equiv t o late S ego SS = upC AM); Willis & Gab el 2003 (btwn lower & uppe r Sego SS = C AM); K lein et al. 199 9 (above Castle gate = CAM) ; York et al. 2 011 (sp lits Seg o = mi dCAM ); War ner 1964 ( btwn p arts of Sego = midCA M); As choff & Steel 2 011 (m idCAM ); Krystin ik & D eJarnet t 1995 (midCA M) UT Blackh awk Fm (Manco s Sh) CAM Edwar ds et al . 2005 (CAM ); USG S DB ( CAM) ; Adam s & Bh attacha rya 200 5 (CAM ); Birk head 2 005 (C AM); D ickinso n et al. 1986 ( CAM) ; Horto n et al. 2004 ( CAM) ; Johns on et a l. 2005 (CAM ); Law ton 198 5 (CAM ); Mial l & Ar ush 2001 ( CAM) ; Miall 1993 ( CAM) ; Pattis on 199 5 (CAM ); Robi nson & Slinger land 19 98 (CA M); Ro binson 2005 ( CAM) ; Yosh ida 200 0 (mid CAM) ; Heaton 1950 ( CAM) ; McLa urin & Steel 2 000 (lo wCAM ); Law ton et a l. 2003 (CAM ); Gall in et al . 2010 (CAM ); Jinna h et al. 2009 ( lowCA M); Kr ystinik & DeJarn ett 199 5 (low /midCA M) UT Blue G ate Mb r (Manco s Sh) CON/S AN Johnso n 2003 (CON -CAM ); Edw ards et al. 200 5 (CON -CAM ); USG S DB (upTU R-CAM ); Cond on 200 3 (CON /SAN) ; Field ing 201 0 (upC ON/SA N); Gardne r 1995 (CON in part ); Law ton 198 5 (CON /SAN) ; Robin son & Slinger land 19 98 (CO N/SAN ); Ryer 1991 ( CON/S AN); L awton et al. 2 003 (CON/ SAN); Gallin et al. 2 010 (C ON/SA N); Ma rtinson et al. 1 998 (C ON- CAM) UT Emery SS (Manco s Sh) SAN Edwar ds et al . 2005 (SAN) ; USGS DB (S AN/CA M); El der & K irkland 1993 (SAN) ; Cond on 200 3 (SAN ); Law ton 198 5 (SAN ); Patti son 19 95 (SA N); Robins on & S lingerl and 19 98 (~S AN, nr CON bounda ry); He aton 19 50 (CON/ SAN); Lawto n et al. 2003 ( SAN); Gallin et al. 2 010 (S AN); J ohnson 1987 ( SAN/lo westCA M); M artinso n et al. 1998 ( SAN); Krysti nik & D eJarnet t 1995 ( SAN) UT Ferron SS (Manco s Sh) TUR Edwar ds et al . 2005 (TUR) ; USGS DB (m idTUR ); Beck er et al . 2010 (midTU R); Bh attacha rya & D avies 2 001 (u pTUR) ; Ryer 1981 ( upTUR ); Bhatta charya & Ma cEache rn 200 9 (TUR ); Cond on 200 3 (TUR ); Field ing 201 0 (mid/u pTUR) ; Gardn er 1995 (90.25 +/- 0.4 5Ma = midTU R); La wton 1 985 (TUR) ; Leith old 199 3 (mid TUR to start); Leitho ld 1994 (midT UR to start); Moiola et al. 2 004 (T UR); R yer 198 1 (TUR ); Ryer 1991 ( TUR/C ON); S ethi & Leitho ld 1997 (TUR in part ); Law ton et a l. 2003 (TUR ); Gall in et al . 2010 (TUR/ CON); Martin son et al. 199 8 (TUR /low-m ostCON ) UT Garley Canyo n Mbr (Manco s Sh) SAN USGS DB (SA N) UT Juana L opez M br (Manco s Sh) Edwar ds et al . 2005 (upTU R); in o ther sta tes is T UR 162 UT Star Po int SS (Manco s Sh) CAM Edwar ds et al . 2005 (CAM ); USG S DB ( SAN/C AM); A dams & Bhatta charya 2005 ( CAM) ; Birkh ead 20 05 (CA M); Co ndon 2 003 (S AN in part); J ohnson et al. 200 5 (CAM ); Law ton 198 5 (CAM ); Patti son 19 95 (SA N/lowC AM); Robins on & S lingerl and 19 98 (CA M); He aton 19 50 (CA M); M cLauri n & St eel 2000 ( lowCA M in p art); La wton e t al. 20 03 (CA M); Ga llin et a l. 2010 (CAM ); Martin son et al. 199 8 (CAM in part ); Krys tinik & DeJar nett 19 95 (SA N/CAM , Panthe r Tong ue = lo wCAM ) UT Mesav erde G rp CAM Hetting er & K irschba um 200 2 (CAM /MAA ); Cobb an & R eeside 1952a (CON- MAA) ; Cobb an & R eeside 1952b (CON/ SAN+) ; Johns on et a l. 2005 (CAM ); Miall 1 993 (C AM/M AA); R obinso n 2005 (at lea st CAM ); Tayl or et al . 2002 (CAM Castle gate M br at le ast); Y oshida 2000 ( CAM/M AA); U SGS D B (SAN/ CAM) ; Finn 2005 ( CAM i n WY) ; Loset h et al. 2006 ( at least CAM) ; Robert s et al. 2005 ( at least CAM) ; Kryst inik & DeJar nett 19 95 (CA M/MA A); Macro strat (T UR-M AA); C OSUN A (TU R-MA A) UT Tunun k Sh (Manco Sh) (Mesav erde G rp) TUR Leitho ld 1994 (latest CEN-m idTUR ); Gard ner 199 5 (TUR ); Ryer 1983 ( up- mostC EN?/T UR); R yer 198 1 (und erlies F erron S S = up TUR); Leitho ld 1993 (TUR) ; Sethi & Lei thold 1 994 (T UR); C obban et al. 2 000 (T UR); B hattach arya & Dav ies 200 1 (und erlies F erron S S = up TUR); Sethi e t al. 19 98 (upCE N/midT UR); C ondon 2003 ( TUR); Ryer 1 991 (lo w/midT UR); F ielding 2010 ( up-mo stCEN /mostly TUR); Bhatta charya & Ma cEache rn 200 9 (equi v to Ferron SS = T UR); C urrie 2 002 (T UR); E dwards et al. 2 005 (m idTUR ); Seth i & Leitho ld 1997 (mid/u pTUR) ; USGS DB (u pCEN/ midTU R); Ry er 1993 (CEN/ TUR); Shanle y & M cCabe 1995 ( TUR); Edwar ds et al . 2005 (TUR) ; Heaton 1950 ( CON); Lawto n et al. 2003 ( up-mo stCEN /TUR) ; Gallin et al. 2 010 (upCE N/TUR ); COS UNA ( TUR-M AA M esaverd e Grp) UT Price R iver Fm SAN-M AA Cobba n & Re eside 1 952a (C AM/M AA); H ettinge r & Ki rschba um 200 2 (CAM , corr w / Willi ams Fo rk = CA M/MA A in C O); Joh nson 2 003 (C AM/M AA); Stephe nson & Reesid e 1938 (MAA ); Hett inger & Kirsch baum 2 002 (C AM); Maiall & Aru sh 200 1 (CAM ); Hort on et a l. 2004 (CAM ); Robi nson & Slinger land 19 98 (CA M); Pa ttison 1 995 (at least C AM); R obinso n 2005 (CAM ); USG S DB ( CAM) ; Tallin g et al. 1995 ( CAM/M AA); R oberts et al. 2005 ( upCAM ); Mac rostrat (CON- CAM) ; Adam s & Bh attacha rya 200 5 (CAM ); Hort on et a l. 2004 (CAM ); COS UNA ( CON-C AM); N ONMA RINE UT South F lat Fm SAN-M AA Maiall & Aru sh 200 1 (CAM ); Robi nson & Slinge rland 1 998 (S AN/CA M); Robins on 200 5 (CAM at leas t); USG S DB ( SAN/C AM); T alling e t al. 19 95 (SAN/ CAM) ; Hunt 1954 ( CAM/M AA So uth Fla t - btw n India nola & Price River); Horto n et al. 2004 ( CAM) ; NONM ARINE 163 UT Straigh t Cliffs Fm TUR-C AM Allen & Johnso n 2010 a,b (TU R-CAM ); USG S DB ( midTU R-lowC AM); Macro strat (C EN-CO N); Ea ton 199 9 (TUR -SAN) ; Golds trand 1 994 (T UR- CAM) ; Leith old 199 3 (mid TUR to start); Leitho ld 1994 (midT UR to start); Ryer 1 983 (T UR-SA N at le ast); Se thi & L eithold 1994 ( midTU R to st art); Se thi & Leit hold 19 97 (mi dTUR to start ); Tibe rt et al. 2009 ( CON/S AN); H eaton 1950 ( CAM) ; Shanl ey & M cCabe 1991 ( TUR-C AM); J innah & Rober ts 2011 (SAN/ lowCA M in p art); C astle et al. 200 4 (TUR -CAM ); Law ton et a l. 2003 (TUR- SAN); Eaton 2006 ( TUR-C AM); H ettinge r 2000 (TUR -CAM ); Cobb an et al. 2 000 (m idTUR -SAN in part ); Gall in et al . 2010 (TUR- CAM) ; Jinna h et al. 2009 ( CON-l owCA M in p art); Fo ster et al. 200 1 (mid TUR-l owCA M); Sa geman 1996 ( midTU R at le ast to s tart) UT Drip T ank Mb r (Straig ht Cliff s Fm) CAM Allen & Johnso n 2010 a,b (CA M); US GS DB (lowC AM); E aton 19 99 (SA N); Shanle y & M cCabe 1991 ( CAM) ; Jinna h & Ro berts 2 011 (lo wCAM ); Cast le et al. 200 4 (CAM ); Law ton et a l. 2003 (SAN ); Eato n 2006 (lowC AM); H ettinge r 2000 ( CAM) ; Gallin et al. 2 010 (C AM); J innah e t al. 20 09 (low CAM) ; Shanl ey & McC abe 19 95 (low CAM) ; NONM ARINE UT John H enry M br (Straig ht Cliff s Fm) CON/S AN Allen & Johnso n 2010 a,b (CO N/SAN ); USG S DB ( midCO N-lowC AM); Becker et al. 2 010 (C ON/SA N); Ea ton 199 9 (CON /SAN) ; Edwa rds et a l. 2005 (equiv to Eme ry SS = SAN) ; Ryer 1983 ( CON/S AN); S hanley & Mc Cabe 1 991 (CON- CAM) ; Jinna h & Ro berts 2 011 (S AN in part); C astle et al. 200 4 (CON/ SAN); Lawto n et al. 2003 ( CON/S AN); E aton 20 06 (CO N/SAN ); Hetting er 2000 (CON /SAN) ; Cobb an et a l. 2000 (upCO N/SAN ); Gall in et al . 2010 ( CON/S AN); J innah e t al. 20 09 (CO N/SAN ); Shan ley & M cCabe 1995 (SAN) UT Smoky Hollow Mbr (Straig ht Cliff s Fm) TUR/C ON Allen & Johnso n 2010 a,b (TU R/lowe stCON ); USG S DB ( mid/up TUR); Becke r et al. 2 010 (T UR); E aton & Ciffel i 2001 (TUR) ; Eaton 1999 ( TUR); Ryer 1 983 (TUR/ lowest CON, bounda ry is am biguou s); Sha nley & McCa be 199 1 (TUR/ lowest CON); Castle et al. 2 004 (T UR/low estCON ); Law ton et a l. 2003 (TUR/ lowest CON); Eaton 2006 ( TUR); Hettin ger 200 0 (TUR /CON) ; Cobb an et al. 200 0 (upT UR/mi dCON ); Gall in et al . 2010 (CON) ; Jinna h et al. 2009 (TUR) ; Shanl ey & M cCabe 1995 ( upTUR ); NON MARIN E UT Tibbet Canyon Mbr (Straig ht Cliff s Fm) TUR Allen & Johnso n 2010 a,b (TU R); US GS DB (midT UR); B ecker e t al. 20 10 (TUR) ; Eaton 1999 ( TUR); Ryer 1 983 (T UR/CO N, bou ndary i s ambi guous) ; Ryer 1 993 (m idTUR ); Shan ley & M cCabe 1991 ( TUR); Castle et al. 2 004 (TUR) ; Lawt on et a l. 2003 (TUR ); Eato n 2006 (TUR ); Hett inger 2 000 (T UR); Cobba n et al. 2000 ( mid/up TUR); Gallin et al. 2 010 (T UR); S hanley & Mc Cabe 1995 ( upTUR ) 164 UT Tropic Sh CEN/T UR Heato n 1950 (CAM ); Sha nley & McCa be 199 5 (mid TUR); Cobb an & R eeside 1952a (CEN /TUR) ; Allen & Joh nson 2 010 (T UR); R yer 19 83 (TU R); Ea ton 1991 ( up-mo stCEN /TUR) ; Gold strand 1994 (CEN/ TUR); Tiber t et al. 2009 (CEN/ TUR); USGS DB (C EN/TU R); Ea ton et al. 199 9 (CE N/TUR ); Mac rostrat (CEN) ; Leith old 19 94 (up -mostC EN/m idTUR ); Cob ban et al. 20 00 (CEN/ TUR); Sethi & Lei thold 1 997 (u p-mos tCEN/ midTU R); Ry er 199 3 (CEN/ TUR); Sagem an 199 6 (CE N/TUR ) WY Adavi lle Fm SAN/C AM Heato n 1950 (DAN ); Nich ols & Sweet 1993 (SAN/ CAM corr w / Teleg raph C rk in MT ); Wil tschko & Do rr 198 3 (CA M); N ichols & Jac obson 1982 (starts lowCA M); M iller 1 977 (C AM); Liu et al. 20 05 (CA M); Jo hnson et al. 2005 (SAN/ CAM) ; Lawr ence 1 992 (S AN/C AM); Macro strat (T UR); K rystini k & DeJarn ett 199 5 (low CAM) ; COS UNA (TUR) ; NONM ARINE WY Bacon Ridge SS CON- CAM Wiltsc hko & Dorr 1983 ( CON Bacon Ridge SS "e quival ent"); Hicks et al. 1 999 (SAN/ CAM) ; Harr is et al . 1996 (CON ); Sch mitt & Steidt mann 1990 ( SAN); Hicks et al. 1 995 (S AN/C AM); Leier 2000 ( CON/ SAN); Macr ostrat (CEN/ TUR); COSU NA (C EN/TU R) WY Baxter Sh TUR-C AM Wiltsc hko & Dorr 1983 ( CON/ SAN); Finn 2 005 (C ON/SA N); Lo seth et al. 2006 ( lowCA M); K irschb aum & Robe rts 200 5 (CO N star t); Fin n & Jo hnson 2005 ( CON/ SAN); Mede ros et al. 200 5 (TU R-SAN ); Mill er 197 7 (at le ast CAM) ; Liu & Numm edal 2 004 (t op-mo stTUR -SAN) ; Mart insen et al. 1 999 (a t least i nto SA N/low estCA M); Jo hnson et al. 2005 ( TUR-C AM); Macro strat (CEN/ TUR); Jinna h et al . 2009 (CON -CAM in par t); Ma rtinsen 2003 (CON - CAM) ; Uroz a 2008 (lowC AM at least i n part) ; Krys tinik & DeJar nett 19 95 (lowC AM); COSU NA (C EN/TU R) WY Bearpa w Sh CAM/ MAA Stephe nson & Reesi de 193 8 (MA A in M T); Ti bert et al. 20 09 (CA M/MA A in northe rn Pla ins); S wift et al. 19 85 (M AA in centra l rocki es); H icks et al. 19 99 (MAA ); USG S DB (upCA M/low MAA) ; Hick s et al. 1995 (CAM /MAA ); Finn 2010 ( MAA) ; Macr ostrat (CAM /MAA ); Mar tinsen 2003 (CAM /MAA ); Bergst resser & Kre bs 198 3 (upC AM/M AA) WY Belle F ourche Sh CEN Kirkla nd et a l. 1999 (CEN ); Tibe rt et al . 2009 (CEN in nor thern P lains); Nicho ls & Jaco bson 1 982 (C EN); K irschb aum & Robe rts 200 5 (CE N); Ob oh-Iku enobe et al. 2 007 (C EN); R yer 19 93 (lo westC EN/m idTUR ); Yan g & M iall 20 09 (CE N in nor thern G reat Pl ains); Bhatta charya & Wi llis 20 01 (CE N/TUR ); Wil lis et a l. 1999 ( CEN/T UR); W inn 19 89 (CE N/TUR ); Liu et al. 2 005 (C EN); U SGS D B (CEN) ; Eich er 196 7 (CE N); M acrost rat (CE N "Sh " or A LB/CE N "Fm "); Cobba n & L arson 1997 ( low/m idCEN ); Cob ban et al. 19 59 (CE N); M artinse n 2003 ( CEN); COSU NA (A LB/CE N) 165 WY Blind Bull F m CON/S AN Wiltsc hko & Dorr 1983 ( correla tes w/ Front ier = C EN-CO N & H illiard = CON/ SAN i n WY ); Nich ols & Jacobs on 198 2 (cor relates w/ Hi lliard which in UT = CON/ SAN); Macr ostrat (ALB- TUR); COSU NA (A LB-TU R) WY Carlile Sh TUR Kirkla nd et a l. 1999 (TUR ); Hea ton 19 50 (CO N); St ephen son & Reesi de 193 8 (TUR in Gre at Plai ns); T ibert e t al. 20 09 (TU R in n orther n Plain s); Nic hols & Jacobs on 198 2 (TU R); M erewe ther et al. 20 07 (TU R); Ya ng & M iall 20 09 (TUR in nor thern G reat Pl ains); Lui & Numm edal 2 004 (T UR); W inn 19 89 (TUR/ CON) ; Liu e t al. 20 05 (TU R); US GS DB (TUR -SAN) ; Cobb an 198 4 (TUR) ; Macr ostrat (TUR or CE N-CO N); Co bban & Larso n 1997 (mid/ upTUR ); Cobba n et al . 1959 (TUR ); Mar tinsen 2003 (CON ); COS UNA (CEN/ TUR) WY Sage B reaks S h Mbr (Carlil e Sh) TUR-S AN USGS DB (T UR); N ichols & Jac obson 1982 (TUR/ CON) ; Cobb an & R eeside 1952b (TUR in Gre at Plai ns com posite sxn, T UR po ssibly into C ON in WY); Tillma n & A lmon 1 979 (T UR); W inn 19 89 (CO N); M artinso n et al . 1998 (CON /SAN) ; Freri chs 19 80 (eq uiv to lower Kevin Mbr = CON /SAN) ; Merew ether & Clayp ool 19 80 (CO N/SAN ); Frer ichs 1 979 (C ON-C AM); Serbec k 1981 (CON -CAM ) WY Cody Sh CON- CAM Heato n 1950 (SAN ); Tibe rt et al . 2009 (CON in N-P lains); Wilts chko & Dorr 1983 ( CON Cody Sh "eq uilave nt"); K irschb aum & Robe rts 200 5 (star ts CON ); Merew ether e t al. 20 07 (TU R/CON start); Mille r 1977 (into CAM) ; Hick s et al. 1999 ( into S AN); W illis et al. 19 99 (SA N/CA M); W inn 19 89 (TU R/CON at least); Harri s et al. 1996 (CON ); Sch mitt & Steidt mann 1990 ( CON) ; Macro strat (C EN-SA N); US GS DB (CEN -CAM ); Sch ultz et al. 19 76 (Ba culites perple xus zo ne & c orrelat es w/ C lagget t SS = midC AM); Nicho ls & S weet 1993 ( CEN-S AN in MT); Tysda l & Ni chols 1991 ( CON/ SAN); Bergm an 199 4 (into l owCA M); H icks et al. 19 95 (in to SAN ); Finn 2010 (CON -CAM ); Jinn ah et al. 2 009 (C ON-lo wCAM ); Mar tinsen 2003 (CON -CAM ); COS UNA (CEN- CON) ; Nich ols & Jacobs on 198 2 (CE N-SAN Cody in MT ); Kirs chbau m & Rober ts 200 5 (star ts CON ); Cob ban & Reesi de 195 2b (CE N-SAN in par t) WY Steele Sh M br (Cody Sh) TUR-C AM USGS DB (C AM); Macro strat (C EN-CO N); Fi nn & J ohnso n 2005 a,b (T UR- CAM) ; Finn 2005 (TUR- CAM) ; John son et al. 20 05a (T UR-C AM); Johnso n et al. 200 5b (CO N-CA M); C obban 1962 (Bacul ites pe rplexu s zone in upp ermos t Steele Sh = midCA M); D yman & Con don 20 07 (CA M); L iu et a l. 2005 (CAM ); Painte r 2009 (CAM ); Mar tinsen 2003 (CON -CAM ); Bren ner 19 78 (CA M); Meller e 1996 (into CAM) ; Mart inson et al. 1 998 (C AM at least i n part) ; Uroz a 2008 ( CAM at leas t in pa rt); Br ain 19 93 (lo w/mid CAM) ; Krys tinik & DeJar nett 1995 ( CAM) ; COS UNA (CEN- CON) WY Cow C rk SS Mbr (Steele Sh) (Cody Sh) CAM USGS DB (C AM); Meller e 1996 (lowC AM); Meller e & St eel 19 95 (m idCAM ) 166 WY Fishto oth SS (Steele Sh) (Cody Sh) CAM USGS DB (l owCA M); Fi nn & J ohnso n 2005 (CAM ); John son et al. 20 05a,b (CAM ); Kry stinik & DeJ arnett 1995 ( lowCA M) WY Shann on SS Mbr (Steele Sh (Cody Sh) CAM USGS DB (C AM); Finn & Johns on 200 5 (CA M); Jo hnson et al. 2005a ,b (CAM ); Dym an & C ondon 2007 (upper Steele sh and equiv to Ha ystack Mtns Fm = CAM) ; Berg man 1 994 (l owCA M); W alker & Bergm an 199 3 (low CAM) ; Bergm an & W alker 1 995 (l owCA M); Pa inter 2 009 (8 1Ma = lowC AM); Martin sen 20 03 (lo wCAM ); Bren ner 19 78 (CA M); G ani & Bhatta charya 2007 (SAN) ; Gani et al. 2008 ( SAN); Kryst inik & DeJar nett 19 95 (lo wCAM ) WY Sussex SS M br (Steele Sh) (Cody Sh) CAM USGS DB (C AM); Finn & Johns on 200 5 (CA M); Jo hnson et al. 2005a ,b (CAM ); Cob ban 19 62 (Ba ctulite s obtus us zon e = mi dCAM just b elow S ussex Mbr); Asqui th 197 0 (low CAM, as mb r of Pi erre S h); Ma rtinsen 2003 (lowC AM); Brenn er 197 8 (CA M); K rystini k & D eJarne tt 1995 (lowC AM) WY Eagle SS SAN/C AM Heato n 1950 (SAN ); Nich ols & Jacobs on 198 2 (CA M); R oberts et al. 2005 (CAM in MT ); Hick s et al. 1999 (CAM ); USG S DB (SAN/ CAM) ; Asqu ith 1970 ( CAM) ; Nich ols & Sweet 1993 (CAM ); Tys dal & Nicho ls 199 1 (upS AN); Shelto n 1965 (CAM in MT ); Hick s et al. 1995 (CAM ); Pay enberg et al. 2002 (SAN/ CAM in MT ); Pay enberg et al. 2003 ( SAN/C AM); Robin son et al. 19 59 (CAM in MT ); He e t al. 20 05 (CA M); Fi nn 201 0 (CA M in M T); M acrost rat (TUR- CAM) ; Berto g et al . 2007 (lowC AM in MT); Berto g 2002 (into lowCA M in MT ); Jinn ah et a l. 2009 (lowC AM); COSU NA (T UR) WY Elk Ba sin SS CAM Cobba n & K enned y 1992 (as m br of T elegra ph Crk ); Hick s et al. 1995 (lowC AM); Hicks et al. 1 999 (l owCA M); M cCabe 1948 (equiv to Tel egraph Crk = SAN/C AM); Hamm er & L loyd 1 925 (m br of T elegra ph Crk ); Eng elder e t al. 199 7 (CA M); M iller et al. 19 65 (El k Basi n SS a s well as Te legrap h Crk & Virgil le SS i n the " Eagle SS int erval" ); Klu g 1992 (Scap hites h ippocr epis I z one = lowC AM) WY Everts Fm SAN/C AM Rober ts et al . 2005 (CAM in MT ); Tys dal & Nicho ls 199 1 (upS AN/lo wCAM ); Tysda l et al. 1986 (SAN in MT ); Mac rostrat (TUR /CON ); Bert og 200 2 (into lowCA M in M T); CO SUNA (TUR /CON ) WY Fox H ills SS MAA Heato n 1950 (MAA ); Step henson & Re eside 1 938 (M AA in Great Plains ); Tibert et al. 2009 ( MAA in N-P lains); Nicho ls & Ja cobson 1982 (MAA ); Finn 2005 ( MAA) ; Robe rts et a l. 2005 (MAA ); Finn & Joh nson 2 005 (M AA); Lehma n 1987 (MAA ); Med eros e t al. 20 05 (M AA); C arvaja l & St eel 20 09 (MAA ); Hick s et al. 1999 (MAA ); Mar tinsen et al. 1999 ( lowM AA); W illis et al. 199 9 (MA A); Li u et al . 2005 (MAA ); John son et al. 20 05 (M AA); U SGS DB (M AA); A squith 1970 (MAA ); Hick s et al. 1995 (MAA ); Mac rostrat (CAM /MAA ); Gill & Co bban 1 966 (l owMA A); Co bban & Larso n 1997 (upCA M/low MAA) ; Mart insen 2003 ( MAA) ; Brain 1993 (lowM AA); 167 Blacks tone 19 93 (MA A); Kr ystinik & DeJ arnett 1 995 (M AA); C OSUN A (CAM /MAA ) WY Frontie r Fm CEN-C ON Heaton 1950 ( CON); Tibert et al. 2 009 (C ON in norther n Plain s); Wil tschko & Dorr 1 983 (T UR/CO N); Ni chols & Jacobs on 198 2 (CEN /TUR) ; Finn 2005 (CEN- CON); DeCel les & C avazza 1999 ( CEN/T UR); K irschba um & R oberts 2005 ( CEN/T UR); M ederos et al. 2 005 (C EN/TU R); Me reweth er et al . 2007 (CEN/ TUR); Miller 1977 ( into CA M); Ob oh-Iku enobe et al. 2 007 (C EN to start); Ryer 1 993 (C EN-CO N); Sw ift et al . 1985 (TUR/ CON i n centr al rock ies); Yang & Miall 2009 ( CEN/T UR in MT); B arlow & Haun 1966 ( CEN/T UR); Bhatta charya & Wil lis 200 1 (CEN /TUR) ; Hicks et al. 1 999 (in to SAN ); Lui & Numm edal 20 04 (CE N/TUR ); Will is et al . 1999 (CEN/ TUR); Winn 1989 (CEN/ TUR); Liu et al. 200 5 (CEN ); John son et al. 200 5 (CEN -CON) ; Schm itt & Stei dtmann 1990 ( CEN/T UR); U SGS D B (AL B-CON ); Asqu ith 197 0 (CEN/ TUR); Finn 2 010 (C EN-CO N); Ma crostra t (TUR "SS" o r ALB -SAN "Fm"); Martin sen 20 03 (CE N/TUR ); Mart inson e t al. 19 98 (TU R/CON ); COSU NA (A LB/CE N); Co bban & Reesid e 1952 b (CEN -CON) ; Nicho ls & Sweet 1993 ( CEN/T UR); F inn & J ohnson 2005 ( CEN-C ON); L ee et al . 2005 (CEN/ TUR) WY Torchl ight SS Mbr (Fronti er Fm) CEN Burk 1 953 ("S and" = early G reenho rn-age = CEN ); Mere wether et al. 1 975 (early? /midCE N); Co bban a nd Ree side 19 52b (C EN) WY Wall C rk Mbr (Fronti er Fm) (or Cod y Sh?) TUR Kirsch baum & Rober ts 2005 (TUR /CON) ; USGS DB (u pTUR/ midCO N); Dyman & Con don 20 07 (CE N/TUR ); Ryer 1993 ( midTU R/CON ); Bhat tachary a & Will is 2001 (TUR ); Burk 1953 ( equiv t o Turn er Sand y & Sa ge Bre aks Mbrs/C arlile S h = TU R); Liu et al. 2 005 (u pTUR) ; Mere wether et al. 1 975 (lower upTU R); Til lman & Almon 1979 ( TUR); Winn 1989 ( CON); Martin sen 2003 ( TUR); Merew ether e t al. 20 07 (TU R); Le e et al. 2007 ( upTUR ); Vakare lov & B hattach arya 20 09 (TU R); Ga ni & B hattach arya 20 07 (TU R); Gani e t al. 20 08 (TU R); To masso et al. 2 010 (T UR); S adeque 2006 ( upTUR ); Lee et al. 200 5 (TUR ); Mere wether & Cla ypool 1 980 (u pTUR) ; Cobb an & Reesid e 1952 b (TUR ) 168 WY Green horn F m CEN/T UR Kirkla nd et a l. 1999 (CEN /TUR) ; Steph enson & Ree side 1 938 (T UR in Great Plains ); Tibe rt et al . 2009 (CEN /TUR in nor thern P lains); Nicho ls & Ja cobson 1982 ( CEN/T UR); S wift et al. 19 85 (CE N/TUR in cen tral ro ckies) ; Yang & Miall 2009 ( TUR i n nort hern G reat Pl ains); Winn 1989 ( CEN/T UR); L iu et a l. 2005 ( CEN/T UR); U SGS D B (CE N/TUR ); Cob ban 19 84 (CE N/TUR ); Macro strat (C EN/TU R); Co bban & Larso n 1997 (upCE N/low TUR); Cobb an et al. 195 9 (CE N/TUR ); COS UNA (CEN) WY Hareb ell Fm MAA Wiltsc hko & Dorr 1983 ( CAM/ MAA Hareb ell "eq uivale nt"); L ehman 1987 (MAA ); Hick s et al. 1999 (MAA ); Kau ffman 1973 (MAA ); Har ris et a l. 1996 (MAA ); Loc kley e t al. 20 03 (M AA); L ove 19 56 ("v ery La te Cre t"); Sc hmitt & Steidtm ann 19 90 (M AA); H icks et al. 19 95 (CA M/MA A); M acrost rat (M AA); COSU NA (M AA); N ONMA RINE WY Lance Fm MAA Stephe nson & Reesi de 193 8 (DA N in G reat Pl ains & MT); Wilts chko & Dorr 1983 ( MAA) ; Finn 2005 (MAA ); Finn & Joh nson 2 005 (M AA); L ehman 1987 (MAA ); Med eros e t al. 20 05 (M AA); C arvaja l & St eel 20 09 (M AA); H icks et al. 199 9 (MA A); M artinse n et al . 1999 (lowM AA); W illis et al. 19 99 (M AA); Lockle y et al . 2003 (MAA ); Liu et al. 2 005 (M AA); J ohnso n et al . 2005 (MAA ); USG S DB (MAA +); As quith 1 970 (M AA); H icks et al. 19 95 (M AA); Becke r et al. 2009 (MAA ); Finn 2010 (MAA ); Mac rostrat (MAA ); Gill & Cobba n 1966 (upM AA); M artinse n 2003 (MAA ); Blac kstone 1993 (equiv to Medic ine Bo w = M AA); K rystini k & D eJarne tt 1995 (MAA ); COS UNA (MAA ); NON MARIN E WY Lands lide C reek F m CAM/ MAA Tysda l & Ni chols 1991 ( Scaphi tes hip pocrep is I thr u Bacu lites as perifor mis zones = low/ midCA M); L ehman 1987 (MAA ); Mac rostrat (MAA ); COS UNA (MAA ); NON MARIN E WY Lewis Sh CAM/ MAA Heato n 1950 (CAM /MAA ); Finn 2005 (MAA ); Rob erts et al. 20 05 (M AA); Finn & Johns on 200 5 (CA M/MA A); Ha un 196 1 (CA M/MA A); M ederos et al. 2005 ( MAA) ; Mille r 1977 (CAM /MAA ); Carv ajal & Steel 2009 ( MAA) ; Martin sen et al. 199 9 (low MAA) ; Willi s et al. 1999 (CAM /MAA ); Liu et al. 2005 ( up-mo stCAM /MAA ); John son et al. 20 05 (CA M/MA A); US GS DB (upCA M/low MAA) ; Asqu ith 197 0 (CA M/MA A); Fi nn 201 0 (CA M); Macro strat (C ON-C AM); Martin sen 20 03 (up -mostC AM/lo wMAA ); Uro za 2008 ( upCA M/low MAA) ; Brain 1993 (CAM /MAA ); Blac kstone 1993 (MAA ); Krysti nik & DeJarn ett 199 5 (CA M/MA A); CO SUNA (CAM ) WY Dad S S Mbr Lewis Sh MAA USGS DB (l owMA A); Fi nn & J ohnso n 2005 (MAA ); John son et al. 20 05a,b (MAA ); Dym an & C ondon 2007 (MAA ); Carv ajal & Steel 2009 ( MAA) ; Fox 1971 ( up-mo stCAM /MAA ); Perm an 199 0 (low MAA) ; Daly 1997 (equiv to Fox Hills S S = M AA); B rain 19 93 (lo wMAA ) 169 WY Lance Fm MAA Stephe nson & Reesi de 193 8 (DA N in M T & G reat Pl ains); Wiltsc hko & Dorr 1983 ( MAA) ; Finn 2005 (MAA ); Leh man 1 987 (M AA); M ederos et al. 2005 (MAA ); Carv ajal & Steel 2009 ( MAA) ; Hick s et al. 1999 (MAA ); Mar tinsen et al. 199 9 (low MAA) ; Willi s et al. 1999 (MAA Lance ); Liu et al. 2 005 (M AA); Johnso n et al . 2005 (MAA ); USG S DB (MAA ); Asq uith 19 70 (M AA La nce); Hicks et al. 1 995 (M AA); F inn 20 10 (M AA); M acrost rat (M AA); M artinse n 2003 ( MAA) ; Blac kstone 1993 (MAA ); Kry stinik & DeJ arnett 1995 ( MAA) ; COSU NA (M AA); N ONMA RINE WY Meete etse Fm CAM/ MAA Heato n 1950 (MAA ); Wil tschko & Do rr 198 3 (CA M/MA A); Hi cks et al. 199 9 (CAM /MAA ); Har ris et a l. 1996 (CAM ); Stoc key et al. 20 07 (up -mostC AM); Schmi tt & S teidtm ann 19 90 (CA M); U SGS D B (low MAA) ; Hick s et al. 1995 (CAM /MAA ); Mill er et a l. 1965 (CAM /MAA ); Kee fer 19 65 (CA M/MA A); Rich 1 958 (C AM/M AA); F inn 20 10 (CA M/MA A); M acrost rat (CA M/MA A); COSU NA (C AM/M AA); N ONMA RINE WY Medic ine Bo w Fm MAA Haun 1961 ( MAA, Medi cine B ow = w hat he calls L ance F m); Li llegrav en & Eberle 1999 (MAA ); Seco rd 199 8 (MA A); W roblew ski 20 04 (M AA); P erman 1990 ( MAA) ; Fox 1 971 (u pMAA ); Fox 1971 (MAA ); Wil son et al. 20 01 (MAA ); Ayd inian 2 008 (M AA); D yman & Con don 20 07 (M AA); L illegra ven et al. 2 004 (M AA); M acrost rat (M AA); B rain 19 93 (lo wMAA ); Blac kstone 1993 ( MAA) ; COS UNA (MAA ); NON MARI NE WY Mesav erde F m/Grp CAM Heato n 1950 (CAM /MAA Mesa verde Grp); Wiltsc hko & Dorr 1983 ( CAM Mesav erde S S); Fin n 2005 (CAM Mesa verde Grp); Rober ts et al . 2005 (CAM /MAA ); Finn & Joh nson 2 005 (C AM); Meder os et a l. 2005 (CAM /MAA ); Mill er 197 7 (CA M/MA A); De mar & Breith aupt 2 006 (C AM); Martin sen et al. 199 9 (CA M/low MAA) ; Willi s et al. 1999 (CAM ); Har ris et a l. 1996 ( CAM) ; John son et al. 20 05 (CA M); Sc hmitt & Stei dtman n 1990 (CAM ); USGS DB (S AN/C AM); Finn 2 010 (C AM); Macro strat (T UR-M AA); J innah et al. 200 9 (CA M at l east in part); Marti nsen 2 003 (C AM); Brain 1993 ( CAM) ; Krysti nik & DeJarn ett 199 5 (CA M); C OSUN A (TU R-CA M Me saverd e Grp) ; top 1/2 is NO NMAR INE WY Allen Ridge Fm Mesav erde G rp CAM USGS DB (u pCAM ); Dym an & C ondon 2007 (CAM ; abov e Stee le Sh & below Lewis Sh); F inn & Johnso n 2005 a,b (C AM); Finn 2 005 (C AM); Newm an 198 1 (equiv to Ro ck Spg s = CA M); L iu et a l. 2005 (73.4- 78.5M a = mi d/upC AM); Thom as 197 8 (CA M); M ellere 1996 ( upCA M); U roza 2 008 (m id/upC AM); Meller e & St eel 19 95 (m id/upC AM); Brain 1993 ( midCA M); K rystini k & DeJarn ett 199 5 (mid CAM) ; COS UNA (CON ) 170 WY Almon d Fm (Mesav erde G rp) CAM/M AA Heaton 1950 ( CAM/M AA M esaverd e Grp) ; Finn 2005 ( CAM/M AA); F inn & Johnso n 2005 (CAM ); Med eros et al. 200 5 (CAM /MAA ); Mill er 1977 (CAM ); Demar & Bre ithaupt 2006 ( CAM M esaverd e Grp) ; Marti nsen et al. 199 9 (upCA M/low estMA A); Ga tes & F arke 20 09 (up CAM/l owMA A); Sto ckey e t al. 2007 ( upCAM ); Liu e t al. 20 05 (MA A); Joh nson e t al. 20 05 (CA M); US GS DB (upCA M); Pe rman 1 990 (M AA); F inn 201 0 (CAM Mesav erde); Macro strat (CAM ); Mart insen 2 003 (u pCAM ); Uroz a 2008 (upCA M/low MAA) ; Brain 1993 ( upCAM ); Krys tinik & DeJar nett 19 95 (CA M/MA A); CO SUNA (CAM ) WY Blair F m (Mesav erde G rp) CAM Heaton 1950 ( CAM/M AA M esaverd e Grp) ; Finn 2005 ( CAM) ; Loset h et al. 2006 ( lowCA M); Fi nn & J ohnson 2005 ( CAM) ; Mede ros et a l. 2005 (CAM ); Miller 1977 ( CAM) ; Dema r & Br eithaup t 2006 (CAM Mesav erde G rp); Le vey 1985 ( lateCA M); Lu i & Nu mmeda l 2004 (CAM ); Mart insen e t al. 19 99 (lowCA M); Li u et al. 2005 ( CAM) ; Johns on et a l. 2005 (CAM ); USG S DB (lowCA M); Fi nn 201 0 (CAM Mesav erde); Macro strat (T UR); J innah e t al. 20 09 (lowCA M); Kr ystinik & DeJ arnett 1 995 (lo wCAM ); COS UNA ( TUR) WY Ericson SS (Mesav erde G rp) CAM/M AA Heaton 1950 ( CAM/M AA M esaverd e Grp) ; Wilts chko & Dorr 1 983 (C AM Ericson ); Finn 2005 ( CAM) ; Loset h et al. 2006 ( upCAM ); DeC elles & Cavaz za 1999 ( CAM/M AA eq uiv to H ams Fo rk Con glomer ate in U T); Ro berts e t al. 2005 ( CAM) ; Finn & John son 20 05 (CA M); M ederos et al. 2 005 (C AM); M iller 1977 ( CAM) ; Dema r & Br eithaup t 2006 (CAM Mesav erde G rp); Le vey 19 85 (lateCA M); Lu i & Nu mmeda l 2004 (upCA M); M artinse n et al. 1999 ( upCAM ); Liu et al. 200 5 (CAM ); John son et al. 200 5 (CAM ); USG S DB ( upCAM ); Macro strat (C ON/SA N); Jin nah et al. 200 9 (mid /upCA M); M artinse n 2003 (mid/u pCAM ); Uroz a 2008 (mid/u pCAM ); Krys tinik & DeJar nett 19 95 (mid/u pCAM ); COS UNA ( CON/S AN); p redom inately NONM ARINE WY Teapot Fm (Mesav erde G rp) CAM Jinnah et al. 2 009 (u pCAM ); Mac rostrat (SAN/ CAM) ; Finn & John son 20 05 (CAM ); John son et al. 200 5a,b (C AM); U SGS D B (upC AM); A squith 1970 (upCA M); Hi cks et a l. 1995 (upCA M); Hi cks et a l. 1999 (upCA M); Kl ug 199 2 (72-73 Ma = u pCAM ); Mart insen 2 003 (u pCAM ); Krys tinik & DeJar nett 19 95 (upCA M); CO SUNA (SAN /CAM) WY Haysta ck Mtn s Fm (Mesav erde G rp) CAM USGS DB (C AM); F inn & J ohnson 2005a ,b (CA M); Fi nn 200 5 (CAM ); Dym an & Con don 20 07 (CA M); Li u et al. 2005 ( midCA M); M ellere 1 996 (C AM); Macro strat (T UR/CO N); Ur oza 20 08 (CA M); M ellere & Steel 1 995 (C AM); Meller e & Ste el 2000 (CAM ); Brai n 1993 (low/m idCAM ); Krys tinik & DeJarn ett 199 5 (mid CAM) ; COSU NA (T UR/CO N) WY Espy T ongue (Hayst ack Mt ns Fm) (Mesav erde G rp) (or of S teele S h) CAM USGS DB (C AM); J ohnson et al. 2 005 (C AM) 171 WY Deep C rk SS (Hayst ack Mt ns Fm) (or Ste ele Sh) (or Cod y Sh) CAM USGS DB (C AM); F inn & J ohnson 2005 ( CAM) ; Johns on et a l. 2005 a,b (CAM ); Mell ere 199 6 (upC AM); M ellere & Steel 1 995 (m idCAM ) WY Hatfiel d SS (Hayst ack Mt ns Fm) CAM USGS DB (C AM); F inn & J ohnson 2005 ( CAM) ; Johns on et a l. 2005 a,b (CAM ); Thom as 197 8 (equi v to Al len Rid ge = C AM); M ellere 1 996 (u pCAM ); Uroza 2008 ( midCA M); M ellere & Steel 1 995 (m idCAM ); Mell ere & S teel 2000 ( CAM) ; Brain 1993 ( Baculi tes asp eriform is zone = mid CAM) ; Kryst inik & DeJ arnett 1 995 (m idCAM ) WY Obrien Sprg (Hayst ack Mt ns Fm) CAM USGS DB (lo wCAM ); Finn & Joh nson 2 005 (C AM); J ohnson et al. 2 005a,b (CAM ); Mell ere 199 6 (low CAM) ; Uroza 2008 ( low/mi dCAM ); Mell ere & S teel 1995 ( midCA M); Br ain 199 3 (low /midCA M); Kr ystinik & DeJ arnett 1 995 (low/m idCAM ) WY Tapers Ranch (Hayst ack Mt ns Fm) lowCA M USGS DB (lo wCAM ); John son et al. 200 5a,b (C AM); M ellere 1 996 (lowCA M); Ur oza 20 08 (low CAM) ; Melle re & S teel 19 95 (low CAM) ; Brain 1993 ( lowCA M); Kr ystinik & DeJ arnett 1 995 (lo wCAM ) WY Rock S prings Fm (Mesav erde G rp) CAM Heaton 1950 ( CAM/M AA M esaverd e Grp) ; Finn 2005 ( CAM) ; Loset h et al. 2006 ( upCAM ); Robe rts et a l. 2005 (CAM ); Med eros et al. 200 5 (CAM ); Mill er 1977 ( CAM) ; Dema r & Br eithaup t 2006 (CAM Mesav erde G rp); Le vey 19 85 (lateCA M); Lu i & Nu mmeda l 2004 (CAM ); Mart insen e t al. 19 99 (low CAM) ; Liu et al. 200 5 (CAM ); John son et al. 200 5 (CAM ); USG S DB ( CAM) ; Finn 2010 ( CAM M esaverd e); Ma crostra t (TUR ); Jinna h et al. 2009 ( low/mi dCAM ); Martin sen 20 03 (low /midCA M); CO SUNA (TUR ) WY Mowry Sh ALB/C EN Heaton 1950 ( CEN/T UR); K irkland et al. 1 999 (A LB/CE N); Ste phenso n & Reesid e 1938 (CEN in MT ); Tibe rt et al. 2009 ( CEN in northe rn Plai ns); Wiltsc hko & Dorr 1 983 (A LB/CE N); Ni chols & Jacobs on 198 2 (ALB ); Finn 2005 ( CEN); Oboh- Ikueno be et a l. 2007 (lowC EN); R yer 199 3 (upA LB); S wift et al. 1 985 (A LB/CE N in ce ntral ro ckies); Yang & Mia ll 2009 (ALB /CEN i n norther n Grea t Plain s); Bha ttachar ya & W illis 20 01 (int o CEN ); Will is et al . 1999 ( ALB/C EN); S chmitt & Stei dtmann 1990 ( ALB); USGS DB (lo wCEN ); Finn 2 010 (A LB/CE N); Ma crostra t (APT -CEN "Sh/CO Grp", ALB-C EN "Fm/C O Grp" ); Cobb an & L arson 1 997 (lo wCEN ); Cobb an et a l. 1959 (ALB ); Martin sen 20 03 (CE N); CO SUNA (APT/ ALB) 172 WY Niobra ra Fm CON-C AM Heaton 1950 ( CON-C AM); S tephen son & Reesid e 1938 (CON /SAN i n Grea t Plains) ; Tiber t et al. 2009 ( CON-C AM in N-Pla ins); N ichols & Jaco bson 1 982 (CON/ SAN); Finn 2 005 (C ON/SA N); Fin n & Jo hnson 2005 ( CON/S AN); Merew ether e t al. 20 07 (CO N start ); Freri chs et a l. 1975 (TUR -CAM ); Hick s et al. 199 9 (into SAN/C AM); L ui & N ummed al 2004 (CON /SAN) ; Winn 1989 (CON start); Liu et al. 200 5 (CON /SAN) ; Johns on et a l. 2005 (TUR -SAN) ; USGS DB (T UR-CA M); As quith 1 970 (C ON-CA M); Hi cks et a l. 1995 (into CAM) ; Macr ostrat ( CEN-S AN); G ill & C obban 1966 ( CON-C AM); C obban & Larson 1997 ( upCON -lowCA M); Co bban e t al. 19 59 (CO N/SAN ); Jinna h et al. 2009 ( CON-C AM); M artinse n 2003 (CON -CAM ); Mart inson e t al. 19 98 (TU R- CAM) ; Brain 1993 ( SAN in part); Krystin ik & D eJarnet t 1995 (into lo wCAM ); COSU NA (C EN/TU R); Sw ift et al . 1985 (SAN/ CAM i n centr al rock ies) WY Pierre Sh CAM/M AA Gill & Cobba n 1966 (CAM /MAA ); Bert og 201 0 (CAM to star t); Cob ban & Larson 1997 ( CAM) ; Cobb an et a l. 1959 (SAN to star t); Jinn ah et a l. 2009 (mid/u pCAM at leas t in par t); Mar tinsen 2003 ( CAM/M AA); C OSUN A (CO N- CAM) WY Ardmo re Ben tonite (Pierre Sh) Jinnah et al. 2 009 (m idCAM - 80-8 1Ma); Krystin ik & D eJarnet t 1995 (80.5M a = low/ midCA M) WY Upper Un-nam ed Sh (Pierre Sh) MAA ( low) Gill & Cobba n 1966 (lowM AA); C obban & Lars on 199 7 (upC AM) WY Kara B entonit ic Mbr (Pierre Sh) CAM ( up) Gill & Cobba n 1966 (upCA M) WY Lower Un-nam ed Sh (Pierre Sh) CAM Gill & Cobba n 1966 (upCA M); Be rtog 20 10 (mi dCAM to star t in Bla ck Hill s); Cobba n & La rson 19 97 (up CAM) WY Red Bi rd Silty Mbr (Pierre Sh) CAM Gill & Cobba n 1966 (upCA M); Be rtog 20 10 (mi dCAM in Bla ck Hill s); Cob ban & Lars on 199 7 (mid CAM) ; Asqu ith 197 0 (upC AM) WY Mitten Black Sh (Pierre Sh) CAM Gill & Cobba n 1966 (upCA M); Be rtog 20 10 (mi dCAM in Bla ck Hill s); Cob ban & Lars on 199 7 (mid CAM) ; Asqu ith 197 0 (upC AM) WY Sharon Spring s Sh (Pierre Sh) CAM Gill & Cobba n 1966 (CAM ); Bert og 201 0 (mid CAM i n Blac k Hills ); Asqu ith 1970 ( CAM) WY Gamm on Ferr uginou s Mbr (Pierre Sh) CAM ( low) Gill & Cobba n 1966 (lowC AM); B ertog e t al. 20 07 (CA M in M T); Be rtog 20 10 (lowCA M in B lack H ills); C obban & Lars on 199 7 (low CAM) ; Asqu ith 197 0 (lowCA M); M artinse n 2003 (lowC AM) WY Sohare Fm SAN/C AM Hicks et al. 1 999 (C AM); H arris et al. 199 6 (SAN /CAM) ; Leier 2000 (SAN/ CAM) ; Hunte r 1987 (equiv to Hill iard = CON/S AN); C OSUN A (TUR/ CON " Sohare Seque nce"); NONM ARINE 173 WY Telegra ph Cre ek Fm SAN/C AM Stephe nson & Reesid e 1938 (SAN in Gre at Plain s); Rob erts et al. 200 5 (CAM in MT) ; Hicks et al. 1 999 (C AM); U SGS D B (SAN /CAM) ; Asqu ith 197 0 (SAN/ CAM) ; Nicho ls & Sw eet 199 3 (SAN /CAM in MT) ; Tysda l & Nic hols 1991 ( SAN); Hicks et al. 1 995 (C AM); P ayenbe rg et al . 2002 (SAN in MT) ; Payenb erg et a l. 2003 (SAN in MT ); Robi nson e t al. 19 59 (CA M in M T); Fin n 2010 ( CAM i n MT) ; Macr ostrat ( TUR-C AM); B ertog 2 002 (in to lowC AM in MT); J innah e t al. 20 09 (SA N); CO SUNA (TUR ) WY Therm opolis Sh ALB Heaton 1950 ( CEN); Kirkla nd et a l. 1999 (ALB ); Step henson & Ree side 19 38 (CEN in MT) ; Tiber t et al. 2009 ( ALB in northe rn Plai ns); W iltschk o & Do rr 1983 ( ALB); Finn 2 005 (A LB); O boh-Ik uenobe et al. 2 007 (A LB/CE N); Wi llis et al. 1 999 (A LB); S chmitt & Stei dtmann 1990 ( ALB); USGS DB (A LB); F inn 2010 ( ALB); Macro strat (H AUT-A LB); C OSUN A (HA UT-BA RR) 174 Literature Cited Abe, F. and B. S. Lieberman. 2012. Quantifying morphological change during an evolutionary radiation of Devonian trilobites. Paleobiology 38:292-307. Allmon, W. D. and R. M. Ross. 1990. Specifying causal factors in evolution: the paleontological contribution. In Ross, R. M. and Allmon, W. D. (eds.). Causes of Evolution: A Paleontological Perspective. University of Chicago Press, Chicago, pp. 1-21. Alroy, J. 2010. The shifting balance of diversity among major marine animal groups. Science 329:1191–1194. Araújo, M. B. and A. T. Peterson. 2012. Uses and misuses of bioclimatic envelope modeling. Ecology 93:1527-1539. Araújo, M. B. and C. Rahbek. 2006. How dos climate change affect biodiversity? Science 313: 1396-1397. Araújo, M. B., W. Thuiller, and N. Yoccoz. 2009. Re-opening the climate envelope reveals macroscale associations with climate in European birds. Proceedings of the National Academy of Sciences USA 106:E45-E46. Austin, M. 2002. Spatial prediction of species distribution: an interface between ecological theory and statistical modeling. Ecological Modelling 157:101-118. Austin, M. 2007. Species distribution models and ecological theory: a critical assessment and some possible new approaches. Ecological Modelling 200:1-19. Barnosky, A. D. 2001. Distinguishing the effects of the red queen and court jester on Miocene mammal evolution in the northern Rocky Mountains. Journal of Vertebrate Paleontology 21:172–185. 175 Barry, S. and J. Elith. 2006. Error and uncertainty in habitat models. Journal of Applied Ecology 43:413-423. Barve, N., V. Barve, A. Jiménez-Valverde, A. Lira-Noriega, S. P. Maher, A. T. Peterson, J. Soberón, and F. Villalobos. 2011. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling 222:1810-1819. Baumiller, T. K. 1993. Survivorship analysis of Paleozoic Crinoidea: effect of filter morphology on evolutionary rates. Paleobiology 19:304–321. Beale, C. M., J. J. Lennon, and A. Gimona. Opening the climate envelope reveals no macroscale associations with climate in European birds. Proceedings of the National Academy of Sciences USA 105:14908-14912. Boucot, A. J. 1981. Principles of Benthic Marine Paleoecology. Academic Press, New York, pp. 463. Brenchley, P.J., Harper, D.A.T., 1998. Palaeoecology: Ecosystems, Environments and Evolution. Chapman and Hall, London, pp. 402. Broennimann, O., U. A. Treier, H. Müller-Schärer, W. Thuiller, A. T. Peterson, and A. Guisan. 2007. Evidence of climatic niche shift during biological invasion. Ecology Letters 10:701-709. Broennimann, O., M. C. Fitzpatrick, P. B. Pearman, B. Petitpierre, L. Pellissier, N. G. Yoccoz, W. Thuiller, M.-J. Fortin, C. Randin, N. E. Zimmermann, C. H. Graham, and A. Guisan. 2012. Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography 21:481-497. Caldwell, W. G. E. and E. G. Kauffman (eds.). 1993. Evolution of the Western Interior Basin, Geological Association of Canada Special Paper 39. 176 Carroll, R. L. 2000. Towards a new evolutionary synthesis. Trends in Ecology and Evolution 15:27–32. Cobban, W. A. and J. B. Reeside Jr. 1952. Correlation of the Cretaceous formations of the Western Interior of the United States. Bulletin of the Geological Society of America 63:1011-1044. Cobban, W. A., I. Walaszczyk, J. D. Obradovich, and K. C. McKinney. 2006. A USGS Zonal table for the Upper Cretaceous middle Cenomanian-Maastrichtian of the Western Interior of the United States based on ammonites, inoceramids, and radiometric ages. USGS Open-file Report 2006-1250. Congreve, C. R. accepted, expected 2013. Clade turnover: the end Ordovician as a large scale analog of species turnover. In Macroevolution and the Modern Synthesis. E. E. Saupe, C. E. Myers, and C. R. Congreve (eds.). Palaeontology Special Issue. Cracraft, J. 1982. A nonequilibrium theory for the rate-control of speciation and extinction and the origin of macroevolutionary patterns. Systematic Zoology 31:348–365. Creaney, S. and Q. R. Passey. 1993. Recurring patterns of total organic carbon and source rock quality within a sequence stratigraphic framework. American Association for Petroleum Geologists Bulletin 77:386-401. Eldredge, N. 1989. Macroevolutionary Dynamics: Species, Niches and Adaptive Peaks. McGraw Hill, New York, pp. 226. Elith, J. and C. H. Graham. 2009. Do they? How do they? Why do they differ? On finding reasons for differing performances of species distribution models. Ecography 32:66-77. 177 Elith, J. and J. R. Leathwick. 2009. Species distribution models: ecological explanation and prediction across space and time. Annual Reviews of Ecology, Evolution, and Systamatics 40:677-697. Elith, J. C. H. Graham, R. P. Anderson, M. Dudík, S. Ferrier, A. Guisan, R. J. Hijmans, F. Huettmann, J. R. Leathwick, A. Lehmann, J. Li, L. G. Lohmann, B. A. Loiselle, G. Manion, C. Moritz, M. Nakamura, Y. Nakazawa, J. M. Overton, A. T. Peterson, S. J. Phillips, K. Richardson, R. Scachetti-Pereira, R. E. Schapire, J. Soberón, S. Williams, M. S. Wisz, and N. E. Zimmermann. 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129-151. Environmental Systems Research Institute. 2006. ARCGIS version 9.2. ESRI, Redlands, CA. Erwin, D. H. 1990. Carboniferous-Triassic gastropod diversity and the Permo-Triassic mass extinction. Paleobiology 16:187–203. Erwin, D. H. 2006. Extinction: how life on Earth nearly ended 250 million years ago. Princeton University Press, Princeton, pp. 296. Fithian, W. and T. Hastie. Finite-sample equivalence of several statistical models for presence-only data. arXiv:1207.6950 [stat.AP]. Fisher, C. G. and M. A. Arthur. 2002. Water mass characteristics in the Cenomanian Western Interior seaway as indicated by stable isotopes of calcareous organisms. Palaeogeography, Palaeoclimatology, Palaeoecology 188:189-213. Fürsich, F. T. 1993. Palaeoecology and evolution of Mesozoic salinity-controlled macroinvertebrate associations. Lethaia 26:327-346. Gould, S. J. 1985. The paradox of the first tier: an agenda for paleobiology. Paleobiology 11:2–12. 178 Gould, S. J. 2002. The Structure of Evolutionary Theory. The Belknap Press of Harvard University Press, Cambridge, pp. 1464. Graham, C. H. and R. J. Hijmans. 2006. A comparison of methods for mapping species ranges and species richness. Global Ecology and Biogeography 15:578-587. Graham, C. H., S. R. Ron, J. C. Santos, C. J. Schneider, and C. Moritz. 2004. Integrating phylogenetics and environmental nichemodels to explore speciation mechanisms in dendrobatid frogs. Evolution 58:1781-1793. Graham, C. H., J. VanDerWal, S. J. Phillips, C. Moritz, and S. E. Williams. 2010. Dynamic refugia and species persistence: tracking spatial shifts in habitat through time. Ecography 33:1062-1069. Guisan, A. and W. Thuiller. 2005. Predicting species distribution: offering more than simple habitat models. Ecology Letters 8:993-1009. Guisan, A. and N. E. Zimmerman. 2000. Predictive habitat distribution models in ecology. Ecological Modelling 135:147-186. Hallam, A. 1981. Relative importance of plate movements, eustasy, and climate in controlling major biogeographical changes since the early Mesozoic. In N. Nelson and D. E. Rosen (eds.). Vicariance biogeography: A Critique. Columbia University Press, New York, pp. 303–330. Hay, W. W. 2008. Evolving ideas about the Cretaceous climate and ocean circulation. Cretaceous Research 29:725–753. Heim, N. A., and S. E. Peters. 2011. Regional environmental breadth predicts geographic range and longevity in fossil marine genera. PLoS ONE 6:e18946. 179 Hernandez, P. A., C. H. Graham, L. L. Master, and D. L. Albert. 2006. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29:773-785. Hijmans, R. J. and C. H. Graham. 2006. The ability of climate envelope models to predict the effect of climate change on species distributions. Global Change Biology 12:2272-2281. Hirzel, A. H, V. Helfer, and F. Metral. 2001. Assessing habitat-suitability models with a virtual species. Ecological Modelling 145:111-121. Hortal, J., A. Jiménez-Valverde, J. F. Gomez, J. M. Lobo, and A. Baselga. 2008. Historical bias in biodiversity inventories affects the observed environmental niche of the species. Oikos 117:847-858. Huber, B. T., D. A. Hodell, and C. P. Hamilton. 1995. Middle–Late Cretaceous climate of the southern high latitudes: stable isotopic evidence for minimal equator-to-pole thermal gradients. Geological Society of America Bulletin 107:1164–1191. Huber, B. T., R. D. Norris, and K. G. MacLeod. 2002. Deep-sea paleotemperature record of extreme warmth during the Cretaceous. Geology 30:123–126. Jablonski, D. 2001. Lessons from the past: evolutionary impacts of mass extinctions. Proceedings of the National Academy of Sciences USA 98:5393–5398. Jablonski, D. and D. M. Raup. 1995. Selectivity and end-Cretaceous marine bivalve extinctions. Science 268:389–391. Jiménez-Valverde, A., J. M. Lobo, and J. Hortal. 2008. Not as good as they seem: the importance of concepts in species distribution modeling. Diversity and Distributions 14:885-890. 180 Jiménez-Valverde, A., A. T. Peterson, J. Soberón, J. M. Overton, P. Aragón, and J. M. Lobo. 2011a. Use of niche models in invasive species risk assessment. Biological Invasions 13:2785-2797. Jiménez-Valverde, A., N. Barve, A. Lira-Noriega, S. P. Maher, Y. Kakazawa, M. Papes, J. Soberón, J. Sukumaran, and A. T. Peterson. 2011b. Dominant climate influences on North American bird distributions. Global Ecology and Biogeography 20:114-118. Johnson Ibach, J. E. 1982. Relationship between sedimentation rate and total organic carbon content in ancient marine sediments. American Association for Petroleum Geologists Bulletin 66:170-188. Kammer, T. W., T. K. Baumiller, and W. I. Ausich. 1997. Species longevity as a function of niche breadth: evidence from fossil crinoids. Geology 25: 219-222. Kammer, T. W., T. K. Baumiller, and W. I. Ausich. 1998. Evolutionary significance of differential species longevity in Osagean–Meramician (Mississippian) crinoid clades. Paleobiology 24:155–176. Kauffman, E. G. 1969. Cretaceous marine cycles of the Western Interior. The Mountain Geologist 6:227-245. Kauffman, E.G. 1984. Paleobiogeography and evolutionary response dynamic in the Cretaceous Western Interior Seaway of North America. In G.E.G. Westermann, ed. Jurassic-Cretaceous Biochronology and Paleogeography of North America. Geological Association of Canada Special Paper 27:273-306. Kearney, M. and W. Porter. 2009. Mechanistic niche modeling: combining physiological and spatial data to predict species’ ranges. Ecology Letters 12:334-350. 181 Kearney, M. R., B. A. Wintle, W. P. Porter. 2010. Correlative and mechanistic models of species distribution provide congruent forecasts underclimate change. Conservation Letters 3:203-213. Kirkland, J. I. 1991. Lithostratigraphic and biostratigraphic framework for the Mancos Shale (Late Cenomanian to Middle Turonian) at Black Mesa, northeastern Arizona. In Stratigraphy, Depositional Environments, and Sedimentary Tectonics of the Western Margin, Cretaceous Western Interior Seaway. J. D. Nations, and J. G. Eaton (eds.). Geological Society of American Special Paper 260:85-111. Knoll, A. H. 1989. Evolution and extinction in the marine realm: some constraints imposed by phytoplankton. Philosophical Transactions of the Royal Society of London B 325:279–290. Knoll, A. H. 2012. Systems Paleobiology. Geological Society of America Bulletin 125:256-266. Knoll, A.H., Bambach, R. .K., Canfield, D. E., and Grotzinger, J. P. 1996. Comparative Earth history and the Late Permian mass extinction. Science 273:452–457. Kozak, K. H., and J. J. Wiens. 2006. Does Niche Conservatism Promote Speciation? A Case Study in North American Salamanders. Evolution 60: 2604-2621. Kozak, K. H., and J. J. Wiens. 2010. Accelerated rates of climatic-niche evolution underlie rapid species diversification. Ecology Letters 13: 1378-1389. Lieberman, B. S. 2000. Paleobiogeography: Using Fossils to Study Global Change, Plate Tectonics, and Evolution. Kluwer Academic/Plenum Publishers, New York, pp. 208. Lieberman, B. S. 2003a. Paleobiogeography: the relevance of fossils to biogeography. Annual Review of Ecology and Systematics 34:51–69. 182 Lieberman, B. S. 2003b. Paleobiogeography: Integrating Plate Tectonics and Evolution. Priscum 12:9–11. Lieberman, B. S. 2012. Adaptive radiations in the context of macroevolutionary theory: a paleontological perspective. Evolutionary Biology 39:181-191. Lieberman, B. S., W. Miller III. and N. Eldredge. 2007. Paleontological patterns, macroecological dynamics, and the evolutionary process. Evolutionary Biology 34:28–48. Liow, L. H. 2007. Does versatility as measured by geographic range, bathymetric range, and morphological variability contribute to taxon longevity? Global Ecology and Biogeography 16:117–128. Losos, J. B. 2008. Phylogenetic niche conservation, phylogenetic signal, and the relationship between phylogenetic relatedness and ecological similarity among species. Ecology Letters 11:995-1007. Losos, J. B., M. Leal, R. E. Glor, K. de Queiroz, P. E. Hertz, L. Rodríguez Schettino, A. Chamizo Lara, T. R. Jackman, and A. Larson. 2003. Niche lability in the evolution of a Caribbean lizard community. Nature 424:542-545. Maguire, K. C. and Stigall, A. L. 2008. Paleobiogeography of Miocene Equinae of North America: A phylogenetic biogeographic analysis of the relative roles of climate, vicariance, and dispersal. Palaeogeography, Palaeoclimatology, Palaeoecology 267:175–184. Maguire, K. C., and A. L. Stigall. 2009. Using ecological niche modeling for quantitative biogeographic analysis: a case study of Miocene and Pliocene Equinae in the Great Plains. Paleobiology 35:587-611. 183 Malizia, R. W. and A. L. Stigall. 2011. Niche stability in Late Ordovician articulated brachiopod species before, during, and after the Richmondian invasion. Palaeogeograpchy, Palaeoclimatology, Palaeoecology 311:154-170. Martin, L. J., B. Blossey, and E. Ellis. 2012. Mapping where ecologists work: bias in the global distribution of terrestrial ecological observations. Frontiers in Ecology and the Environment 10:195-201. Martínez-Meyer, E. and A. T. Peterson. 2006. Conservatism of ecological niche characteristics in North American plant species over the Pleistocene-to-Recent transition. Journal of Biogeography 33:1779-1789. Martínez-Meyer, E., A. T. Peterson, and W. W. Hargrove. 2004. Ecological niches as stable distributional constraints on mammal species, with implications for Pleistocene extinctions and climate change projections for biodiversity. Global Ecology and Biogeography 13:305-314. Martínez-Meyer, E., A. T. Peterson, J. I. Servín, and L. F. Kiff. 2006. Ecological niche modeling and prioritizing areas for species reintroductions. Oryx 40:411-418. Monahan, W. B. and M. W. Tingley. 2012. Niche tracking and rapid establishment of distributional equilibrium in the House Sparrow show potential responsiveness of species to climate change. PLoS ONE 7:e42097. Myers, C., and B. S. Lieberman. 2011. Sharks that pass in the night: Using GIS to investigate competition in the Cretaceous Western Interior Seaway. Proceedings of the Royal Society, Series B. 278:681-689. Myers, C. E., and E. E. Saupe. (in press). A macroevolutionary expansion of the Modern Synthesis and the importance of extrinsic abiotic factors. In Macroevolution and the 184 Modern Synthesis. E. E. Saupe, C. E. Myers, and C. R. Congreve (eds.). Palaeontology Special Issue. Myers, C. E., R. A. MacKenzie III, and B. S. Lieberman. 2013. A GIS approach to studying greenhouse biogeography: invasion and extinction in the Cretaceous Western Interior Seaway. Paleobiology 39:135-148. Neuendorf, K. K. E., J. P. Mehl Jr., and J. A. Jackson. 2005. Glossary of Geology, 5th ed. American Geological Institute, Virginia, pp. 779. Owen, D. E., A. M. Forgas, S. A. Miller, R. J. Stelly, and D. E. Owen Jr. 2005. Surface and subsurface stratigraphy of the Burro Canyon Formation, Dakota Sandstone, and intertongued Mancos Shale of the Chama Basin, New Mexico. In Geology of the Chama Basin. S. G. Lucas, K. E. Zeigler, V. W. Lueth, and D. E. Owen (eds.). New Mexico Geological Society, Guidebook 56:218-226. Owens, H. L., L. P. Campbell, L. L. Dornak, E. E. Saupe, N. Barve, J. Soberón, K. Ingenloff, A. Lira-Noriega, C. M. Hensz, C. E. Myers, A. T. Peterson. (in press). Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas. Ecological Modelling. Pearman, P. B., A. Guisan, O. Broennimann, and C. F. Randin. 2008. Niche dynamics in space and time. Trends in Ecology and Evolution 23:149-158. Pearson, R. G. and T. P. Dawson. 2003. Predicting the impacts of climate change on the distribution of species: are bioclimate envelop models useful? Global Ecology and Biogeography 12:361-371. Pearson, R. G. and T. P. Dawson. 2004. Bioclimate envelope models: what they detect and what they hide – response to Hampe (2004). Global Ecology and Biogeography 13:471-473. 185 Pearson, R. G., C. J. Raxworthy, M. Nakamura, and A. T. Peterson. 2007. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography 34:102-117. Peters, S. E. 2008. Environmental determinants of extinction selectivity in the fossil record. Nature 454:626–629. Peterson, A. T. 2001. Predicting species’ geographic distributions based on ecological niche modeling. The Condor 103:599-605. Peterson, A. T. 2003. Predicting the geography of species’ invasions via ecological niche modeling. Quarterly Review of Biology 78:419-433. Peterson, A. T. 2006. Uses and requirements of ecological niche models and related distributional models. Biodiversity Informatics 3:59-72. Peterson, A. T. 2011. Ecological niche conservatism: a time-structured review of evidence. Journal of Biogeography 38:817-827. Peterson, A. T. and K. P. Cohoon. 1999. Sensitivity of distributional prediction algorithms to geographic data completeness. Ecological Modelling 117:159-164. Peterson, A. T. and Y. Nakazawa. 2008. Environmental data sets matter in ecological niche modeling: an example with Solenopsis invicta and Solenopsis richteri. Global Ecology and Biogeography 17:135-144. Peterson, A. T., J. Soberón, and V. Sanchez-cordero. 1999. Conservatism of ecological niches in evolutionary time. Science 285:1265–1267. Peterson, A. T., H. Tian, E. Martínez-Meyer, J. Soberón, V. Sánchez-Cordero, B. Huntley. 2005. Modeling distributional shifts in individual species biomes. In Climate Change and 186 Biodiversity. T. E. Lovejoy and L. Hannah (eds.). Yale University Press, New Haven, CT, pp. 211-228. Peterson, A. T., J. Soberón, R. G. Pearson, R. P. Anderson, E. Martínez-Meyer, M. Nakamura, and M.B. Araújo. 2011. Ecological Niches and Geographic Distributions. Princeton University Press, Princeton, pp. 316. Phillips, S. J., M. Dudik, and R. E. Schapire. 2004. A maximum entropy approach to species distribution modeling. Proceedings of the 21st International Conference on Machine Learning, Canada, pp. 8. Phillips, S. J., R. P. Anderson, & R. E. Schapire. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling 190:231–259. Prothero, D. R. and Schwab, F. 2004. Sedimentary Geology: an Introduction to Sedimentary Rocks and Stratigraphy, 2nd ed. W. H. Freeman and Company, New York, pp. 557. Potter, P. E., J. B. Maynard, and P. J. Depetris. 2010. Mud and Mudstones: Introduction and Overview. Springer, New York, pp. 308. Raes, N. 2012. Partial vs. full species distribution models. Natureza & Conservação 10:127-138. Rangel, T. F. L. V. B., J. A. F. Diniz-Filho, and R. K. Colwell. 2007. Species richness and evolutionary niche dynamics: a spatial pattern-oriented simulation experiment. American Naturalist 170:602-616. Raup, D. M. 1979. Size of the Permo-Triassic bottleneck and its evolutionary implications. Science 206L:217–218. Raup, D. M. 1994. The role of extinction in evolution. Proceedings of the National Academy of Sciences USA 91:6758–6763. 187 Raup, D. M. and J. J. Sepkoski. 1982. Mass extinctions in the marine fossil record. Science 215:1501–1503. Renner, I. W. and D. I. Warton. 2013. Equivalence of Maxent and Poisson Point Process models for species distribution modeling in ecology. Biometrics. DOI: 10.1111/j.1541-0420.2012.01824.x. Rothschild, L. and Lister, A. (eds.). 2003. Evolution on Planet Earth: The Impact of the Physical Environment. Academic Press, London, pp. 453. Sageman, B. B. and C. R. Binna. 1997. Diversity and species abundance patterns in Late Cenomanian black shale biofacies, Western Interior, US. Palaios 12:449-466. Saupe, E. E., M. Papes, P. A. Selden, and R. S. Vetter. 2011. Tracking a medically important spider: climate change, ecological niche modeling, and the brown recluse (Loxosceles reclusa). PLoS ONE 6:e17731. Saupe, E. E., V. Barve, C. E. Myers, J. Soberón, C. M. Hensz, A. T. Peterson, H. L. Owens, and A. Lira-Noriega. 2012. Variation in niche and distribution model performance: the need for a priori assessment of key causal factors. Ecological Modelling 237-238:11-22. Sepkoski, J. J., Jr. 1988. Alpha, Beta, or Gamma: where does all the diversity go? Paleobiology 14:221-234. Soberón, J. 2007. Grinnellian and Eltonian niches and geographic distributions of species. Ecology Letters 10:1115-1123. Soberón, J. and A. T. Peterson. 2005. Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiversity Informatics 2:1-10. 188 Spicer, R. A. and R. M. Corfield. 1992. A review of terrestrial and marine climates in the Cretaceous with implications for modeling the ‘Greenhouse Earth.’ Geological Magazine 129:169–180. Stigall, A. L. 2012. Using ecological niche modeling to evaluate niche stability in deep time. Journal of Biogeography 39:772-781. Stigall Rode, A. L. and B. S. Lieberman. 2005a. Using environmental niche modeling to study the Late Devonian biodiversity crisis. In Understanding Late Devonian and Permian-Triassic Biotic and Climatic Events: Towards an Integrated Approach. D. J. Over, J. R. Morrow, and P. B. Wignall (eds.). Developments in Paleontology and Stratigraphy, Elsevier, Amsterdam, pp. 93-180. Stigall Rode, A. L. and B. S. Lieberman. 2005b. Paleobiogeographic patterns in the Middle and Late Devonian emphasizing Laurentia. Palaeogeography, Palaeoclimatology, Palaeoecology 222:272–284. Stigall, A. L., and B. S. Lieberman. 2006. Quantitative Paleobiogeography: GIS, Phylogenetic biogeographic analysis, and conservation insights. Journal of Biogeography 33:2051-2060. Stockwell, D. and D. Peters. 1999. The GARP modeling system: problems and solutions to automated spatial prediction. International Journal of Geographic Information Science 13:143-158. Svenning, J.-C. and F. Skov. 2004. Limited filling of the potential range in European tree species. Ecology Letters 7:565-573. Svenning, J.-C., C. Fløjgaard, K. A. Marske, D. Nógues-Bravo, and S. Normand. 2011. Applications of species distribution modeling to paleobiology. Quaternary Science Reviews 30:2930-2947. 189 Thuiller, W., D. M. Richardson, P. Pysek, G. F. Midgley, G. O. Hughes, and M. Rouget. 2005a. Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Global Change Biology 11:2234-2250. Thuiller, W., S. Lavorel, M. B. Araújo, M. T. Sykes, and I. C. Prentice. 2005b. Climate change threats to plant diversity in Europe. Proceedings of the National Academy of Sciences USA 102:8245-8250. Tingley, M. W., W. B. Monahan, S. R. Beissinger, and C. Moritz. 2009. Birds track their Grinnellian niche through a century of climate change. Proceedings of the National Academy of Sciences USA 106:19637-19643. Tinoco, B. A., P. X. Astudillo, S. C. Latta, and C. H. Graham. 2009. Distribution, ecology, and conservation of an endangered Andean hummingbird: the Violet-throated Metalail (Metallura baroni). Bird Conservation International 19:63-76. Tittensor, D. P., A. R. Baco, P. E. Brewin, M. R. Clark, M. Consalvey, J. Hall-Spencer, A. A. Rowden, T. Schlacher, K. I. Stocks, and A. D. Rogers. 2009. Predicting global habitat suitability for stony corals on seamounts. Journal of Biogeography 36:1111-1128. Tyson, R. V. 2001. Sedimentation rate, dilution, preservation and total organic carbon: some results of a modelling study. Organic Geochemistry 32:333-339. Vrba, E.S. 1980. Evolution, species and fossils: how does life evolve? South African Journal of Science 76:61–84. Vrba, E. S. 1985. Environment and evolution: alternative causes of the temporal distribution of evolutionary events. South African Journal of Science 81:229–236. 190 Walls, B. J., and A. L. Stigall. 2011. Analyzing niche stability and biogeography of Late Ordovician brachiopod species using ecological niche modeling. Palaeogeography, Palaeoclimatology, Palaeoecology 99:15-29. Walls, B. J., and A. L. Stigall 2012. A field-based analysis of the accuracy of niche models applied to the fossil record. Paleontological Contributions 6, pp. 14. Warren, D. L. 2012. In defense of ‘niche modeling’. Trends in Ecology and Evolution 27:497-500. Warren, D. L., R. E. Glor, and M. Turelli. 2008. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62:2868-2883. Warren, D. L., R. E. Glor, and M. Turelli. 2010. ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33:607-611. Wiens, J. J., and C. H. Graham 2005. Niche conservatism: integrating evolution, ecology, and conservation biology. Annual Review of Ecology, Evolution, and Systematics 36:519-539. Wiens, J. J., D. D. Ackerly, A. P. Allen, B. L. Anacker, L. B. Buckley, H. V. Cornell, E. I. Damschen, T. J. Davies, J.-A. Grytnes, S. P. Harrison, B. A. Hawkins, R. D. Holt, C. M. McCain, and P. R. Stephens. 2010. Niche conservatism as an emerging principle in ecology and conservation biology. Ecology Letters 13:1310-1324. Zang, M.-G., Z.-J. Zhou, W.-Y. Chen, J. W. F. Slik, C. H. Cannon, and N. Raes. 2012. Using species distribution modeling to improve conservation and land use planning of Yunnan, China. Biological Conservation 153:257-264. 191 Chapter 5. Conclusion The question of what factors drive evolutionary change has been debated since Darwin first published On the Origin of Species (1859). Darwin even wavered on this, considering a much larger role for physical Earth processes in shaping evolution in his initial thinking (e.g., Darwin 1838), yet, these ideas were later considered only in a limited way in the Origin, where more focus was given to promoting his evolutionary mechanism of natural selection (Darwin 1859; Gould 2002; Eldredge 2005; Lieberman et al. 2007). Natural selection by definition emphasizes the role of biotic factors in evolution, often in the form of interspecific competition for resources. This view has been championed by many since Darwin, particularly the founders of the Modern Evolutionary Synthesis (e.g., Dobzhansky 1937; Mayr 1942; Simpson 1944) and their “intellectual descendants”, including many recent workers in both extant and extinct evolutionary biology (e.g., MacArthur and Wilson 1972; Van Valen 1973; Vermeij 1987; Jackson and McKinney 1990; Rosenzweig and McCord 1991; Sepkoski et al. 2000). Biotic factors, however, have not been the sole focus of evolutionary investigations throughout the years. Many studies have demonstrated the importance of abiotic Earth processes in influencing evolution, particularly patterns of diversification (e.g., Raup 1979, 1994; Vrba 1980, 1985; Hallam 1981; Cracraft 1982; Raup and Sepkoski 1982; Knoll 1989, 2012; Allmon and Ross 1990; Knoll et al. 1996; Carroll 2000; Lieberman 2000, 2003a, b; Barnosky 2001; Rothschild and Lister 2003; Stigall Rode and Lieberman 2005a, b; Erwin 2006; Lieberman et al. 2007; Maguire and Stigall 2008; Peters 2008; Myers and Saupe in press). The research compiled in this dissertation tested specific hypotheses of both biotic and abiotic factors impacting paleobiogeographic and macroevolutionary patterns of marine taxa during the Late Cretaceous. 192 To this end, the first two research chapters presented here quantitatively tested for the role of competitive exclusion in extinction selectivity and the impact of geographic range size on patterns of survivorship and invasion potential across a phylogenetically and ecologically diverse set of marine taxa. The results indicate that competitive exclusion was not a driving force in marine vertebrate extinctions. Further, large geographic range was not found to increase survivorship or invasion potential in marine mollusks. These results offer unique insight into common patterns of how species interact with their environment, and each other, in a warmer world. The final chapter examined the application of ecological niche modeling (ENM) in the fossil record. This chapter provided an in depth discussion of conceptual considerations that are essential to producing quality models of species abiotic requirements used to test hypotheses of the impacts of biotic and abiotic factors on macroevolutionary patterns (e.g., ecological niche stability, breadth, and phylogenetic conservation). This chapter further specified a standardized framework for collection of species occurrence and stratigraphic data and paleoenvironmental reconstruction necessary for applying ENM techniques in the fossil record. My research aimed to elucidate the ways in which ecology, biogeography, and evolution are interrelated. I used the Late Cretaceous marine fossil record as a laboratory to quantitatively test hypotheses of the impact of biotic vs. abiotic changes mediating speciation, extinction, and distribution patterns. This research integrated tools and concepts from diverse fields in the Earth and evolutionary sciences, including paleobiology, ecology, biogeography, and paleoenvironmental reconstruction. Such a synthetic approach helps provide a comprehensive view of paleobiogeographic and macroevolutionary patterns in marine taxa during the Late 193 Cretaceous and may offer important clues to inform predictions of species’ responses to projected future environmental changes. 194 Literature Cited Allmon, W. D. and R. M. Ross. 1990. Specifying causal factors in evolution: the paleontological contribution. In Ross, R. M. and Allmon, W. D. (eds.). Causes of Evolution: A Paleontological Perspective. University of Chicago Press, Chicago, pp. 1-21. Barnosky, A. D. 2001. Distinguishing the effects of the red queen and court jester on Miocene mammal evolution in the northern Rocky Mountains. Journal of Vertebrate Paleontology 21:172–185. Carroll, R. L. 2000. Towards a new evolutionary synthesis. Trends in Ecology and Evolution 15:27–32. Cracraft, J. 1982. A nonequilibrium theory for the rate-control of speciation and extinction and the origin of macroevolutionary patterns. Systematic Zoology 31:348–365. Darwin. 1939. The voyage of the Beagle. The Harvard Classics edition (1939). C. W. Eliot (ed.). P. F. Collier and Sons, New York, pp. 524. Darwin, C. 1859. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life, 1st ed. John Murray, London, 502 pp. Dobzhansky, T. 1937. Genetics and the Origin of Species. Columbia University Press, New York, pp. 364. Eldredge, N. 2005. Darwin: discovering the tree of life. W. W. Norton, New York, pp. 288. Erwin, D. H. 2006. Extinction: how life on Earth nearly ended 250 million years ago. Princeton University Press, Princeton, pp. 296. Hallam, A. 1981. Relative importance of plate movements, eustasy, and climate in controlling major biogeographical changes since the early Mesozoic. In N. Nelson and D. E. Rosen 195 (eds.). Vicariance biogeography: A Critique. Columbia University Press, New York, pp. 303–330. Jackson, J. B. C. and F. K. McKinney. 1990. Ecological processes and progressive macroevolution of marine clonal benthos. In Causes of Evolution. R. M. Ross and W. D. Allmon (eds.). University of Chicago Press, Chicago, pp. 173-209. Knoll, A. H. 1989. Evolution and extinction in the marine realm: some constraints imposed by phytoplankton. Philosophical Transactions of the Royal Society of London B 325:279–290. Knoll, A. H. 2012. Systems Paleobiology. Geological Society of America Bulletin 125:256-266. Knoll, A.H., Bambach, R. .K., Canfield, D. E., and Grotzinger, J. P. 1996. Comparative Earth history and the Late Permian mass extinction. Science 273:452–457. Lieberman, B. S. 2000. Paleobiogeography: Using Fossils to Study Global Change, Plate Tectonics, and Evolution. Kluwer Academic/Plenum Publishers, New York, pp. 208. Lieberman, B. S. 2003a. Paleobiogeography: the relevance of fossils to biogeography. Annual Review of Ecology and Systematics 34:51–69. Lieberman, B. S. 2003b. Paleobiogeography: Integrating Plate Tectonics and Evolution. Priscum 12:9–11. Lieberman, B. S., W. Miller III. and N. Eldredge. 2007. Paleontological patterns, macroecological dynamics, and the evolutionary process. Evolutionary Biology 34:28–48. MacArthur, R. H. and E. O. Wilson. 1967. The theory of island biogeography. Princeton University Press, New Jersey, pp. 203. Maguire, K. C. and Stigall, A. L. 2008. Paleobiogeography of Miocene Equinae of North America: A phylogenetic biogeographic analysis of the relative roles of climate, 196 vicariance, and dispersal. Palaeogeography, Palaeoclimatology, Palaeoecology 267:175–184. Mayr, E. 1942. Systematics and the Origin of Species from the Viewpoint of a Zoologist. Harvard University Press, Cambridge, pp. 334. Myers, C. E., and E. E. Saupe. (in press). A macroevolutionary expansion of the Modern Synthesis and the importance of extrinsic abiotic factors. In Macroevolution and the Modern Synthesis. E. E. Saupe, C. E. Myers, and C. R. Congreve (eds.). Palaeontology Special Issue. Peters, S. E. 2008. Environmental determinants of extinction selectivity in the fossil record. Nature 454:626–629. Raup, D. M. 1979. Size of the Permo-Triassic bottleneck and its evolutionary implications. Science 206L:217–218. Raup, D. M. 1994. The role of extinction in evolution. Proceedings of the National Academy of Sciences USA 91:6758–6763. Raup, D. M. and J. J. Sepkoski. 1982. Mass extinctions in the marine fossil record. Science 215:1501–1503. Rosenzweig, M. L. and R. D. McCord. 1991. Incumbent replacement: evidence for long-term evolutionary progress. Paleobiology 17:202–213. Rothschild, L. and Lister, A. (eds.). 2003. Evolution on Planet Earth: The Impact of the Physical Environment. Academic Press, London, pp. 453. Sepkoski, J. J. Jr., F. K. McKinney, and S. Lidgard. 2000. Competitive displacement amoung post-Paleozoic cyclostome and cheilostome bryozoans. Paleobiology 26:7–18. 197 Simpson, G. G. 1944. Tempo and Mode in Evolution. Columbia University Press, New York, pp. 237. Stigall Rode, A. L. and B. S. Lieberman. 2005a. Using environmental niche modeling to study the Late Devonian biodiversity crisis. In Understanding Late Devonian and Permian-Triassic Biotic and Climatic Events: Towards an Integrated Approach. D. J. Over, J. R. Morrow, and P. B. Wignall (eds.). Developments in Paleontology and Stratigraphy, Elsevier, Amsterdam, pp. 93-180. Stigall Rode, A. L. and B. S. Lieberman. 2005b. Paleobiogeographic patterns in the Middle and Late Devonian emphasizing Laurentia. Palaeogeography, Palaeoclimatology, Palaeoecology 222:272–284. Van Valen, L, M. 1987. A new evolutionary law. Evolutionary Theory 1:1-30. Vermeij, G. J. 1987. Evolution and escalation: an ecological history of life. Princeton University Press, New Jersey, pp. 527. Vrba, E.S. 1980. Evolution, species and fossils: how does life evolve? South African Journal of Science 76:61–84. Vrba, E. S. 1985. Environment and evolution: alternative causes of the temporal distribution of evolutionary events. South African Journal of Science 81:229–236. 198 Appendices Appendix 1-1. PaleoGIS range area reconstructions for each taxon during each stage of the Late Cretaceous. S = range area (km), S* = estimated mean range area calculated by jackknifing (km), SE = standard error, L1 and L2 = 95% confidence bands on S*. Cenomanian Turonian Coniacian Santonian Campanian Maastrichtian Cretoxyrhina mantelli S 244689 314459 215995 4773 0 0 S* 489336 657508 539695 5673 0 0 SE 212723 260631 214829 0 0 0 L1 21134 112008 78887 5672 0 0 L2 957538 1203008 1000503 5675 0 0 Number of Occurrences 33 30 20 21 0 0 Number of Unique Localities 12 20 15 17 0 0 Percent Deletion for each ‘n-1’ Jackknife Replicate (%) 8.3 5 6.7 5.9 0 0 Squalicorax falcatus S 592794 450817 50150 5008 346 0 S* 1349661 586236 115595 6404 489 0 SE 547638 103871 43388 619 0 0 L1 129523 376105 17452 5025 487 0 L2 2569799 796367 213738 7783 491 0 Number of Occurrences 31 135 16 13 2 0 Number of Unique Localities 11 40 10 11 2 0 Percent Deletion for each ‘n-1’ Jackknife Replicate (%) 9.1 2.5 10 9.1 50 0 Squalicorax kaupi S 0 0 248 81269 1257485 19158 S* 0 0 248 150349 1288483 34369 SE 0 0 0 73370 158316 13704 L1 0 0 0 -8130 940030 -9239 L2 0 0 0 308828 1636936 77976 Number of Occurrences 0 0 1 16 32 4 Number of Unique Localities 0 0 1 14 12 4 Percent Deletion for each ‘n-1’ Jackknife Replicate (%) 0 0 0 7.1 8.3 25 Platecarpus sp. S 0 0 2166 134938 66714 0 S* 0 0 3636 259184 124652 0 SE 0 0 1363 119186 45122 0 L1 0 0 -702 3530 24120 0 L2 0 0 7975 514838 225185 0 Number of Occurrences 0 0 4 15 51 0 Number of Unique Localities 0 0 4 15 11 0 199 Percent Deletion for each ‘n-1’ Jackknife Replicate (%) 0 0 25 6.7 9.1 0 Tylosaurus sp. S 0 0 74779 256 284026 258 S* 0 0 84512 289 620362 258 SE 0 0 21141 18 205076 0 L1 0 0 38848 210 93112 0 L2 0 0 130176 368 1147612 0 Number of Occurrences 0 0 19 3 9 1 Number of Unique Localities 0 0 14 3 6 1 Percent Deletion for each ‘n-1’ Jackknife Replicate (%) 0 0 7.1 33.3 16.7 0 Xiphactinus sp. S 53781 22796 3277 5898 115958 228 S* 126429 48968 5325 9518 280735 228 SE 44605 15793 1015 2335 95088 0 L1 23570 15091 2508 4473 16770 0 L2 229288 82845 8142 14562 544700 0 Number of Occurrences 13 58 6 16 8 1 Number of Unique Localities 9 15 5 14 5 1 Percent Deletion for each ‘n-1’ Jackknife Replicate (%) 11.1 6.7 20 7.1 20 0 Ptychodus anonymus S 229810 494312 1627 0 0 0 S* 587339 1300755 3028 0 0 0 SE 217879 502172 1 0 0 0 L1 27171 223597 3018 0 0 0 L2 1147507 2377913 3038 0 0 0 Number of Occurrences 10 50 2 0 0 0 Number of Unique Localities 6 15 2 0 0 0 Percent Deletion for each ‘n-1’ Jackknife Replicate (%) 16.7 6.7 50 0 0 0 Ptychodus mortoni S 0 241 636141 41279 262031 0 S* 0 241 1383280 64591 475384 0 SE 0 0 464877 36355 96909 0 L1 0 0 245727 -21388 206366 0 L2 0 0 2520833 150570 744403 0 Number of Occurrences 0 1 11 12 7 0 Number of Unique Localities 0 1 7 8 5 0 Percent Deletion for each ‘n-1’ Jackknife Replicate (%) 0 0 14.3 12.5 20 0 Ptychodus whipplei S 241 954857 248 0 0 0 S* 241 1548376 248 0 0 0 SE 0 466188 0 0 0 0 L1 0 596420 0 0 0 0 L2 0 2500332 0 0 0 0 Number of Occurrences 1 58 1 0 0 0 200 Number of Unique Localities 1 31 1 0 0 0 Percent Deletion for each ‘n-1’ Jackknife Replicate (%) 0 3.2 0 0 0 0 Rhinobatos incertus S 12126 3445 2258 305 665 0 S* 21260 4333 4289 338 1108 0 SE 9183 344 1 19 0 0 L1 -4232 3239 4282 279 1103 0 L2 46751 5426 4296 398 1114 0 Number of Occurrences 10 28 5 10 4 0 Number of Unique Localities 5 4 2 4 2 0 Percent Deletion for each ‘n-1’ Jackknife Replicate (%) 20 25 50 25 50 0 201 Appendix 1-2. Correlation results for range area analysis of all pairwise comparisons. A Bonferroni correction (Sokal and Rohlf 1995) for multiple comparisons indicates a critical p- value of p ≤ 0.001 for statistical significance. Taxon A Taxon B Spearman’s ρ p-value Kendall’s τ p-value Cretoxyrhina mantelli Squalicorax falcatus 0.928 0.022 0.828 0.020 Cretoxyrhina mantelli Squalicorax kaupi -0.882 0.036 -0.786 0.027 Cretoxyrhina mantelli Platecarpus sp. -0.431 0.392 -0.386 0.277 Cretoxyrhina mantelli Tylosaurus sp. -0.765 0.097 -0.643 0.070 Cretoxyrhina mantelli Ptychodus anonymus 0.955 0.025 0.926 0.009 Cretoxyrhina mantelli Ptychodus mortoni -0.132 0.789 -0.071 0.841 Cretoxyrhina mantelli Ptychodus whipplei 0.893 0.042 0.772 0.030 Cretoxyrhina mantelli Rhinobatos incertus 0.841 0.044 0.690 0.052 Cretoxyrhina mantelli Xiphactinus sp. 0.174 0.733 0.138 0.697 Squalicorax falcatus Squalicorax kaupi -0.812 0.072 -0.690 0.052 Squalicorax falcatus Platecarpus sp. -0.334 0.533 -0.298 0.401 Squalicorax falcatus Tylosaurus sp. -0.696 0.144 -0.552 0.120 Squalicorax falcatus Xiphactinus sp. 0.371 0.419 0.333 0.348 Squalicorax falcatus Ptychodus anonymus 0.880 0.050 0.745 0.036 Squalicorax falcatus Ptychodus mortoni -0.116 0.844 -0.138 0.697 Squalicorax falcatus Ptychodus whipplei 0.759 0.117 0.596 0.093 Squalicorax falcatus Rhinobatos incertus 0.943 0.003 0.867 0.015 Squalicorax kaupi Platecarpus sp. 0.770 0.108 0.617 0.082 Squalicorax kaupi Tylosaurus sp. 0.765 0.097 0.571 0.107 Squalicorax kaupi Xiphactinus sp. 0.058 0.933 0.000 1.000 Squalicorax kaupi Ptychodus anonymus -0.924 0.042 -0.849 0.017 Squalicorax kaupi Ptychodus mortoni 0.427 0.408 0.357 0.314 Squalicorax kaupi Ptychodus whipplei -0.832 0.067 -0.694 0.050 Squalicorax kaupi Rhinobatos incertus -0.754 0.106 0.552 0.120 Platecarpus sp. Tylosaurus sp. 0.524 0.283 0.463 0.192 Platecarpus sp. Xiphactinus sp. 0.152 0.833 0.149 0.674 Platecarpus sp. Ptychodus anonymus -0.613 0.200 -0.583 0.100 Platecarpus sp. Ptychodus mortoni 0.709 0.142 0.463 0.192 Platecarpus sp. Ptychodus whipplei -0.484 0.350 -0.417 0.240 Platecarpus sp. Rhinobatos incertus -0.395 0.450 -0.447 0.208 Tylosaurus sp. Xiphactinus sp. -0.058 0.933 -0.138 0.697 Tylosaurus sp. Ptychodus anonymus -0.678 0.158 -0.540 0.128 Tylosaurus sp. Ptychodus mortoni 0.662 0.169 0.500 0.159 Tylosaurus sp. Ptychodus whipplei -0.462 0.358 0.385 0.277 Tylosaurus sp. Rhinobatos incertus -0.522 0.300 -0.414 0.243 Xiphactinus sp. Ptychodus anonymus 0.213 0.733 0.149 0.674 Xiphactinus sp. Ptychodus mortoni 0.087 0.861 0.000 1.000 Xiphactinus sp. Ptychodus whipplei 0.030 1.000 0.000 1.000 Xiphactinus sp. Rhinobatos incertus 0.543 0.242 0.467 0.189 Ptychodus anonymus Ptychodus mortoni -0.185 0.742 -0.077 0.828 Ptychodus anonymus Ptychodus whipplei 0.936 0.025 0.833 0.019 Ptychodus anonymus Rhinobatos incertus 0.880 0.050 0.745 0.036 Ptychodus mortoni Ptychodus whipplei 0.092 0.883 0.077 0.828 Ptychodus mortoni Rhinobatos incertus -0.058 0.933 0.000 1.000 202 Ptychodus whipplei Rhinobatos incertus 0.786 0.117 0.596 0.093 203 Appendix 1-3. Correlation results for range area analysis of all pairwise comparisons using resampled mean range estimated by jackknifing procedure. A Bonferroni correction (Sokal and Rohlf 1995) for multiple comparisons indicates a critical p-value of p ≤ 0.001 for statistical significance. Taxon A Taxon B Spearman’s ρ p-value Kendall’s τ p-value Cretoxyrhina mantelli Squalicorax falcatus 0.812 0.072 0.690 0.052 Cretoxyrhina mantelli Squalicorax kaupi -0.794 0.081 0.643 0.070 Cretoxyrhina mantelli Platecarpus sp. -0.308 0.533 -0.232 0.514 Cretoxyrhina mantelli Tylosaurus sp. -0.471 0.342 -0.357 0.314 Cretoxyrhina mantelli Xiphactinus sp. 0.000 1.000 0.000 1.000 Cretoxyrhina mantelli Ptychodus anonymus 0.893 0.042 0.772 0.030 Cretoxyrhina mantelli Ptychodus mortoni 0.132 0.789 0.071 0.841 Cretoxyrhina mantelli Ptychodus whipplei 0.955 0.025 0.926 0.009 Cretoxyrhina mantelli Rhinobatos incertus 0.725 0.122 0.552 0.120 Squalicorax falcatus Squalicorax kaupi -0.812 0.072 -0.690 0.052 Squalicorax falcatus Platecarpus sp. -0.334 0.533 -0.298 0.401 Squalicorax falcatus Tylosaurus sp. -0.580 0.244 -0.414 0.243 Squalicorax falcatus Xiphactinus sp. 0.371 0.420 0.333 0.348 Squalicorax falcatus Ptychodus anonymus 0.880 0.050 0.745 0.036 Squalicorax falcatus Ptychodus mortoni -0.116 0.844 -0.138 0.697 Squalicorax falcatus Ptychodus whipplei 0.759 0.117 0.596 0.093 Squalicorax falcatus Rhinobatos incertus 0.943 0.003 0.867 0.015 Squalicorax kaupi Platecarpus sp. 0.770 0.108 0.617 0.082 Squalicorax kaupi Tylosaurus sp. 0.824 0.053 0.714 0.044 Squalicorax kaupi Xiphactinus sp. 0.058 0.933 0.000 1.000 Squalicorax kaupi Ptychodus anonymus -0.924 0.042 -0.849 0.017 Squalicorax kaupi Ptychodus mortoni 0.427 0.408 0.357 0.314 Squalicorax kaupi Ptychodus whipplei -0.832 0.067 -0.694 0.050 Squalicorax kaupi Rhinobatos incertus -0.754 0.106 0.552 0.120 Platecarpus sp. Tylosaurus sp. 0.770 0.108 0.617 0.082 Platecarpus sp. Xiphactinus sp. 0.152 0.833 0.149 0.674 Platecarpus sp. Ptychodus anonymus -0.613 0.200 -0.583 0.100 Platecarpus sp. Ptychodus mortoni 0.709 0.142 0.463 0.192 Platecarpus sp. Ptychodus whipplei -0.484 0.350 -0.417 0.240 Platecarpus sp. Rhinobatos incertus -0.395 0.450 -0.447 0.208 Tylosaurus sp. Xiphactinus sp. 0.058 0.933 0.000 1.000 Tylosaurus sp. Ptychodus anonymus -0.678 0.158 -0.540 0.128 Tylosaurus sp. Ptychodus mortoni 0.809 0.064 0.643 0.070 Tylosaurus sp. Ptychodus whipplei -0.462 0.358 0.386 0.277 Tylosaurus sp. Rhinobatos incertus -0.464 0.372 -0.276 0.437 Xiphactinus sp. Ptychodus anonymus 0.213 0.733 0.149 0.674 Xiphactinus sp. Ptychodus mortoni 0.087 0.861 0.000 1.000 Xiphactinus sp. Ptychodus whipplei 0.030 1.000 0.000 1.000 Xiphactinus sp. Rhinobatos incertus 0.543 0.242 0.467 0.189 Ptychodus anonymus Ptychodus mortoni -0.185 0.742 -0.077 0.828 Ptychodus anonymus Ptychodus whipplei 0.936 0.025 0.833 0.019 204 Ptychodus anonymus Rhinobatos incertus 0.880 0.050 0.745 0.036 Ptychodus mortoni Ptychodus whipplei 0.092 0.883 0.077 0.828 Ptychodus mortoni Rhinobatos incertus -0.058 0.933 0.000 1.000 Ptychodus whipplei Rhinobatos incertus 0.786 0.117 0.596 0.093 205 Appendix 1-4. Correlation results between number of unique geographic localities sampled and reconstructed geographic range size for each stage during the Late Cretaceous using resampled mean range estimated by jackknifing procedure. A Bonferroni correction (Sokal and Rohlf 1995) for multiple comparisons indicates a critical p-value of p ≤ 0.007 for statistical significance. Coniacian* represents the correlation between number of unique geographic localities and reconstructed range size after removing taxa that either originate or go extinct during this stage. Stage Spearman’s ρ p-value Kendall’s τ p-value Cenomanian 0.714 0.136 0.600 0.091 Turonian 0.703 0.086 0.586 0.065 Coniacian 0.893 0.001 0.759 0.002 Coniacian* 0.700 0.2333 0.600 0.142 Santonian 0.551 0.163 0.473 0.101 Campanian 0.764 0.056 0.651 0.040 Maastrichtian 0.866 0.667 0.817 0.201 Total (combined) 0.785 0.015 0.600 0.016 206 A p p en d ix 1 -5 . P al eo G IS ( R ot hw el l G ro up 2 00 7) r an ge r ec on st ru ct io ns i ll us tr at in g th e pa la eo bi og eo gr ap hi c pa tt er ns u nc ov er ed f or C re to xy rh in a m an te lli (y el lo w ) an d Sq ua lic or ax fa lc at us (r ed ) du ri ng t he L at e C re ta ce ou s. L at e C re ta ce ou s st ag es : (a ) C en om an ia n, (b ) T ur on ia n, ( c) C on ia ci an , ( d) S an to ni an , ( e) C am pa ni an . P re se nt d ay o ut cr op o f L at e C re ta ce ou s se di m en ts i s al so s ho w n (b ro w n) . 207 A p p en d ix 1 -6 . P al eo G IS ( R ot hw el l G ro up 2 00 7) r an ge r ec on st ru ct io ns i ll us tr at in g th e pa la eo bi og eo gr ap hi c pa tt er ns u nc ov er ed f or C re to xy rh in a m an te lli ( ye ll ow ) an d Sq ua lic or ax k au pi ( or an ge ) du ri ng t he L at e C re ta ce ou s. L at e C re ta ce ou s st ag es : (a ) C en om an ia n, (b ) T ur on ia n, ( c) C on ia ci an , ( d) S an to ni an , ( e) C am pa ni an , ( f) M aa st ri ch ti an . P re se nt d ay o ut cr op o f L at e C re ta ce ou s se di m en ts i s al so s ho w n (b ro w n) . 208 A p p en d ix 1 -7 . P al eo G IS ( R ot hw el l G ro up 2 00 7) r an ge r ec on st ru ct io ns i ll us tr at in g th e pa la eo bi og eo gr ap hi c pa tt er ns u nc ov er ed f or C re to xy rh in a m an te lli (y el lo w ) an d Pl at ec ar pu s sp . ( da rk g re en ) du ri ng t he L at e C re ta ce ou s. L at e C re ta ce ou s st ag es : (a ) C en om an ia n, (b ) T ur on ia n, ( c) C on ia ci an , ( d) S an to ni an , ( e) C am pa ni an . P re se nt d ay o ut cr op o f L at e C re ta ce ou s se di m en ts i s al so s ho w n (b ro w n) . 209 A p p en d ix 1 -8 . P al eo G IS ( R ot hw el l G ro up 2 00 7) r an ge r ec on st ru ct io ns i ll us tr at in g th e pa la eo bi og eo gr ap hi c pa tt er ns u nc ov er ed f or C re to xy rh in a m an te lli (y el lo w ) an d Ty lo sa ur us s p. ( bl ue ) du ri ng t he L at e C re ta ce ou s. L at e C re ta ce ou s st ag es : (a ) C en om an ia n, (b ) T ur on ia n, ( c) C on ia ci an , ( d) S an to ni an , ( e) C am pa ni an , ( f) M aa st ri ch ti an . P re se nt d ay o ut cr op o f L at e C re ta ce ou s se di m en ts i s al so s ho w n (b ro w n) . 210 A p p en d ix 1 -9 . P al eo G IS ( R ot hw el l G ro up 2 00 7) r an ge r ec on st ru ct io ns i ll us tr at in g th e pa la eo bi og eo gr ap hi c pa tt er ns u nc ov er ed f or C re to xy rh in a m an te lli (y el lo w ) an d Xi ph ac tin us s p. ( pi nk ) du ri ng t he L at e C re ta ce ou s. L at e C re ta ce ou s st ag es : (a ) C en om an ia n, (b ) T ur on ia n, ( c) C on ia ci an , ( d) S an to ni an , ( e) C am pa ni an , ( f) M aa st ri ch ti an . P re se nt d ay o ut cr op o f L at e C re ta ce ou s se di m en ts i s al so s ho w n (b ro w n) . 211 A p p en d ix 1 -1 0. P al eo G IS ( R ot hw el l G ro up 2 00 7) r an ge r ec on st ru ct io ns i ll us tr at in g th e pa la eo bi og eo gr ap hi c pa tt er ns u nc ov er ed f or C re to xy rh in a m an te lli (y el lo w ) an d Pt yc ho du s an on ym us (g re y) d ur in g th e L at e C re ta ce ou s. L at e C re ta ce ou s st ag es : (a ) C en om an ia n, (b ) T ur on ia n, ( c) C on ia ci an , ( d) S an to ni an . P re se nt d ay o ut cr op o f L at e C re ta ce ou s se di m en ts i s al so s ho w n (b ro w n) . 212 A p p en d ix 1 -1 1. P al eo G IS ( R ot hw el l G ro up 2 00 7) r an ge r ec on st ru ct io ns i ll us tr at in g th e pa la eo bi og eo gr ap hi c pa tt er ns u nc ov er ed f or C re to xy rh in a m an te lli (y el lo w ) an d Pt yc ho du s m or to ni (b la ck ) du ri ng t he L at e C re ta ce ou s. L at e C re ta ce ou s st ag es : (a ) C en om an ia n, (b ) T ur on ia n, ( c) C on ia ci an , ( d) S an to ni an , ( e) C am pa ni an . P re se nt d ay o ut cr op o f L at e C re ta ce ou s se di m en ts i s al so s ho w n (b ro w n) . 213 A p p en d ix 1 -1 2. P al eo G IS ( R ot hw el l G ro up 2 00 7) r an ge r ec on st ru ct io ns i ll us tr at in g th e pa la eo bi og eo gr ap hi c pa tt er ns u nc ov er ed f or C re to xy rh in a m an te lli (y el lo w ) an d Pt yc ho du s w hi pp le i ( w hi te ) du ri ng t he L at e C re ta ce ou s. L at e C re ta ce ou s st ag es : (a ) C en om an ia n, (b ) T ur on ia n, ( c) C on ia ci an , ( d) S an to ni an . P re se nt d ay o ut cr op o f L at e C re ta ce ou s se di m en ts i s al so s ho w n (b ro w n) . 214 A p p en d ix 1 -1 3. P al eo G IS ( R ot hw el l G ro up 2 00 7) r an ge r ec on st ru ct io ns i ll us tr at in g th e pa la eo bi og eo gr ap hi c pa tt er ns u nc ov er ed f or C re to xy rh in a m an te lli (y el lo w ) an d Rh in ob at os in ce rt us (l ig ht g re en ) du ri ng t he L at e C re ta ce ou s. L at e C re ta ce ou s st ag es : (a ) C en om an ia n, ( b) T ur on ia n, ( c) C on ia ci an , ( d) S an to ni an , ( e) C am pa ni an . P re se nt d ay o ut cr op o f L at e C re ta ce ou s se di m en ts i s al so s ho w n (b ro w n) . 215 A p p en d ix 1 -1 4. P al eo G IS ( R ot hw el l G ro up 2 00 7) r an ge r ec on st ru ct io ns i ll us tr at in g th e pa la eo bi og eo gr ap hi c pa tt er ns u nc ov er ed f or Sq ua lic or ax fa lc at us (r ed ) an d Pl at ec ar pu s sp . ( da rk g re en ) du ri ng t he L at e C re ta ce ou s. L at e C re ta ce ou s st ag es : (a ) C en om an ia n, (b ) T ur on ia n, ( c) C on ia ci an , ( d) S an to ni an , ( e) C am pa ni an . P re se nt d ay o ut cr op o f L at e C re ta ce ou s se di m en ts i s al so s ho w n (b ro w n) . 216 A p p en d ix 1 -1 5. P al eo G IS ( R ot hw el l G ro up 2 00 7) r an ge r ec on st ru ct io ns i ll us tr at in g th e pa la eo bi og eo gr ap hi c pa tt er ns u nc ov er ed f or Sq ua lic or ax fa lc at us (r ed ) an d Ty lo sa ur us s p. ( bl ue ) du ri ng t he L at e C re ta ce ou s. L at e C re ta ce ou s st ag es : (a ) C en om an ia n, (b ) T ur on ia n, ( c) C on ia ci an , ( d) S an to ni an , ( e) C am pa ni an , ( f) M aa st ri ch ti an . P re se nt d ay o ut cr op o f L at e C re ta ce ou s se di m en ts i s al so s ho w n (b ro w n) . 217 A p p en d ix 1 -1 6. P al eo G IS ( R ot hw el l G ro up 2 00 7) r an ge r ec on st ru ct io ns i ll us tr at in g th e pa la eo bi og eo gr ap hi c pa tt er ns u nc ov er ed f or Sq ua lic or ax fa lc at us (r ed ) an d Xi ph ac tin us s p. ( pi nk ) du ri ng t he L at e C re ta ce ou s. L at e C re ta ce ou s st ag es : (a ) C en om an ia n, (b ) T ur on ia n, ( c) C on ia ci an , ( d) S an to ni an , ( e) C am pa ni an , ( f) M aa st ri ch ti an . P re se nt d ay o ut cr op o f L at e C re ta ce ou s se di m en ts i s al so s ho w n (b ro w n) . 218 A p p en d ix 1 -1 7. P al eo G IS ( R ot hw el l G ro up 2 00 7) r an ge r ec on st ru ct io ns i ll us tr at in g th e pa la eo bi og eo gr ap hi c pa tt er ns u nc ov er ed f or Sq ua lic or ax fa lc at us (r ed ) an d Pt yc ho du s an on ym us (g re y) d ur in g th e L at e C re ta ce ou s. L at e C re ta ce ou s st ag es : (a ) C en om an ia n, (b ) T ur on ia n, ( c) C on ia ci an , ( d) S an to ni an , ( e) C am pa ni an . P re se nt d ay o ut cr op o f L at e C re ta ce ou s se di m en ts i s al so s ho w n (b ro w n) . 219 A p p en d ix 1 -1 8. P al eo G IS ( R ot hw el l G ro up 2 00 7) r an ge r ec on st ru ct io ns i ll us tr at in g th e pa la eo bi og eo gr ap hi c pa tt er ns u nc ov er ed f or Sq ua lic or ax fa lc at us (r ed ) an d Pt yc ho du s m or to ni (b la ck ) du ri ng t he L at e C re ta ce ou s. L at e C re ta ce ou s st ag es : (a ) C en om an ia n, (b ) T ur on ia n, ( c) C on ia ci an , ( d) S an to ni an , ( e) C am pa ni an . P re se nt d ay o ut cr op o f L at e C re ta ce ou s se di m en ts i s al so s ho w n (b ro w n) . 220 A p p en d ix 1 -1 9. P al eo G IS ( R ot hw el l G ro up 2 00 7) r an ge r ec on st ru ct io ns i ll us tr at in g th e pa la eo bi og eo gr ap hi c pa tt er ns u nc ov er ed f or Sq ua lic or ax fa lc at us (r ed ) an d Pt yc ho du s w hi pp le i ( w hi te ) du ri ng t he L at e C re ta ce ou s. L at e C re ta ce ou s st ag es : (a ) C en om an ia n, (b ) T ur on ia n, ( c) C on ia ci an , ( d) S an to ni an , ( e) C am pa ni an . P re se nt d ay o ut cr op o f L at e C re ta ce ou s se di m en ts i s al so s ho w n (b ro w n) . 221 A p p en d ix 1 -2 0. P al eo G IS ( R ot hw el l G ro up 2 00 7) r an ge r ec on st ru ct io ns i ll us tr at in g th e pa la eo bi og eo gr ap hi c pa tt er ns u nc ov er ed f or Sq ua lic or ax fa lc at us (r ed ) an d Rh in ob at os in ce rt us (l ig ht g re en ) du ri ng t he L at e C re ta ce ou s. L at e C re ta ce ou s st ag es : (a ) C en om an ia n, (b ) T ur on ia n, ( c) C on ia ci an , ( d) S an to ni an , ( e) C am pa ni an . P re se nt d ay o ut cr op o f L at e C re ta ce ou s se di m en ts i s al so s ho w n (b ro w n) . 222 A p p en d ix 1 -2 1. P al eo G IS ( R ot hw el l G ro up 2 00 7) r an ge r ec on st ru ct io ns i ll us tr at in g th e pa la eo bi og eo gr ap hi c pa tt er ns u nc ov er ed f or Sq ua lic or ax k au pi (o ra ng e) a nd P la te ca rp us s p. ( da rk g re en ) du ri ng t he L at e C re ta ce ou s. L at e C re ta ce ou s st ag es : (a ) C on ia ci an , (b ) S an to ni an , ( c) C am pa ni an , ( d) M aa st ri ch ti an . P re se nt d ay o ut cr op o f L at e C re ta ce ou s se di m en ts i s al so s ho w n (b ro w n) . 223 A p p en d ix 1 -2 2. P al eo G IS ( R ot hw el l G ro up 2 00 7) r an ge r ec on st ru ct io ns i ll us tr at in g th e pa la eo bi og eo gr ap hi c pa tt er ns u nc ov er ed f or Sq ua lic or ax k au pi (o ra ng e) a nd T yl os au ru s sp . ( bl ue ) du ri ng t he L at e C re ta ce ou s. L at e C re ta ce ou s st ag es : (a ) C on ia ci an , (b ) S an to ni an , ( c) C am pa ni an , ( d) M aa st ri ch ti an . P re se nt d ay o ut cr op o f L at e C re ta ce ou s se di m en ts i s al so s ho w n (b ro w n) . 224 A p p en d ix 1 -2 3. P al eo G IS ( R ot hw el l G ro up 2 00 7) r an ge r ec on st ru ct io ns i ll us tr at in g th e pa la eo bi og eo gr ap hi c pa tt er ns u nc ov er ed f or Sq ua lic or ax k au pi (o ra ng e) a nd X ip ha ct in us s p. ( pi nk ) du ri ng t he L at e C re ta ce ou s. L at e C re ta ce ou s st ag es : (a ) C en om an ia n, (b ) T ur on ia n, ( c) C on ia ci an , ( d) S an to ni an , ( e) C am pa ni an , ( f) M aa st ri ch ti an . P re se nt d ay o ut cr op o f L at e C re ta ce ou s se di m en ts i s al so s ho w n (b ro w n) . 225 A p p en d ix 1 -2 4. P al eo G IS ( R ot hw el l G ro up 2 00 7) r an ge r ec on st ru ct io ns i ll us tr at in g th e pa la eo bi og eo gr ap hi c pa tt er ns u nc ov er ed f or Sq ua lic or ax k au pi (o ra ng e) a nd P ty ch od us a no ny m us (g re y) d ur in g th e L at e C re ta ce ou s. L at e C re ta ce ou s st ag es : (a ) C en om an ia n, (b ) T ur on ia n, ( c) C on ia ci an , ( d) S an to ni an , ( e) C am pa ni an , ( f) M aa st ri ch ti an . P re se nt d ay o ut cr op o f L at e C re ta ce ou s se di m en ts i s al so s ho w n (b ro w n) . 226 A p p en d ix 1 -2 5. P al eo G IS ( R ot hw el l G ro up 2 00 7) r an ge r ec on st ru ct io ns i ll us tr at in g th e pa la eo bi og eo gr ap hi c pa tt er ns u nc ov er ed f or Sq ua lic or ax k au pi (o ra ng e) a nd P ty ch od us m or to ni (b la ck ) du ri ng t he L at e C re ta ce ou s. L at e C re ta ce ou s st ag es : (a ) T ur on ia n, (b ) C on ia ci an , ( c) S an to ni an , ( d) C am pa ni an , ( e) M aa st ri ch ti an . P re se nt d ay o ut cr op o f L at e C re ta ce ou s se di m en ts i s al so s ho w n (b ro w n) . 227 A p p en d ix 1 -2 6. P al eo G IS ( R ot hw el l G ro up 2 00 7) r an ge r ec on st ru ct io ns i ll us tr at in g th e pa la eo bi og eo gr ap hi c pa tt er ns u nc ov er ed f or Sq ua lic or ax k au pi (o ra ng e) a nd P ty ch od us w hi pp le i ( w hi te ) du ri ng t he L at e C re ta ce ou s. L at e C re ta ce ou s st ag es : (a ) C en om an ia n, (b ) T ur on ia n, ( c) C on ia ci an , ( d) S an to ni an , ( e) C am pa ni an , ( f) M aa st ri ch ti an . P re se nt d ay o ut cr op o f L at e C re ta ce ou s se di m en ts i s al so s ho w n (b ro w n) . 228 A p p en d ix 1 -2 7. P al eo G IS ( R ot hw el l G ro up 2 00 7) r an ge r ec on st ru ct io ns i ll us tr at in g th e pa la eo bi og eo gr ap hi c pa tt er ns u nc ov er ed f or Sq ua lic or ax k au pi (o ra ng e) a nd R hi no ba to s in ce rt us (l ig ht g re en ) du ri ng t he L at e C re ta ce ou s. L at e C re ta ce ou s st ag es : (a ) C en om an ia n, ( b) T ur on ia n, ( c) C on ia ci an , ( d) S an to ni an , ( e) C am pa ni an , ( f) M aa st ri ch ti an . P re se nt d ay o ut cr op o f L at e C re ta ce ou s se di m en ts i s al so s ho w n (b ro w n) . 229 A p p en d ix 1 -2 8. P al eo G IS ( R ot hw el l G ro up 2 00 7) r an ge r ec on st ru ct io ns i ll us tr at in g th e pa la eo bi og eo gr ap hi c pa tt er ns u nc ov er ed f or Pl at ec ar pu s s p. ( da rk g re en ) an d Xi ph ac tin us sp . ( pi nk ) du ri ng t he L at e C re ta ce ou s. L at e C re ta ce ou s st ag es : (a ) C en om an ia n, (b ) T ur on ia n, ( c) C on ia ci an , ( d) S an to ni an , ( e) C am pa ni an , ( f) M aa st ri ch ti an . P re se nt d ay o ut cr op o f L at e C re ta ce ou s se di m en ts i s al so s ho w n (b ro w n) . 230 A p p en d ix 1 -2 9. P al eo G IS ( R ot hw el l G ro up 2 00 7) r an ge r ec on st ru ct io ns i ll us tr at in g th e pa la eo bi og eo gr ap hi c pa tt er ns u nc ov er ed f or P la te ca rp us s p. ( da rk g re en ) an d P ty ch od us a no ny m us ( gr ey ) du ri ng t he L at e C re ta ce ou s. L at e C re ta ce ou s st ag es : (a ) C en om an ia n, (b ) T ur on ia n, ( c) C on ia ci an , ( d) S an to ni an , ( e) C am pa ni an . P re se nt d ay o ut cr op o f L at e C re ta ce ou s se di m en ts i s al so s ho w n (b ro w n) . 231 A p p en d ix 1 -3 0. P al eo G IS ( R ot hw el l G ro up 2 00 7) r an ge r ec on st ru ct io ns i ll us tr at in g th e pa la eo bi og eo gr ap hi c pa tt er ns u nc ov er ed f or P la te ca rp us s p. ( da rk g re en ) an d P ty ch od us m or to ni ( bl ac k) d ur in g th e L at e C re ta ce ou s. L at e C re ta ce ou s st ag es : (a ) T ur on ia n, (b ) C on ia ci an , ( c) S an to ni an , ( d) C am pa ni an . P re se nt d ay o ut cr op o f L at e C re ta ce ou s se di m en ts i s al so s ho w n (b ro w n) . 232 A p p en d ix 1 -3 1. P al eo G IS ( R ot hw el l G ro up 2 00 7) r an ge r ec on st ru ct io ns i ll us tr at in g th e pa la eo bi og eo gr ap hi c pa tt er ns u nc ov er ed f or P la te ca rp us s p. ( da rk g re en ) an d P ty ch od us w hi pp le i (w hi te ) du ri ng t he L at e C re ta ce ou s. L at e C re ta ce ou s st ag es : (a ) C en om an ia n, (b ) T ur on ia n, ( c) C on ia ci an , ( d) S an to ni an , ( e) C am pa ni an . P re se nt d ay o ut cr op o f L at e C re ta ce ou s se di m en ts i s al so s ho w n (b ro w n) . 233 A p p en d ix 1 -3 2. P al eo G IS ( R ot hw el l G ro up 2 00 7) r an ge r ec on st ru ct io ns i ll us tr at in g th e pa la eo bi og eo gr ap hi c pa tt er ns u nc ov er ed f or P la te ca rp us s p. ( da rk g re en ) an d R hi no ba to s in ce rt us ( li gh t gr ee n) d ur in g th e L at e C re ta ce ou s. L at e C re ta ce ou s st ag es : (a ) C en om an ia n, ( b) T ur on ia n, ( c) C on ia ci an , ( d) S an to ni an , ( e) C am pa ni an . P re se nt d ay o ut cr op o f L at e C re ta ce ou s se di m en ts i s al so s ho w n (b ro w n) . 234 A p p en d ix 1 -3 3. P al eo G IS ( R ot hw el l G ro up 2 00 7) r an ge r ec on st ru ct io ns i ll us tr at in g th e pa la eo bi og eo gr ap hi c pa tt er ns u nc ov er ed f or Ty lo sa ur us s p. ( bl ue ) an d X ip ha ct in us s p. ( pi nk ) du ri ng t he L at e C re ta ce ou s. L at e C re ta ce ou s st ag es : (a ) C en om an ia n, ( b) T ur on ia n, (c ) C on ia ci an , ( d) S an to ni an , ( e) C am pa ni an , ( f) M aa st ri ch ti an . P re se nt d ay o ut cr op o f L at e C re ta ce ou s se di m en ts i s al so s ho w n (b ro w n) . 235 A p p en d ix 1 -3 4. P al eo G IS ( R ot hw el l G ro up 2 00 7) r an ge r ec on st ru ct io ns i ll us tr at in g th e pa la eo bi og eo gr ap hi c pa tt er ns u nc ov er ed f or Ty lo sa ur us s p. ( bl ue ) an d P ty ch od us a no ny m us ( gr ey ) du ri ng t he L at e C re ta ce ou s. L at e C re ta ce ou s st ag es : (a ) C en om an ia n, (b ) T ur on ia n, ( c) C on ia ci an , ( d) S an to ni an , ( e) C am pa ni an , ( f) M aa st ri ch ti an . P re se nt d ay o ut cr op o f L at e C re ta ce ou s se di m en ts i s al so s ho w n (b ro w n) . 236 A p p en d ix 1 -3 5. P al eo G IS ( R ot hw el l G ro up 2 00 7) r an ge r ec on st ru ct io ns i ll us tr at in g th e pa la eo bi og eo gr ap hi c pa tt er ns u nc ov er ed f or Ty lo sa ur us s p. ( bl ue ) an d P ty ch od us m or to ni ( bl ac k) d ur in g th e L at e C re ta ce ou s. L at e C re ta ce ou s st ag es : (a ) T ur on ia n, ( b) C on ia ci an , (c ) S an to ni an , ( d) C am pa ni an , ( e) M aa st ri ch ti an . P re se nt d ay o ut cr op o f L at e C re ta ce ou s se di m en ts i s al so s ho w n (b ro w n) . 237 A p p en d ix 1 -3 6. P al eo G IS ( R ot hw el l G ro up 2 00 7) r an ge r ec on st ru ct io ns i ll us tr at in g th e pa la eo bi og eo gr ap hi c pa tt er ns u nc ov er ed f or Ty lo sa ur us s p. ( bl ue ) an d P ty ch od us w hi pp le i (w hi te ) du ri ng t he L at e C re ta ce ou s. L at e C re ta ce ou s st ag es : (a ) C en om an ia n, (b ) T ur on ia n, ( c) C on ia ci an , ( d) S an to ni an , ( e) C am pa ni an , ( f) M aa st ri ch ti an . P re se nt d ay o ut cr op o f L at e C re ta ce ou s se di m en ts i s al so s ho w n (b ro w n) . 238 A p p en d ix 1 -3 7. P al eo G IS ( R ot hw el l G ro up 2 00 7) r an ge r ec on st ru ct io ns i ll us tr at in g th e pa la eo bi og eo gr ap hi c pa tt er ns u nc ov er ed f or Ty lo sa ur us s p. ( bl ue ) an d R hi no ba to s in ce rt us ( li gh t gr ee n) d ur in g th e L at e C re ta ce ou s. L at e C re ta ce ou s st ag es : (a ) C en om an ia n, (b ) T ur on ia n, ( c) C on ia ci an , ( d) S an to ni an , ( e) C am pa ni an , ( f) M aa st ri ch ti an . P re se nt d ay o ut cr op o f L at e C re ta ce ou s se di m en ts i s al so s ho w n (b ro w n) . 239 A p p ed ix 1 -3 8. P al eo G IS ( R ot hw el l G ro up 2 00 7) r an ge r ec on st ru ct io ns i ll us tr at in g th e pa la eo bi og eo gr ap hi c pa tt er ns u nc ov er ed f or X ip ha ct in us s p. ( pi nk ) an d P ty ch od us a no ny m us ( gr ey ) du ri ng t he L at e C re ta ce ou s. L at e C re ta ce ou s st ag es : (a ) C en om an ia n, (b ) T ur on ia n, ( c) C on ia ci an , ( d) S an to ni an , ( e) C am pa ni an , ( f) M aa st ri ch ti an . P re se nt d ay o ut cr op o f L at e C re ta ce ou s se di m en ts i s al so s ho w n (b ro w n) . 240 A p p en d ix 1 -3 9. P al eo G IS ( R ot hw el l G ro up 2 00 7) r an ge r ec on st ru ct io ns i ll us tr at in g th e pa la eo bi og eo gr ap hi c pa tt er ns u nc ov er ed f or X ip ha ct in us s p. ( pi nk ) an d P ty ch od us m or to ni ( bl ac k) d ur in g th e L at e C re ta ce ou s. L at e C re ta ce ou s st ag es : (a ) C en om an ia n, (b ) T ur on ia n, ( c) C on ia ci an , ( d) S an to ni an , ( e) C am pa ni an , ( f) M aa st ri ch ti an . P re se nt d ay o ut cr op o f L at e C re ta ce ou s se di m en ts i s al so s ho w n (b ro w n) . 241 A p p en d ix 1 -4 0. P al eo G IS ( R ot hw el l G ro up 2 00 7) r an ge r ec on st ru ct io ns i ll us tr at in g th e pa la eo bi og eo gr ap hi c pa tt er ns u nc ov er ed f or X ip ha ct in us s p. ( pi nk ) an d P ty ch od us w hi pp le i (w hi te ) du ri ng t he L at e C re ta ce ou s. L at e C re ta ce ou s st ag es : (a ) C en om an ia n, (b ) T ur on ia n, ( c) C on ia ci an , ( d) S an to ni an , ( e) C am pa ni an , ( f) M aa st ri ch ti an . P re se nt d ay o ut cr op o f L at e C re ta ce ou s se di m en ts i s al so s ho w n (b ro w n) . 242 A p p en d ix 1 -4 1. P al eo G IS ( R ot hw el l G ro up 2 00 7) r an ge r ec on st ru ct io ns i ll us tr at in g th e pa la eo bi og eo gr ap hi c pa tt er ns u nc ov er ed f or X ip ha ct in us s p. ( pi nk ) an d R hi no ba to s in ce rt us ( li gh t gr ee n) d ur in g th e L at e C re ta ce ou s. L at e C re ta ce ou s st ag es : (a ) C en om an ia n, (b ) T ur on ia n, ( c) C on ia ci an , ( d) S an to ni an , ( e) C am pa ni an , ( f) M aa st ri ch ti an . P re se nt d ay o ut cr op o f L at e C re ta ce ou s se di m en ts i s al so s ho w n (b ro w n) . 243 A p p en d ix 1 -4 2. P al eo G IS ( R ot hw el l G ro up 2 00 7) r an ge r ec on st ru ct io ns i ll us tr at in g th e pa la eo bi og eo gr ap hi c pa tt er ns u nc ov er ed f or P ty ch od us a no ny m us ( gr ey ) an d P ty ch od us m or to ni ( bl ac k) d ur in g th e L at e C re ta ce ou s. L at e C re ta ce ou s st ag es : (a ) C en om an ia n, (b ) T ur on ia n, ( c) C on ia ci an , ( d) S an to ni an , ( e) C am pa ni an . P re se nt d ay o ut cr op o f L at e C re ta ce ou s se di m en ts i s al so s ho w n (b ro w n) . 244 A p p en d ix 1 -4 3 P al eo G IS ( R ot hw el l G ro up 2 00 7) r an ge r ec on st ru ct io ns i ll us tr at in g th e pa la eo bi og eo gr ap hi c pa tt er ns u nc ov er ed f or P ty ch od us a no ny m us ( gr ey ) an d P ty ch od us w hi pp le i (w hi te ) du ri ng t he L at e C re ta ce ou s. L at e C re ta ce ou s st ag es : (a ) C en om an ia n, (b ) T ur on ia n, ( c) C on ia ci an . P re se nt d ay o ut cr op o f L at e C re ta ce ou s se di m en ts i s al so s ho w n (b ro w n) . 245 A p p en d ix 1 -4 4. P al eo G IS ( R ot hw el l G ro up 2 00 7) r an ge r ec on st ru ct io ns i ll us tr at in g th e pa la eo bi og eo gr ap hi c pa tt er ns u nc ov er ed f or P ty ch od us a no ny m us ( gr ey ) an d R hi no ba to s in ce rt us ( li gh t gr ee n) d ur in g th e L at e C re ta ce ou s. L at e C re ta ce ou s st ag es : (a ) C en om an ia n, ( b) T ur on ia n, ( c) C on ia ci an , ( d) S an to ni an , ( e) C am pa ni an . P re se nt d ay o ut cr op o f L at e C re ta ce ou s se di m en ts i s al so sh ow n (b ro w n) . 246 A p p en d ix 1 -4 5. P al eo G IS ( R ot hw el l G ro up 2 00 7) r an ge r ec on st ru ct io ns i ll us tr at in g th e pa la eo bi og eo gr ap hi c pa tt er ns u nc ov er ed f or P ty ch od us m or to ni ( bl ac k) a nd P ty ch od us w hi pp le i (w hi te ) du ri ng t he L at e C re ta ce ou s. L at e C re ta ce ou s st ag es : (a ) C en om an ia n, (b ) T ur on ia n, ( c) C on ia ci an , ( d) S an to ni an , ( e) C am pa ni an . P re se nt d ay o ut cr op o f L at e C re ta ce ou s se di m en ts i s al so s ho w n (b ro w n) . 247 A p p en d ix 1 -4 6. P al eo G IS ( R ot hw el l G ro up 2 00 7) r an ge r ec on st ru ct io ns i ll us tr at in g th e pa la eo bi og eo gr ap hi c pa tt er ns u nc ov er ed f or P ty ch od us m or to ni ( bl ac k) a nd R hi no ba to s in ce rt us ( li gh t gr ee n) d ur in g th e L at e C re ta ce ou s. L at e C re ta ce ou s st ag es : (a ) C en om an ia n, ( b) T ur on ia n, ( c) C on ia ci an , ( d) S an to ni an , ( e) C am pa ni an . P re se nt d ay o ut cr op o f L at e C re ta ce ou s se di m en ts i s al so sh ow n (b ro w n) . 248 A p p en d ix 1 -4 7. P al eo G IS ( R ot hw el l G ro up 2 00 7) r an ge r ec on st ru ct io ns i ll us tr at in g th e pa la eo bi og eo gr ap hi c pa tt er ns u nc ov er ed f or P ty ch od us w hi pp le i (w hi te ) an d R hi no ba to s in ce rt us ( li gh t gr ee n) d ur in g th e L at e C re ta ce ou s. L at e C re ta ce ou s st ag es : (a ) C en om an ia n, ( b) T ur on ia n, ( c) C on ia ci an , ( d) S an to ni an , ( e) C am pa ni an . P re se nt d ay o ut cr op o f L at e C re ta ce ou s se di m en ts i s al so s ho w n (b ro w n) . 249 A p p en d ix 1 -4 8. P al eo G IS (R ot hw el l G ro up 2 00 7) re co ns tru ct io ns s ho w in g th e ap pr ox im at e bo un da rie s of th e W IS a nd o cc ur re nc e re co rd s du rin g th e La te C re ta ce ou s st ag es : ( a) C en om an ia n, (b ) C on ia ci an , ( c) M aa st ric ht ia n. B ou nd ar ie s of s ea w ay p ro vi de d w ith as si st an ce o f R ic ha rd M ac ke nz ie a nd P eg Y ac ob uc ci . N ot e th at b ou nd ar ie s re pr es en t a ve ra ge s ea -le ve l a t a ny s ta ge , n ot n ec es sa ril y hi gh -s ta nd . P re se nt d ay o ut cr op o f L at e C re ta ce ou s se di m en ts is a ls o sh ow n (b ro w n) . 250 Appendix 2-1. Species range size (reconstructed area and latitudinal extent) and outcrop area during each geologic stage. Coding for survivors and invaders: 1 = survived or invaded in the subsequent stage, 0 = did not survive or invade in the subsequent stage. Abbreviations of geologic stages: CEN = Cenomanian, TUR = Turonian, CON = Coniacian, SAN = Santonian, CAM = Campanian, MAA = Maastrichtian. Species Stage Range Area (km2) Latitudinal Extent + 1 (DD) No. Unique Localities Survived Into Next Stage Are Invasive In Next Stage Exogyra columbella CEN 805096 12 15 0 0 Exogyra levis CEN 1085515 16 25 0 0 Exogyra olisiponensis CEN 10482 2 8 0 0 Exogyra trigeri CEN 7161 2 5 0 0 Ilmatogyra arietina CEN 92981 5 10 0 0 Ostrea beloiti CEN 920545 13 56 1 0 Pseudoperna congesta CEN 314 1 1 1 1 Pycnodonte newberryi CEN 266117 8 37 1 0 Sciponoceras gracilis CEN 1408277 13 58 1 0 Turritella whitei CEN 10206 4 3 0 0 Outcrop Area CEN 156313 Actinocamax manitobensis TUR 42420 9 4 1 0 Anisomyon apicalis TUR 504863 13 11 1 0 Anomia cobbani TUR 9365 3 12 0 0 Anomia pfeiferensis TUR 5768 2 8 0 0 Anomia subquadrata TUR 17259 9 2 1 1* Baculites mariasensis TUR 242 1 2 1 1 Baculites undulatus TUR 201070 8 9 0 0 Ostrea beloiti TUR 314 1 1 0 0 Ostrea malachitensis TUR 62763 4 7 0 0 Pseudoperna bentonensis TUR 1086443 12 19 0 0 Pseudoperna congesta TUR 1266953 12 13 1 0 Pycnodonte TUR 212743 7 11 0 0 251 newberryi Sciponoceras gracilis TUR 95402 5 4 0 0 Outcrop Area TUR 118608 Actinocamax manitobensis CON 314 1 1 0 0 Anisomyon apicalis CON 314 1 1 0 0 Anomia subquadrata CON 138229 11 7 1 0 Baculites asper CON 1044159 14 31 1 0 Baculites codyensis CON 768680 14 49 1 0 Baculites mariasensis CON 538390 11 26 0 0 Baculites sweetgrassensis CON 170605 8 4 0 0 Baculites thomi CON 314 1 1 1 0 Pseudobaculites nodosus CON 17937 3 4 0 0 Pseudobaculites wyomingensis CON 16135 2 4 0 0 Pseudoperna congesta CON 1501675 14 40 1 0 Outcrop Area CON 119672 Anomia subquadrata SAN 10908 8 2 1 0 Baculites aquilaensis SAN 361 1 2 1 1 Baculites asper SAN 180962 10 5 0 0 Baculites codyensis SAN 773196 14 28 1 0 Baculites haresi SAN 314 1 1 1 1 Baculites thomi SAN 25782 4 4 1 1 Exogyra laeviuscula SAN 354 1 2 0 0 Exogyra tigrina SAN 353 1 2 0 0 Pseudoperna congesta SAN 512829 12 9 1 0 Outcrop Area SAN 131090 Actinosepia canadensis CAM 9747 2 2 1 1 Agerostrea falcata CAM 314 1 1 1 1 Anisomyon borealis CAM 160223 9 4 1 0 Anisomyon centrale CAM 131853 10 6 1 0 Anomia argentaria CAM 30773 3 2 1 0 Anomia gryphorhyncus CAM 314 1 1 1 1 Anomia CAM 123800 10 6 1 0 252 micronema Anomia obliqua CAM 2758 2 16 0 0 Anomia subquadrata CAM 314 1 1 0 0 Baculites aquilaensis CAM 270748 11 35 0 0 Baculites codyensis CAM 8742 4 2 0 0 Baculites corrugatus CAM 186135 8 14 1 0 Baculites crickmayi CAM 302153 11 13 0 0 Baculites gilberti CAM 363088 11 28 0 0 Baculites haresi CAM 411133 12 28 0 0 Baculites rugosus CAM 418245 11 16 0 0 Baculites taylorensis CAM 307332 10 7 0 0 Baculites texanus CAM 6697 1 8 0 0 Baculites thomi CAM 176083 9 10 0 0 Crassosstrea glabra CAM 14950 7 4 1 0 Drepanochilus evansi CAM 255 1 3 1 1 Euspira rectilabrum CAM 314 1 1 1 1 Eutrephoceras alcesence CAM 57824 4 4 0 0 Eutrephoceras dekayi CAM 7519 2 6 1 1 Exogyra costata CAM 13023 3 4 1 0 Exogyra erraticostata CAM 800 1 5 0 0 Ostrea plumosa CAM 197716 5 5 0 0 Ostrea russelli CAM 290689 12 18 1 0 Pseudobaculites natosini CAM 314 1 1 1 0 Pseudoperna congesta CAM 490088 11 13 1 0 Pycnodonte mutabilis CAM 616 1 3 0 0 Turritella vertebroides CAM 557 1 2 0 0 Tusoteuthis longa CAM 2822 1 7 0 0 Outcrop Area CAM 253068 Actinosepia canadensis MAA 191574 11 23 NA NA Agerostrea falcata MAA 28664 10 2 NA NA Anisomyon MAA 314 1 1 NA NA 253 borealis Anisomyon centrale MAA 314 1 1 NA NA Anomia argentaria MAA 314 1 1 NA NA Anomia gryphorhyncus MAA 118068 7 20 NA NA Anomia micronema MAA 3328 2 4 NA NA Baculites corrugatus MAA 314 1 1 NA NA Baculites larsoni MAA 16630 4 11 NA NA Belemnitella bulbosa MAA 9720 2 18 NA NA Crassosstrea glabra MAA 368355 7 12 NA NA Drepanochilus evansi MAA 185039 7 39 NA NA Eubaculites carinatus MAA 2712 2 3 NA NA Euspira obliqua MAA 2036 2 5 NA NA Euspira rectilabrum MAA 1297 2 2 NA NA Eutrephoceras dekayi MAA 363784 13 7 NA NA Exogyra costata MAA 13932 2 3 NA NA Graphidula culbertsoni MAA 6255 2 30 NA NA Ostrea russelli MAA 314 1 1 NA NA Ostrea translucida MAA 10122 2 18 NA NA Pseudobaculites natosini MAA 314 1 1 NA NA Pseudoperna congesta MAA 2215 2 2 NA NA Trachybaculites columna MAA 1054 1 8 NA NA Outcrop Area MAA 128195 254 0 0.8 1.6 2.4 3.2 4 4.8 5.6 6.4 0 3 6 9 12 15 18 21 24 27 Log(geog range) F re q u e n cy Appendix 2-2. Histogram of Log(geographic range) for all reconstructed ranges of molluskan taxa during the Late Cretaceous. 255 APPENDIX 3. References used to correlate Late Cretaceous fossil-bearing strata of the Western Interior Seaway and Gulf Coast. Correlation results are presented in Table 4. Abbott, D., C. Neale, J. Lakings, L. Wilson, J. C. Close, and E. Richardson. 2007. Hydraulic fracture diagnostics in the Williams Fork Formation, Piceance Basin, Colorado, using surface microseismic monitoring technology. Rocky Mountain Oil and Gas Technology Symposium Proceedings, Society of Petroleum Engineers 108142-MS, pp. 10. [CO] Adams, M. M. and J. P. Bhattacharya. 2005. No change in fluvial style across a sequence boundary, Cretaceous Blackhawk and Castlegate Formations of central Utah, USA. Journal of Sedimentary Research 75:1038-1051. [UT] Adler, F. J. 1987. Mid-continent region. In Stratigraphic Units of North America (COSUNA) Project. F. A. Lindberg (ed). American Association of Petroleum Geologists. [MO, KS, IA, NE] Agasie, J. M. 1969. Late Cretaceous palynomorphs from northeastern Arizona. Micropaleontology 15:13-30. [AZ] Akers, R. E. and T. J. Akers. 1997. Texas Cretaceous gastropods. Houston Gem and Mineral Society Texas Paleontology Series 6, pp. 340. [TX, OK] Allen, J. L. and C. L. Johnson. 2010a. Facies control on sandstone composition (and influence of statistical methods on interpretation) in the John Henry Member, Straight Cliffs Formation, southern Utah, USA. Sedimentary Geology 230:60-76. [UT] Allen, J. L. and C. L. Johnson. 2010b. Sedimentary facies, paleoenvironments, and relative sea level changes in the John Henry Member, Cretaceous Straight Cliffs Formation, southern 256 Utah, USA. In Geology of south-central Utah. S. M. Carney, D. E. Tabet, and C. L. Johnson (eds). Utah Geological Association Publication 39, pp. 23. [UT] Allmon, W. D. and P. A. Cohen. 2008. Palaeoecological significance of turritelline gastropod-dominated assemblages from the mid-Cretaceous (Albian-Cenomanian) of Texas and Oklahoma, USA. Cretaceous Research 29:65-77. [TX, OK] Alshuaibi, A. A. 2006. Coniacian to lowermost Campanian stratigraphy of the Austin Chalk, northeast Texas. Doctoral Dissertation, University of Texas at Dallas, pp. 244. [TX] Ambrose, W. A. and W. B. Ayers Jr. 2007. Geologic controls on transgressive-regressive cycles in the upper Pictured Cliffs Sandstone and coal geometry in the lower Fruitland Formation, northern San Juan Basin, New Mexico and Colorado. American Association of Petroleum Geologists Bulletin 91:1099-1122. [CO, NM] Ambrose, W. A., T. F. Hentz, F. Bonnaffé, R. G. Loucks, L. F. Brown Jr., F. P. Wang, and E. C. Potter. 2009. Sequence-stratigraphic controls on complex reservoir architecture of highstand fluvial-dominated deltaic and lowstand valley-fill deposits in the upper Cretaceous (Cenomanian) Woodbine Group, East Texas Field: regional and local perspectives. American Association of Petroleum Geologists Bulletin 93:231-269. [TX, OK] Armstrong-Ziegler, J. G. 1978. An aniliid snake and associated vertebrates from the Campanian of New Mexico. Journal of Paleontology 52:480-483. [CO, NM] Arratia, G. and J. Chorn. 1998. A new primitive acanthomorph fish from the Greenhorn Formation (Late Cretaceous) of Nebraska. Journal of Vertebrate Paleontology 18:301-314. [NE] 257 Aschoff, J. L. and R. J. Steel. 2011. Anatomy and development of a low-accommodation clastic wedge, upper Cretaceous, Cordilleran foreland basin, USA. Sedimentary Geology 236:1-24. [CO, UT] Ashmore, R. A. 2003. Foraminiferal biostratigraphy and petrography of the lower Pen Formation (upper Cretaceous), Big Bend region, Trans-Pecos Texas. Master’s Thesis, Texas Tech University, pp. 207. [TX] Asquith, D. O. 1970. Depositional topography and major marine environments, Late Cretaceous, Wyoming. American Association of Petroleum Geologists Bulletin 54:1184-1224. [MT, WY] Aubrey, W. M. 1989. Mid-Cretaceous alluvial-plain incision related to eustasy, southeastern Colorado Plateau. Geological Society of America Bulletin 101:443-449. [CO, UT] Aydinian, K. M. 2008. Structural models for the geology of Hanna Basin, Carbon County, Wyoming. Bachelor’s Thesis, Carleton College, pp. 63. [WY] Baird, D. 1977. Pneumatoarthrus Cope, 1870, not a dinosaur but a sea-turtle. Proceedings of the Academy of Natural Sciences of Philadelphia. 129:71-81. [AR] Ballard, W. W., J. P. Bluemle, and L. C. Gerhard. 1983. Northern Rockies/Williston Basin region. In Stratigraphic Units of North America (COSUNA) Project. F. A. Lindberg (ed). American Association of Petroleum Geologists. [SD, ND, MT] Bamburak, J. D. and M P. B. Nicolas. 2009. Revisions to the Cretaceous stratigraphic nomenclature of southwest Manitoba (parts of NTS 62F, G, H, J, K, N, O, 63C, F). In Report of Activities 2009, Manitoba Innovation, Energy, and Mines, Manitoba Geological Survey, 183-192. [CO] 258 Barlow, J. A., Jr. and J. D. Haun. 1966. Regional stratigraphy of Frontier Formation and relation to Salt Creek Field, Wyoming. American Association of Petroleum Geologists Bulletin 50:2185-2196. [CO, WY] Barrier, J. 1980. A revision of the stratigraphic distribution of some Cretaceous coccoliths in Texas. Journal of Paleontology 54:289-308. [TX] Becker, M. A., J. A. Chamberlain Jr., and D. O. Terry Jr. 2004. Chondrichthyans from the Fairpoint Member of the Fox Hills Formation (Maastrichtian), Meade County, South Dakota. Journal of Vertebrate Paleontology 24:780-793. [ND, SD] Becker, M. A., J. A. Chamberlain, and G. E. Wolf. 2006. Chondrichthyans from the Arkadelphia Formation (upper Cretaceous: Upper Maastrichtian) of Hot Spring County, Arkansas. Journal of Paleontology 80:700-716. [AR] Becker, M. A., J. A. Chamberlain Jr., A. J. Robb D. O. Terry Jr., and M. P. Garb. 2009. Osteichthyans from the Fairport Member of the Fox Hills Formation (Maastrichtian), Meade County, South Dakota, USA. Cretaceous Research 30:1031-1040. [AL, AR, MS, MT, ND, SD, WY] Becker, M. A., R. W. Wellner, C. S. Mallery Jr., and J. A. Chamberlain Jr. 2010. Chondrychthyans from the lower Ferron Sandstone Member of the Mancos Shale (upper Cretaceous: middle Turonian) of Emery and Carbon Counties, Utah, USA. Journal of Paleontology 84:248-266. [AZ, UT] Beikirch, D. W. and R. M. Feldmann 1980. Decapod crustaceans from the Pflugerville Member, Austin Formation (Late Cretaceous: Campanian) of Texas. Journal of Paleontology 54:309-324. [TX] 259 Benson, R. H. and J. O. Tatro. 1964. Faunal description of Ostracoda of the Marlbrook Marl (Campanian) of Arkansas. University of Kansas Paleontological Contributions 7:1-32. [AL, AR, OK] Bergman, K. M. 1994. Shannon Sandstone in Hartzog Draw-Heldt Draw Fields (Cretaceous, Wyoming, USA) reinterpreted as lowstand shoreface deposits. Journal of Sedimentary Research B64:184-201. [WY] Bergman, K. M. and R. G. Walker. 1995. High-resolution sequence stratigraphic analysis of the Shannan Sandstone in Wyoming, using a template for regional correlation. Journal of Sedimentary Research B65:255-264. [WY] Bergstresser, T. J. and W. N. Krebs. 1983. Late Cretaceous (Campanian-Maastrichtian) diatoms from the Pierre Shale, Wyoming, Colorado, and Kansas. Journal of Paleontology 57:883-891. [CO, WY] Bergstrom, D. J. and G. B. Morey, 1985. Northern mid-continent region. In Correlation of Stratigraphic Units of North America (COSUNA) Project. F. A. Lindberg (ed). American Association of Petroleum Geologists. [SD] Bertog, J L. 2002. High resolution event stratigraphic and sequence stratigraphic interpretation of the lower Pierre Shale (Campanian) with the description of the new Walhalla and Chamberlain Members. Doctoral Dissertation, University of Cincinnati, pp. 176. [KS, MT, SD, WY] Bertog, J. L., W. Huff, and J. E. Martin. 2007. Geochemical and mineralogical recognition of the bentonites in the lower Pierre Shale Group and their use in regional stratigraphic correlation. In The Geology and Paleontology of the Late Cretaeous Marine Deposits of 260 the Dakota. J. E. Martin and D. C. Parris eds. Geological Society of American Special Paper 427:23-50. [KS, MT ND, SD, WY] Bertog, J. 2010. Stratigraphy of the lower Pierre Shale (Campanian): implications for the tectonic and eustatic controls on facies distributions. Journal of Geological Research 2010:1-15. [KS, ND, SD, WY] Bhattacharya, J. P. and R. K. Davies. 2001. Growth faults at the prodelta to delta-front transition, Cretaceous Ferron Sandstone, Utah. Marine and Petroleum Geology 18:525-534. [UT] Bhattacharya, J. P. and B. J. Willis. 2001. Lowstand deltas in the Frontier Formation, Powder River Basin, Wyoming: implications for sequence stratigraphic models. American Association of Petroleum Geologists Bulletin 85:261-294. [UT, WY] Bhattacharya, J P. and J. A. MacEachern. 2009. Hyperpycnal rivers and prodeltaic shelves in the Cretaceous seaway of North America. Journal of Sedimentary Research 79:184-209. [UT] Bibler, C. J. 1985. Stratigraphy and depositional environment of the upper Cretaceous Horsethief Formation northwest of Augusta. Master’s Thesis, Montana State University. [MT] Birkhead, S. S. 2005. Architecture of the upper Sego Sandstone, Book Cliffs, Utah. Master’s Thesis, Texas A&M University, pp. 92. [UT] Bishop, G. A. 1985. Fossil decapod crustaceans from the Gammon Ferruginous Member, Pierre Shale (Early Campanian), Black Hills, South Dakota. Journal of Paleontology 59:605-624. [ND, SD] Bishop, G. A. and N. A. Brannen. 1992. Homolopsis pikeae, new species (Decapoda), a crab from the Cretaceous of Texas. Journal of Crustacean Biology 12:317-323. [TX] 261 Bishop, G. A., N. A. Brannen, L. E. Hill, J. P. Meyer, A. J. Pike, and C. Sampson. 1992. The Britton Notopocorystes assemblage: an Eagle Ford decapod assemblage from the Cretaceous of north-central Texas. Gulf Coast Association of Geological Societies Transactions 42:413-424. [TX] Blackstone, D. L., Jr. 1993. Overview of the Hanna, Carbon, and Cooper Lake Basins, southeastern Wyoming. The Geological Survey of Wyoming, Report of Investigations 48, pp. 28. [WY] Blake, D. B. 2010. Comptoniaster adamsi nov. sp. (Echinodermata, Asteroidea) from the middle Cretaceous of Texas and its phylogenetic position. Geobios 43:179-190. [TX] Bogner, J., K. R. Johnson, Z. Kvaček, and G. R. Upchurch Jr. 2007. New fossil leaves of Araceae from the Late Cretaceous and Paleogene of western North America. Zitteliana A47:133-147. [NM] Bottjer, D. J. 1981. Structure of upper Cretaceous chalk benthic communities, southwestern Arkansas. Palaeogeography, Palaeoclimatology, Palaeoecology 34:225-256. [AR] Bottjer, D. J. 1985. Trace fossils and paleoenvironments of two Arkansas upper Cretaceous discontinuity surfaces. Journal of Paleontology 59:282-298. [AR] Bottjer, D. J., C. Roberts, and D. E. Hattin. 1978. Stratigraphic and ecologic significance of Pycnodonte kansasense, a new Lower Turonian oyster from the Greenhorn Limestone of Kansas. Journal of Paleontology 52:1208-1218. [KS] Brain, T. H. 1993. Facies analysis and depositional environments of the Late Cretaceous (Campanian) Hatfield Sandstone Member of the Haystack Mountains Formation, Rawlins, Wyoming. Master’s Thesis, University of Wyoming, pp. 125. [WY] 262 Bratt, R. 1993. Ammonite morphotypes as indicators of oxygenation in a Cretaceous epicontinental sea. Lethaia 26:49-63. [AZ, CO, KS, NM] Braunstein, J., P. Huddlestun, and R. Biel. 1988. Gulf Coast region. In Stratigraphic Units of North America (COSUNA) Project. F. A. Lindberg (ed). American Association of Petroleum Geologists. [TX, LA, MS, AL] Brenner, R. L. 1978. Sussex Sandstone of Wyoming – example of Cretaceous offshore sedimentation. American Association of Petroleum Geologists Bulletin 62:181-200. [WY] Brenner, R. L., G. A. Ludvigson, B. J. Witzke, A. N. Zawistoski, E. P. Kvale, R. I. Ravn, and R. M. Joeckel. 2000. Late Albian Kiowa-Skull Creek marine transgression, lower Dakota Formation, eastern margin of the Western Interior Seaway, USA. Journal of Sedimentary Research 70:868-878. [KS] Brown, C. W. and R. L. Pierce. 1962. Palynologic correlations in the Cretaceous Eagle Ford Group, northeast Texas. American Association of Petroleum Geologists Bulletin 46:2133-2147. [TX] Buck, B. J. and G. H. Mack. 1995. Latest Cretaceous (Maastrichtian) aridity indicated by paleosols in the McRae Formation, south-central New Mexico. Cretaceous Research 16:559-572. [NM] Bullard, F. M. 1925. Geology of Love County Oklahoma. Oklahoma Geological Survey Bulletin 33:1-45. [OK] Burk, C. A. 1953. Stratigraphy of the Frontier Formation along the southern margin of the Bighorn Basin, Wyoming. Master’s Thesis, University of Wyoming, pp. 124. [WY] 263 Cadrin, A. A. J., T. K. Kyser, W. G. E. Caldwell, and F. J. Longstaffe. 1995. Isotopic and chemical compositions of bentonites as paleoenvironmental indicators of the Cretaceous Western Interior Seaway. Palaeogeography, Palaeoclimatology, Palaeoecology 119:301-320. [CO, SD] Cahoon, E. J. 1972. Paraphyllanthoxylon alabemense – a new species of fossil Dicotyledonous wood. American Journal of Botany 59:5-11. [AL] Campbell, C. V. 1971. Depositional model – upper Cretaceous Gallup beach shoreline, Ship Rock area, northwestern New Mexico. Journal of Sedimentary Petrology 41:395-409. [NM] Carlson, C. G. and S. B. Anderson. 1965. Sedimentary and tectonic history of North Dakota part of Williston Basin. American Association of Petroleum Geologists Bulletin 49:1833-1846. [ND] Carpenter, K. 1979. Vertebrate fauna of the Laramie Formation (Maestrichtian), Weld County, Colorado. Contributions to Geology, University of Wyoming 17:37-49. [CO] Carpenter, K., D. Dilkes, and D. B. Weishampel. 1995. The dinosaurs of the Niobrara Chalk Formation (upper Cretaceous, Kansas). Journal of Vertebrate Paleontology 15:275-297. [KS] Carpenter, K. and K. Alf 1994. Global distribution of dinosaur eggs, nests, and babies. In Dinosaur Eggs and Babies. K. Carpenter, K. F. Hirsch, and J. R. Horner (eds.). Cambridge University Press, Cambridge, pp. 15-30. [MT] Carr, D. A. 1991. Facies and depositional environments of the coal-bearing upper carboniferous member of the Wepo Formation (upper Cretaceous), northeastern Black Mesa, Arizona. In Stratigraphy, depositional environments, and sedimentary tectonics of the western 264 margin, Cretaceous Western Interior Seaway. J. D. Nations and J. G. Eaton (eds.). Geological Society of America Special Paper 260:167-188. [AZ] Carvajal, C. and R. Steel. 2009. Shelf-edge architecture and bypass of sand to deep water: influence of shelf-edge processes, sea level, and sediment supply. Journal of Sedimentary Research 79:652-672. [CO, WY] Case, G. R. 1991. Selachians (sharks) from the Tupelo Tongue of the Coffee Sands (Campanian, upper Cretaceous) in northern Lee County, Mississippi. Mississippi Geology 11:1-8. Case, G. R. and D. R. Schwimmer. 1988. Late Cretaceous fish from the Blufftown Formation (Campanian) in western Georgia. Journal of Paleontology 62:290-301. [AL, MS, TN] Castle, J. W., F. J. Molz, S. Lu, and C. L. Dinwiddie. 2004. Sedimentology and fractal-based analysis of permeability data, John Henry Member, Straight Cliffs Formation (upper Cretaceous), Utah, USA. Journal of Sedimentary Research 74:270-284. [UT] Cather, S. M. and G. R. Osburn. 2007. Preliminary geologic map of the Canon Agua Buena Quadrangle, Socorro County, New Mexico. New Mexico Bureau of Geology and Mineral Resources Open-file Digital Geologic Map OF-GM-146, pp. 10. [NM] Chafetz, H. S. 1982. The upper Cretaceous Beartooth Sandstone of southwestern New Mexico: a transgressive deltaic complex on silicified paleokarst. Journal of Sedimentary Petrology 52:157-169. [NM] Chamberlin, R. M., S. M. Cather, O. J. Anderson, and G. E. Jones. 1994. Reconnaissance geologic map of the Quemado 30 x 60 minute quadrangle, Catron County, New Mexico. New Mexico Bureau of Mines and Mineral Resources Open-file Report 406, pp. 31. [NM] 265 Chamberlin, R. M., S. C. Hook, and M. I. Dimeo. 2008. Preliminary geologic map of the Carbon Springs Quadrangle, Socorro County, New Mexico. New Mexico Bureau of Mines and Mineral Resources Open-file Digital Geologic Map OF-GM XX, pp. 19. [NM] Chimene, J. B. II and R. F. Maddocks. 1984. Ostracode biostratigraphy and paleoecology of the upper Taylor Group (Campanian, upper Cretaceous) in central Texas. Gulf Coast Association of Geological Societies Transactions 34:311-320. [TX] Christopher, R. A. 1982. The occurrence of Complexiopollis-Atlantopollis Zone (palynomorphs) in the Eagle Ford Group (upper Cretaceous) of Texas. Journal of Paleontology 56:525-541. [TX] Cifelli, R. L. 1990. Cretaceous mammals of southern Utah. I. Marsupials from the Kaiparowits Formation (Judithian). Journal of Vertebrate Paleontology 10:295-319. Cifelli, R. L. 1999. Therian teeth of unusual design from the mid-Cretaceous (Albian—Cenomanian) Cedar Mountain Formation of Utah. Journal of Mammalian Evolution 6:247-270. [UT] Clark, S. 2009. Abundance and character of organic matter in Cretaceous rocks of central Texas. Master’s Thesis, Baylor University, pp. 70. [TX, OK] Cobban, W. A. 1951a. New species of Baculites from the upper Cretaceous of Montana and South Dakota. Journal of Paleontology 25:817-821. [CO, KS] Cobban, W. A. 1951b. Colorado Shale of central and northwestern Montana and equivalent rocks of the Black Hills. American Association of Petroleum Geologists Bulletin 35:2170-2198. [CO, KS] Cobban, W. A. 1962. Baculites from the lower part of the Pierre Shale and equivalent rocks in the Western Interior. Journal of Paleontology 36:704-718. [CO, WY] 266 Cobban, W. A. 1973. Significant ammonite finds in uppermost Mancos Shale and overlying formations between Barker Dome, New Mexico, and Grand Junction, Colorado. Four Corners Geological Society Memoir Book, 148-153. [CO, NM] Cobban, W. A. 1984. Mid-Cretaceous ammonite zones, Western Interior, United States. Bulletin of the Geological Society of Denmark 33:71-89. [WY] Cobban, W. A. and J. B. Reeside Jr. 1952a. Correlation of the Cretaceous formations of the Western Interior of the United States. Bulletin of the Geological Society of America 63:1011-1044. [AZ, CO, KS, NM, UT, WY] Cobban, W. A. and J. B. Reeside Jr. 1952b. Frontier Formation, Wyoming and Adjacent areas. Association of the American Association of Petroleum Geologists Bulletin 36:1913-1961. Cobban, W. A. and W. J. Kennedy. 1992. Campanian ammonites from the upper Cretaceous Gober Chalk of Lamar County, Texas. Journal of Paleontology 66:440-454. [SD, TX, WY] Cobban, W. A. and W. J. Kennedy. 1993. Middle Campanian ammonites and inoceramids from the Wolfe City and in northeastern Texas. Journal of Paleontology 67:71-82. [TX] Cobban, W. A. and W. J. Kennedy. 1995. Maastrichtian ammonites chiefly from the Prairie Bluff Chalk in Alabama and Mississippi. Memoir of the Paleontological Society 44 (Supp. to vol. 69 of the Journal of Paleontology), 1-40. [TN, AR, AL, MS] Cobban, W. A. and N. L. Larson. 1997. Marine upper Cretaceous rocks and their ammonite record along the northern flank of the Black Hills uplift, Montana, Wyoming, South Dakota. Contributions to Geology, University of Wyoming 32:27-35. [MT, SD, WY] 267 Cobban, W. A., C. E. Erdmann, R. W. Lemke, and E. K. Maughan. 1959. Revision of Colorado Group on Sweetgrass Arch, Montana. American Association of Petroleum Geologists Bulletin 43:2786-2796. [KS, MT, WY] Cobban, W. A., T. S. Dyman, G. L. Pollock, K. I. Takahasha, L. E. Davis, and D. B. Riggin. 2000. Inventory of dominantly marine and brackish-water fossils from Late Cretaceous rocks in and near Grand Staircase-Escalante National Monument, Utah. In Geology of Utah’s Parks and Monuments. D. A. Sprinkel, T. C. Chidsey Jr., and P. B. Anderson (eds). Utah Geological Association Publication 28, pp. 11. [UT] Cobban, W. A., T. S. Dyman, and K. W. Porter. 2005. Paleontology and stratigraphy of upper Coniacian-middle Santonian ammonite zones and application to erosional surfaces and marine transgressive strata in Montana and Alberta. Cretaceous Research 26:429-449. [MT] Cobban, W. A., S. C. Hook, and K. C. McKinney. 2008. Upper Cretaceous molluscan record along a transect from Virden, New Mexicao, to Del Rio, Texas. New Mexico Geology 30:75-94. [NM, TX] Condon, S. M. 2000. Stratigraphic framework of lower and upper Cretaceous rocks in central and eastern Montana. United States Geological Survey Digital Data Series DDS-57, pp. 17. [MT, ND, SD] Condon, S. M. 2003. Fracture network of the Ferron Sandstone Member of the Mancos Shale, east-central Utah, USA. International Journal of Coal Geology 56:111-139. [UT] Constenius, K. N. 1996. Late Paleogene extensional collapse of the Cordilleran foreland fold and thrust belt. Geological Society of America Bulletin 108:20-39. [MT] 268 Crawford, R. S., R. M. Feldmann, D. A. Waugh, B. M. Kelley, J. G. Allen. 2006. Decapod crustaceans from the Maastrichtian Fox Hills Formation. Bulletin of the Peabody Museum of Natural History 47:3-28. [ND, SD] Currie, B. S. 2002. Structural configuration of the Early Cretaceous Cordilleran foreland-basin system and Sevier Thrust Belt, Utah and Colorado. Journal of Geology 110:697-718. [UT] Daly, D. J. 1997. Trace fossils of the Fox Hills Formation, Bowman County, North Dakota. Contributions to Geology, University of Wyoming 32:37-50. [CO, WY] Dane, C. H., A. A. Wanek, and J. B. Reeside Jr. 1957. Reinterpretation of section of Cretaceous rocks in Alamosa Creek Valley area, Catron and Socorro Counties, New Mexico. American Association of Petroleum Geologists Bulletin 41:181-196. [NM] Dawson, W. C. 1997. Limestone microfacies and sequence stratigraphy: Eagle Ford Group (Cenomanian-Turonian) north-central Texas outcrops. Gulf Coast Association of Geological Societies Transactions 47:99-106. [TX] Dawson, W. C. 2000. Shale microfacies: Eagle Ford Group (Cenomanian-Turonian) north-central Texas outcrops and subsurface equivalents. Gulf Coast Association of Geological Societies Transactions 50:607-622. [TX] Dean, W. E. and M. A. Arthur. 1998. Geochemical expressions of cyclicity in Cretaceous pelagic limestone sequences: Niobrara Formation, Western Interior Seaway. Stratigraphy and Paleoenvironments of the Cretaceous Western Interior Seaway, USA, SEPM Concepts in Sedimentology and Paleontology 6:227-255. [CO] 269 DeCelles, P. G. 1994. Late Cretaceous-Paleocene synorogenic sedimentation and kinematic history of the Sevier thrust belt, northeast Utah and southwest Wyoming. Geological Society of America Bulletin 106:32-56. [UT] DeCelles, P. G. and W. Cavazza. 1999. A comparison of fluvial megafans in the Cordilleran (upper Cretaceous) and modern Himalayan foreland basin systems. Geological Society of America Bulletin 111:1315-1334. [UT, WY] DeCelles, P. G. and J. C. Coogan. 2006. Regional structure and kinematic history of the Sevier fold-and-thrust belt, central Utah. Geological Society of America Bulletin 118:841-846. [UT] Demar, D. G., Jr. and B. H. Breithaupt. 2006. The nonmammalian vertebrate microfossil assemblages of the Mesaverde Formation (upper Cretaceous, Campanian) of the Wind River and Bighorn Basins, Wyoming. In Late Cretaceous Vertebrates of the Western Interior. S. G. Lucas and R. M. Sullivan (eds.). New Mexico Museum of Natural History and Science Bulletin 35:33-54. [WY] Dickinson, W. R., T. F. Lawton, and K. F. Inman. 1986. Sandstone detrital modes, central Utah foreland region: stratigraphic record of Cretaceous-Paleogene tectonic evolution. Journal of Sedimentary Petrology 56:276-293. [UT] Diem, S. and J. D. Archibald. 2005. Range extension of southern chasmosaurine ceratopsian dinosaurs into northwestern Colorado. Journal of Paleontology 79:251-258. [CO] Donselaar, M. E. 1989. The Cliff House Sandstone, San Juan Basin, New Mexico: model for the stacking of ‘transgressive’ barrier complexes. Journal of Sedimentary Petrology 59:13-27. [CO, NM] 270 Dutton, S. P. 1997. Timing of compaction and quartz cementation from integrated petrographic and burial-history analyses, lower Cretaceous Fall River Formation, Wyoming and South Dakota. Journal of Sedimentary Research 67:186-196. [SD] Dyman, T. S. and S. M. Condon. 2007. 2005 geologic assessment of undiscovered oil and gas resources, Hanna, Laramie, and Shirley Basins Province, Wyoming and Colorado. United States Geological Survey Digital Data Series DDS-69-K, pp. 68. [WY] Dyman, T. S., J. G. Palacas, R. G. Tysdal, W. J. Perry Jr., and M. J. Pawlewicz. 1996. Source rock potential of middle Cretaceous rocks in southwestern Montana. American Association of Petroleum Geologists Bulletin 80:1177-1184. [MT] Eaton, J. G. 1991. Biostratigraphic framework for the upper Cretaceous rocks of the Kaiparowits Plateau, southern Utah. In Stratigraphy, depositional environments, and sedimentary tectonics of the western margin, Cretaceous Western Interior Seaway. J. D. Nations and J. G. Eaton (eds.). Geological Society of America Special Paper 260:47-64. [UT] Eaton, J. G. 1999. Vertebrate paleontology of the Iron Springs Formation, upper Cretaceous, southwestern Utah. In Vertebrate Paleontology in Utah. D. D. Gillette (ed.). Utah Geological Survey Miscillaneous Publication 99-1: 339-244. [UT] Eaton, J. G. 2006. Santonian (Late Cretaceous) mammals from the John Henry Member of the Straight Cliffs Formation, Grand Staircase-Escalante National Monument, Utah. Journal of Vertebrate Paleontology 26: 446-460. [UT] Eaton, J. G. and J. D. Nations 1991. Introduction; tectonic setting along the margin of the Cretaceous Western Interior Seaway, southwestern Utah and northern Arizona. In Stratigraphy, depositional environments, and sedimentary tectonics of the western margin, 271 Cretaceous Western Interior Seaway. J. D. Nations and J. G. Eaton (eds.). Geological Society of America Special Paper 260:1-8. [AZ] Eaton, J. G. and R. L. Cifelli. 2001. Multituberculate mammals from near the Early-Late Cretaceous boundary, Cedar Mountain Formation, Utah. Acta Palaeontologica Polonica 46:453-518. [UT] Eaton, J. G. and J. I. Kirkland. 2008. Diversity patterns of nonmarine Cretaceous vertebrates of the western interior basin. In High-resolution Approaches in Stratigraphic Paleontology. P. J. Harries (ed). Topics in Geobiology 21:263-313. [CO, NM] Eaton, J. G., R. L. Cifelli, J. H. Hutchinson, J. I. Kirkland, and J. M. Parrish. 1999. Cretaceous vertebrate faunas from the Kaiparowits Plateau, south-central Utah. Vertebrate Paleontology in Utah, Utah Geological Survey Miscellaneous Publication 99-1:345-353. [UT] Edwards, C. M., D. M. Hodgson, S. S. Flint, and J. A. Howell. 2005. Contrasting styles of shelf sediment transport and deposition in a ramp margin setting related to relative sea-level change and basin floor topography, Turonian (Cretaceous) Western Interior of central Utah, USA. Sedimentary Geology 179:117-152. [AZ, CO, KS, NM, UT] Eicher, D. L. 1965. Foraminifera and biostratigraphy of the Graneros Shale. Journal of Paleontology 39:875-909. [CO] Eicher, D. L. 1967. Foraminifera from Belle Fourche Shale and equivalents, Wyoming and Montana. Journal of Paleontology 41:167-188. [MT] Eicher, D. L. 1967. Foraminifera from Belle Fourche Shale and equivalents, Wyoming and Montana. Journal of Paleontology 41:167-188. [WY] 272 Elder, W. P. 1996. Bivalves and gastropods from the Middle Campanian Anacacho Limestone, south central Texas. Journal of Paleontology 70:247-271. [TX] Elder, W. P. and J. I. Kirkland. 1993. Cretaceous paleogeography of the Colorado Plateau and adjacent areas. In Aspects of Mesozoic Geology and Paleontology of the Colorado Plateau. M. Morales ed. Museum of Northern Arizona Bulletin 59:129-152. [CO, KS, UT] Ellis, C. H. and R. H. Tschudy. 1964. The Cretaceous megaspore genus Arcellites Miner. Micropaleontology 10:73-79. [CO] Emerson, B. L., J. H. Emerson, R. E. Akers, and T. J. Akers. 1994. Texas Cretaceous ammonites and nautiloids. Houston Gem and Mineral Society, Texas Paleontology Series 5, pp. 439. [TX, OK] Engelder, T., M. R. Gross, and P. Pinkerton. 1997. Joint development in clastic rocks of the Elk Basin anticline, Montana-Wyoming. In Fractured Reservoirs: Characterization and Modeling. T. Hoak, A. Klawitter, and P. Blomquist (eds.). Rocky Mountain Association of Geologists 1997 Guidebook, 1-18. [WY] Erdlac, R. J., Jr. 1990. A Laramide-age push-up block: the structures and formation of the Terlingua-Solitario structural block, Big Bend region, Texas. Geological Society of America Bulletin 102:1065-1076. [TX] Estrada-Ruiz, E., H. I. Martínez-Cabrera, and S. R.S. Cevallos-Ferriz. 2010. Upper Cretaceous woods from the Olmos Formation (late Campanian-early Maastrichtian), Coahuila, Mexico. American Journal of Botany 97:1179-1194. [TX] 273 Everhart, M. J. 2001. Revisions to the biostratigraphy of the Mosasauridae (Squamata) in the Smoky Hill Chalk Member of the Niobrara Chalk (Late Cretaceous) of Kansas. Transactions of the Kansas Academy of Science 104:59-78. [KS] Everhart, M. J. 2005. Earliest record of the genus Tylosaurus (Squamata: Mosasauridae) from the Fort Hays Limestone (Lower Coniacian) of western Kansas. Transactions of the Kansas Academy of Science 108:149-155. [KS] Farquharson, P. and M. Grotbo. 1981. Chapter 9A, Lower Cretaceous (through Santonian Stage). In Montana Stratigraphy, Montana State University Stratigraphy Classes, 217-260. [MT] Fielding, C. R. 2010. Planform and facies variability in asymmetric deltas: facies analysis and depositional architecture of the Turonian Ferron Sandstone in the western Henry Mountains, south-central Utah, USA. [UT] Finn, T. M. 2005. Geothermal gradient map of the Southwestern Wyoming Province, southwestern Wyoming, northwestern Colorado, and northeastern Utah. United States Geological Survey Digital Data Series DDS-69-D, pp. 14. [UT, WY] Finn, T. M. 2010. Subsurface stratigraphic cross sections showing correlation of Cretaceous and lower Tertiary rocks in the Bighorn Basin, Wyoming and Montana. United States Geological Survey Digital Data Series DS-69-V, pp. 17. [MT, ND, SD, WY] Finn, T. M. and R. C. Johnson. 2005a. The Hilliard-Baxter-Mancos total petroleum system, southwestern Wyoming province. Petroleum systems and Geologic Assessment of Oil and Gas in the Southwestern Wyoming Province, Wyoming, Colorado, and Utah, United States Geological Survey Digital Data Series DD-69-D, pp. 22. [CO, UT, WY] 274 Finn, T. M. and R. C. Johnson. 2005b. Subsurgace stratigraphic cross sections of Cretaceous and Lower Tertiary rocks in the southwestern Wyoming Province, Wyoming, Colorado, and Utah. Geological Survey Digital Data Series DD-69-D, pp. 15. [WY] Foreman, B. Z., R. R. Rogers, A. L. Deino, K. R. Wirth, and J. T. Thole. 2008. Geochemical characterization of bentonite beds in the Two Medicine Formation (Campanian, Montana), including a new 40Ar/39Ar age. Cretaceous Research 29:373-385. [MT] Foster, J. R., A. L. Titus, G. F. Winterfeld, M. C. Hayden, and A. H. Hamblin. 2001. Paleontological survey of the Grand Staircase-Esacalante National Monument, Garfield and Kane Counties, Utah. Utah Geological Survey Special Study 99, pp. 107. [UT] Fox, J. E. 1971. Invertebrate fossils and environments of the Fox Hills and Medicine Bow Formations (Late Cretaceous) in south-central Wyoming. Doctoral Dissertation, University of Wyoming, pp. 205. [ND, SD, WY] Fox, J. E. 1971. Foraminifera in the Medicine Bow Formation, south-central Wyoming. Rocky Mountain Geology 9:98-101. [WY] Frerichs, W. E. 1979. Planktonic foraminifera from the Sage Breaks Shale, Centennial Valley, Wyoming. Journal of Foraminiferal Research 9:159-184. [WY] Frerichs, W. E. 1980. Age of the Western Interior Clioscaphites chouteauensis Zone. Journal of Paleontology 54:366-370. [WY] Frerichs, W. E., C. C. Atherton, and P. N. Shive. 1975. Planktonic foraminifera from the chalky members of the Niobrara Formation, Centennial Valley, Wyoming. Journal of Foraminiferal Research 5:294-312. [WY] 275 Fuentes, F., P. G. DeCelles, K. N. Constenius, and G. E. Gehrels. 2011. Evolution of the Cordilleran foreland basin system in northwestern Montana, USA. Geological Society of America Bulletin 123:507-533. [MT] Gale, A. S., J. M. Hancock, W. J. Kenedy, M. R. Petrizzo, J. A. Lees, I. Walaszczyk, and D. S. Wray. 2008. An integrated study (geochemistry, stable oxygen and carbon isotopes, nannofossils, planktonic foraminifera, inoceramids bivalves, ammonites, and crinoids) of the Waxahachie Dam Spillway section, north Texas: a possible boundary stratotype for the base of the Campanian Stage. Cretaceous Research 29:131-167. [TX] Gallagher, W. B., C. E. Campbell, J. W. M. Jagt, and E. W. A. Mulder. 2005. Mosasaur (Reptilia, Squamata) material from the Cretaceous-Tertiary boundary interval in Missouri. Journal of Vertebrate Paleontology 25:473-475. [MO] Gallin, W. N., C. L. Johnson, and J. L. Allen. 2010. Fluvial and marginal marine architecture of the John Henry Member, Straight Cliffs Formation, Kelly Grade of the Kaiparowits Plateau, south-central Utah. In Geology of South-Central Utah. S. M. Carney, D. E. Tabet, and C. L. Johnson (eds). Utah Geological Association Publication 39:248-275. [UT] Gani, M. R. and J. P. Bhattacharya. 2007. Basic building blocks and process variability of a Cretaceous delta: internal facies architecture reveals a more dynamic interaction of river, wave, and tidal processes than is indicated by external shape. Journal of Sedimentary Research 77:284-302. [WY] Gani, M. R., J. P. Bhattacharya, and J. A. MacEachern. 2008. Using ichnology to determine relative influence of waves, storms, tides, and rivers in deltaic deposits: examples from Cretaceous Western Interior Seaway, USA. Society for Sedimentary Geology, Applied Ichnology Short Course Notes 52:1-18. [WY] 276 Gardner, M. H. 1995. The stratigraphic hierarchy and tectonic history of the mid-Cretaceous foreland basin of central Utah. Stratigraphic Evolution of Foreland Basins. Society for Sedimentary Geology Special Publication 52:283-303. [UT] Gates, T. A. and S. D. Sampson. 2007. A new species of Gryposaurus (Dinosauria: Hadrosauridae) from the late Campanian Kaiparowits Formation, southern Utah, USA. Zoological Journal of the Linnean Society 151:351-376. [UT] Gates, T. A. and A. A. Farke. 2009. Biostratigraphic and biogeographic implications of a hadrosaurid (Ornithopoda: Dinosauria) from the upper Cretaceous Almond Formation of Wyoming, USA. Cretaceous Research 30:1157-1163. [WY] Getzendaner, F. M. 1930. Geologic section of Rio Grande Embayment, Texas, and implied history. American Association of Petroleum Geologists Bulletin 14:1425-1437. [TX] Gill, J. R. and W. A. Cobban 1966. The Red Bird Section of the upper Cretaceous Pierre Shale in Wyoming. United States Geological Survey Professional Paper 393A, pp. 90 [WY] Goldstrand, P. M. 1994. Tectonic development of upper Cretaceous to Eocene strata of southwestern Utah. Geological Society of America Bulletin 106:145-154. [UT] Gomez-Veroiza, C. A. and R. J. Steel. 2010. Iles clastic wedge development and sediment partitioning within a 300-km fluvial to marine Campanian transect (3 m.y.), Western Interior Seaway, southwester Wyoming and northern Colorado. American Association of Petroleum Geologists Bulletin 94:1349-1377. [CO] Gorrell, H. A. 1958. Geological note: classification of formation waters based on sodium chloride content. American Association of Petroleum Geologists Bulletin 42:2513-2522. [NM] 277 Griffitts, M. O. 1949. Zones of Pierre Formation of Colorado. American Association of Petroleum Geologists Bulletin 33:2011-2028. [CO, KS] Hamilton, V. 1994. Sequence stratigraphy of Cretaceous Albian and Cenomanian strata in Kansas. In Perspectives on the eastern margin of the Cretaceous Western Interior Basin. G. W. Shurr, G. A. Ludvigson, and R. H. Hammond (eds.). Geological Society of America Special Paper 287:79-96. [KS] Hammer, A. A. and A. M. Lloyd. 1925. A study of some upper Cretaceous sedimentation and diastrophism in Montana. American Association of Petroleum Geologists Bulletin 9:886-903. [WY] Hammond, R. H., D. K. Watkins, B. J. Witzke, and R. R. Anderson. 1995. The Crow Creek Member, Pierre Shale (upper Cretaceous) of southeastern South Dakota and northeastern Nebraska: impact tsunamite or basal transgressive deposit? In Geologic Field Trips in Nebraska and Adjacent Parts of Kansas and South Dakota. R. F. Diffendal and C. A. Flowerday (eds.). Geological Society of America Guidebook 10:109-120. [NE] Hancock, J. M. 1993. Transatlantic correlations in the Campanian-Maastrichtian stages by eustatic changes of sea level. In High Resolution Statigraphy. E. A. Hailwood and R. B. Kidd (eds.). Geological Society of America Special Publication 70:241-256. [AL, AR, MS, MT] Hancock, J. M. 2004. The mid-Cenomanian eustatic low. Acta Geologica Polonica 54:611-627. [CO, SD, TX] Hanczaryk, P. A. and W. B. Gallagher. 2007. Stratigraphy and paleoecology of the middle Pierre Shale along the Missouri River, central South Dakota. In The Geology and Paleontology 278 of the Late Cretaceous Marine Deposits of the Dakotas. J. E. Martin, D. C. Parris (eds.). Geological Society of America Special Paper 427:51-69. [ND, SD] Harper, R. M. 1910. A botanical and geological trip on the Warrior and Tombigbee Rivers in the coastal plain of Alabama. Bulletin of the Torrey Botanical Club 37:107-126. [AL, MS] Harris, J. D., K. R. Johnson, J. Hicks and L. Tauxe. 1996. Four-toed theropod footprints and a paleomagnetic age from the Whetstone Falls Member of the Harebell Formation (upper Cretaceous: Maastrichtian), northwestern Wyoming. Cretaceous Research 17:381-401. [WY] Harrison, R. W. and R. J. Litwin. 1997. Campanian costal plain sediments in southeastern Missouri and southern Illinois – significance to the early geologic history of the northern Mississippi Embayment. Cretaceous Research. 18:687-696. [MS, TN] Hattin, D. E. 1982. Stratigraphy and depositional environment of Smoky Hill Chalk Member, Niobrara Chalk (upper Cretaceous) of the type area, western Kansas. Kansas State Geological Survey Bulletin 225, pp. 108. [KS, CO] Hattin, D. E. 1986. Carbonate substrates of the Late Cretaceous sea, central great plains and southern rocky mountains. Palaios 1:347-367. [CO, KS, MT, NE, NM, SD] Hattin, D. E. 1995. Exogyra in upper Cretaceous chalky strata of western Kansas, USA: a biogeographic enigma. Journal of Paleontology 69:187-191. [KS] Hattin, D. E., and C. T. Siemers. 1987. Upper Cretaceous stratigraphy and depositional environments of western Kansas. Kansas Geological Survey Guidebook to 39th Field Conference, 1-30. [KS] 279 Haun, J. D. 1961. Stratigraphy of post-Mesaverde Cretaceous rocks, Sand Wash Basin and vicinity, Colorado and Wyoming. Sixteenth Annual Field Conference, 116-124. [CO, WY] Hazel, J. E. and O. L. Paulson, Jr. 1964. Some new ostracode species from the Austinian and Tayloran (Coniacian and Campanian) rocks of the East Texas Embayment. Journal of Paleontology 38:1047-1064. [MS, AR, TX, OK] He, S., T. K. Kyser, and W. G. E. Caldwell. 2005. Paleoenvironment of the Western Interior Seaway inferred from δ18O and δ13C values of molluscs from the Cretaceous Bearpaw marine cyclothem. Palaeogeography, Palaeoclimatology, Palaeoecology 217:67-85. [MT, ND, SD, WY] Heaton, R. L. 1950. Late Paleozoic and Mesozoic history of Colorado and adjacent areas. American Association of Petroleum Geologists Bulletin 34:1659-1698. [AZ, CO, MT, NM, SD, UT, WY] Hettinger, R. D. 2000. A summary of coal distribution and geology in the Kaiparowits Plateau, Utah. United States Geological Survey Professional Paper1625-B, pp. 20. [UT] Hettinger, R. D. and M. A. Kirschbaum. 2002. Stratigraphy of the upper Cretaceous Mancos Shale (upper part) and Mesaverde Group in the southern part of the Uinta and Piceance Basins, Utah and Colorado. United States Geological Survey, Geological Investigations Series I-2764, pp. 24. [CO, UT] Heydari, E. 2000. Sedimentological characteristics of the upper Cretaceous Demopolis Chalk, Mississippi. Gulf Coast Association of Geological Societies Transactions 50:429-438. [MS, TN] 280 Heydari, E. 2001. Climatically controlled redox cycles of the upper Cretaceous Mooreville Formation in Mississippi. Gulf Coast Association Of Geological Societies Transactions 51:435-444. [AL, MS, TN] Hicks, J. F., J. D. Obradovich, and L. Tauxe. 1995. A new calibration point for the Late Cretaceous time scale: the 40Ar/39Ar isotopic age of the C33r/C33n geomagnetic reversal from the Judith River Formation (upper Cretaceous), Elk Basin, Wyoming, USA. The Journal of Geology 103:243-256. [MT, WY] Hicks, J. F., J. D. Obradovich, and L. Tauxe. 1999. Magnetostratigraphy, isotopic age calibration and intercontinental correlation of the Red Bird section of the Pierre Shale, Niobrara County, Wyoming, USA. Cretaceous Research 20:1-27. [WY] Hills, J. M. and F. E. Kottlowski. 1983. Southwest/southwest mid-continent region. In Stratigraphic Units of North America (COSUNA) Project. F. A. Lindberg (ed). American Association of Petroleum Geologists. [AZ, NM, TX, KS, CO] Hintze, L. F. 1985. Great Basin region. In Stratigraphic Units of North America (COSUNA) Project. F. A. Lindberg (ed). American Association of Petroleum Geologists. [UT] Hook, S. C. 2010. Flemingostrea elegans, n. sp.:guide fossil to marine, lower Coniacian (upper Cretaceous) strata of central New Mexico. New Mexico Geology 32:35-57. [NM] Hook, S. C. and W. A. Cobban. 2007. A condensed middle Cenomanian succession in the Dakota Sandstone (upper Cretaceous), Sevilleta National Wildlife Refuge, Socorro County, New Mexico. New Mexico Geology 29:75-99. [NM] Hopkins, C. S., E. W. Salva, and R. M. Feldmann. 1999. Re-evaluation of the genus Xanthosia Bell, 1863 (Decapoda: Brachyura: Xanthidae) and description of two new species from the Cretaceous of Texas. Journal of Paleontology 73:77-90. [TX] 281 Horton, B. K., K. N. Constenius, and P. G. DeCelles. 2004. Tectonic control on coarse-grained foreland-basin sequences: an example from the Cordilleran foreland basin, Utah. Geology 32:637-640. [UT] Horton, R. P. 2006. Geology and vertebrate paleontology of Cretaceous and Tertiary strata on the Pitcock Rosillos Mountain Ranch, Brewster County, Texas. Master’s Thesis, Texas Christian University, pp. 64. [TX] Huffman, M. E. 1960. Micropaleontology of lower portion of Boquillas Formation near Hot Springs, Big Bend National Park, Brewster County, Texas. Master’s Thesis, Texas Technological College, pp. 61. [TX] Huffman, G. G., P. P. Alfonsi, R. C. Dalton, A. Duarte-Vivas, and E. L. Jeffries. 1975. Geology and mineral resources of Choctaw County, Oklahoma. Oklahoma Geological Survey Bulletin 120:1-43. [OK] Hunt, R. E. 1954. South Flat Formation, new upper Cretaceous formation of central Utah. American Association of Petroleum Geologists Bulletin 38:118-128. [UT] Hunter, J. P., R. E. Heinrich, and D. B. Weishampel. 2010. Mammals from the St. Mary River Formation (upper Cretaceous), Montana. Journal of Vertebrate Paleontology 30:885-898. [MT] Hunter, R. B. 1987. Timing and structural relations between the Gros Ventre foreland uplift, the Prospect Thrust system, and the Granite Creek Thrust, Hoback Basin, Wyoming. Wyoming Geological Association Guidebook 38:109-131. [WY] Imlay, R. W. 1945. Subsurface lower Cretaceous formations of south Texas. American Association of Petroleum Geologists Bulletin 29:1416-1469. [TX] 282 Irby, G. V. and L. B. Albright III. 2005. Tail-drag marks and dinosaur footprints from the upper Cretaceous Toreva Formation, northeastern Arizona. Palaios 17:516-521. [AZ] Izett, G. A., W. A. Cobban, G. B. Dalrymple, and J. D. Obradovich. 1998. 40Ar/39Ar age of the Manson impact structure, Iowa, and correlative impact ejecta in the Crow Creek Member of the Pierre Shale (upper Cretaceous), South Dakota and Nebraska. Geological Society of America Bulletin 110:361-376. [NE] Jennette, D. C. and C. R. Jones. 1995. Chapter 10: Sequence stratigraphy of the upper Cretaceous Tocito Sandstone: a model for tidally influenced incised valleys, San Juan Basin, New Mexico. American Association of Petroleum Geologists Memoir 64:311-347. [NM – Crevasse Canyon Fm, Gallup SS, Tocito/Mancos, Pictured Cliffs] Jennette, D. C., C. R. Jones, J. C. Van Wagoner, and J. E. Larsen. 1991. High-resolution sequence stratigraphy of the upper Cretaceous Tocito Sandstone: the relationship between incised valleys and hydrocarbon accumulation, San Juan Basin, New Mexico. American Association of Petroleum Geologists Special Volume 25:24-62. [NM] Jerzykiewicz, T. 1992. Controls on the distribution of coal in the Campanian to Paleocene post-Wapiabi strata of the Rocky Mountain foothills, Canada. Geological Society of America Special Paper 267:139-150. [MT – willow crk fm] Jinnah, Z. A. and E. M. Roberts. 2011. Facies associations, paleoenvironment, and base-level changes in the upper Cretaceous Wahweap Formation, Utah, USA. Journal of Sedimentary Research 81:266-283. [UT] Jinnah, Z. A., E. M. Roberts, A. L. Deino, J. S. Larsen, P. K. Link, and C. M. Fanning. 2009. New 40Ar-39Ar and detrital zircon U-Pb ages for the upper Cretaceous Wahweap and Kaiparowits Formations on the Kaiparowits Plateau, Utah: implications for regional 283 correlation, provenance, and biostratigraphy. Cretaceous Research 30:287-299. [CO, MT, NM, TX, UT, WY] Joeckel, R. M., J. M. Cunningham, R. G. Corner, G. W. Brown, P. L. Phillips, and G. A. Ludvigson. 2004. Late Albian dinosaur tracks from the cratonic (eastern) margin of the Western Interior Seaway, Nebraska, USA. Ichnos 11:275-284. [NE] Johnson, R. C. 1987. Geologic history and hydrocarbon potential of Late Cretaceous-age, low-permeability reservoirs, Piceance Basin, western Colorado: final report DOE/MC/20422-2337. Geological Survey, Colorado, pp. 100. [CO, UT] Johnson, R. C. 2003. Depositional framework of the upper Cretaceous Mancos Shale and the lower part of the upper Cretaceous Mesaverde Group, western Colorado and eastern Utah. Petroleum Systems and Geologic Assessment of Oil and Gas in the Uinta-Piceance Province, Utah and Colorado. United States Geological Survey Digital Data Serioes DDS-69-B, pp. 28. [CO, KS, UT] Johnson, R. C. and D. D. Rice. 1990. Occurrence and geochemistry of natural gases, Piceance Basin, northwest Colorado. American Association of Petroleum Geologists Bulletin 74:805-829. [CO] Johnson, K. A., S. J. Culver, D. L. Kamola. 2005a. Marginal marine foraminifera of the Blackhawk Formation (Late Cretaceous, Utah). Journal of Foramniferal Research 35:50-64. [CO, UT, WY] Johnson, R. C., T. M. Finn, and L. N. R. Roberts. 2005b. The Mesaverde total petroleum system, southwestern Wyoming Province. Petroleum Systems and Geologic Assessment of Oil and Gas in the Southwestern Wyoming Province, Wyoming, Colorado, and Utah, United States Geological Survey Digital Data Series DDS-69-D, pp. 43. [CO, UT, WY] 284 Kauffman, E. G. 1973. A brackish water biota from the upper Cretaceous Harebell Formation of northwestern Wyoming. Journal of Paleontology 47:436-446. [WY] Kauffman, E. G., P. J. Harries, C. Meyer, T. Villamil, C. Arango, and G. Jaecks. 2007. Paleoecology of giant Inoceramidae (Platyceramus) on a Santonian (Cretaceous) seafloor in Colorado. Journal of Paleontology 81:64-81. [CO] Kaye, J. M. and D. A. Russell. 1973. The oldest record of Hadrosaurian dinosaurs in North America. Journal of Paleontology 47:91-93. [MS] Keefer, W. R. 1965. Geologic history of Wind River Basin, central Wyoming. American Association of Petroleum Geologists Bulletin 49:1878-1892. [WY] Kennedy, W. J. and W. A. Cobban. 1991. Upper Cretaceous (upper Santonian) Boehmoceras fauna from the Gulf Coast region of the United States. Geological Magazine 128:167-189. [AL, MS, TN] Kennedy, W. J. and W. A. Cobban. 1993. Maastrichtian ammonites from the Corsicana Formation in northeast Texas. Geological Magazine 130:57-67. [TX] Kennedy, W. J. and W. A. Cobban. 1999. Campanian (Late Cretaceous) ammonites from the Bergstrom Formation in central Texas. Acta Geologica Polonica 49:67-80. [TX] Kennedy, W. J. and W. A. Cobban. 2001. Campanian (Late Cretaceous) ammonites from the upper part of the Anacacho Limestone in south-central Texas. Acta Geologica Polonica 51:15-30. [AL, TX] Kennedy, W. J., N. H. Landman, W. K. Christensen, W. A. Cobban, and J. M. Hancock. 1998. Marine connections in North America during the Late Maastrichtian: palaeogeographic and palaeobiogeographic significance of Jeletzytes nebrascensis Zone cephalopod fauna 285 from the Elk Butte Member of the Pierre Sh, SE South Dakota and NE Nebraska. Cretaceous Research 19:745-775. [NE] Kennedy, W. J., N. H. Landman, W. A. Cobban, and R. O. Johnson. 2000. Additions to the ammonite fauna of the upper Cretaceous Navesink Formation of New Jersey. American Museum Novitates 3306:1-30. [AL, TN, AR, TX] Kennedy, W. J., W. A. Cobban, and N. H. Landman. 2001. A revision of the Turonian members of the ammonite subfamily Collignoniceratinae from the United States Western Interior and Gulf Coast. Bulletin of the American Museum of Natural History 267, pp. 148. [NM] Kennedy, W. J., N. H. Landman, and W. A. Cobban. 2001. Santonian ammonites from the Blossom Sand in northeast Texas. American Museum Novitates 3332:1-10. [TX] Kennedy, W. J., J. M. Hancock, W. A. Cobban, and N. H. Landman. 2004. A revision of the ammonite types described in F. Roemer’s ‘Die Kreidebildungen von Texas und ihre organischen Einschlüsse’ (1852). Acta Geologica Polonica 54:433-445. [TX] Kent, H. C. 1968. Stratigraphy of Niobrara-equivalent part of Mancos Shale (Cretaceous) in northwestern Colorado. American Association of Petroleum Geologists Bulletin 52:2098-2115. [CO] Kent, H. C., E. L. Couch, and R. A. Knapp. 1988. Cenral and southern Rockies region. In Stratigraphic Units of North America (COSUNA) Project. F. A. Lindberg (ed). American Association of Petroleum Geologists. [AZ, NM, UT, CO, WY] Kiernan, C. R. 2002. Stratigraphic distribution and habitat segregation of mosasaurs in the upper Cretaceous of western and central Alabama, with a historical review of Alabama mosasaur discoveries. Journal of Vertebrate Paleontology 22:91-103. [AL] 286 Kilbourne, D. E. 1969. Paleomagnetism of some rocks from the Mesaverde Group, southwestern Wyoming and northeastern Utah. Geological Society of America Bulletin 80:2069-2074. [UT] King, D. T., Jr. 1990. Facies stratigraphy and relative sea-level history – upper Cretaceous Eutaw Formation, central and eastern Alabama. Gulf Coast Association of Geological Societies Transactions 40:381-387. [AL] King, D. T., Jr., and M. C. Skotnicki. 1994. Upper Cretaceous stratigraphy and sea-level history, Gulf Coastal Plain of central and eastern Alabama. Geological Society of America Special Paper 287:27-42. [AL] King, D. T., Jr., T. L. Neathery, L. W. Petruny. 2004. Structure-filling sediments of the Wetumpka marine-target impact structure (Alabama, USA). In Cratering in Marine Environments and on Ice. H. Dypvik, M. Burchell, and P. Claeys (eds.). Springer, NY, 97-114. [AL] Kirkland, J. I. 1991. Lithostratigraphic and biostratigraphic framework for the Mancos Shale (late Cenomanian to middle Turonian) at Black Mesa, northeastern Arizona. In Stratigraphy, Depositional Environments, and Sedimentary Tectonics of the Western Margin, Cretaceous Western Interior Seaway. J. D. Nations, and J. G. Eaton (eds.). Geological Society of America Special Paper 260:85-111. [AZ] Kirkland, J. I. and D. G. Wolfe. 2001. First definitive therizinosaurid (Dinosauria; Theropoda) from North America. Journal of Vertebrate Paleontology 21:410-414. [NM] Kirkland, J. I., R. L. Cifelli, B. B. Britt, D. L. Burge, F. L. DeCourten, J. G. Eaton, J. M. Parrish. 1999. Distribution of vertebrate faunas in the Cedar Mountain Formation, east-central 287 Utah. Utah Geological Survey Miscellaneous Publication 1:201-218. [CO, SD, TX, UT, WY] Kirkland, J. I., Smith, D., and Wolfe, D. 2005. Chapter 5: The Holotype braincase of Northronycus mckinleyi Kirkland and Wolfe 2001 (Theropoda; Therizinosauridae) from the upper Cretaceous (Turonian) of West-Central New Mexico. In The Carnivorous Dinosaurs. K. Carpenter (ed). Indian University Press, Bloomington, Indiana, pp. 87-96. Kirschbaum, M. A. and R. D. Hettinger. 2004. Facies analysis and sequence stratigraphic framework of upper Campanian strata (Nelsen and Mount Garfield Formations, Bluecastle Tongue of the Castlegate Sandstone, and Mancos Shale), eastern Book Cliffs, Colorado and Utah. United States Geological Survey Digital Data Series DDS-69-G, pp. 46. [CO] Kirschbaum, M. A. and L. N. R. Roberts. 2005. Stratigraphic framework of the Cretaceous Mowry Shale, Frontier Formation, and adjacent units, southwestern Wyoming Province, Wyoming, Colorado, and Utah. United States Geological Survey Digital Data Series DDS-69-D, pp. 35. [UT, WY] Klein, J. S., P. Mozley, A. Campbell, and R. Cole. 1999. Spatial distribution of carbon and oxygen isotopes in laterally extensive carbonate-cemented layers: implications for mode of growth and subsurface identification. Journal of Sedimentary Research 69:184-191. [UT] Klug, B. 1992. Cyclic facies architecture as a key to depositional controls in a distal foredeep: Campanian Mesaverde Group, Wyoming, USA. Geologische Rundschau 82:306-328. [WY] 288 Knight, T. K, and D. R. Schwimmer. 2005. Anatomy of the skull and braincase of a new Deinosuchus rugosus specimen from the Blufftown Formation, Russell County, Alabama. Geological Society of America Abstracts with Programs 37:12. [AL] Koch, N. C. 1967. Disappearance of dinosaurs. Journal of Paleontology 41:970-972. [KS] Koenig, A. E., R. R. Rogers, and C. N. Trueman. 2009. Visualizing fossilization using laser ablation-inductively coupled plasma-mass spectrometry maps of trace elements in Late Cretaceous bones. Geology 37:511-514. [MT] Krystinik, L. F. and B. B. DeJarnett 1995. Lateral variability of sequence stratigraphic framework in the Campanian and lower Maastrichtian of the Western Interior Seaway. In Sequence Stratigraphy of Foreland Basin Deposits. J. C. Van Wagoner, G. T. Bertram (eds.). American Association of Petroleum Geologists Memoir 64:11-25. [CO, UT, WY, MT] Kues, B. S. 1989. Taxonomy and variability of three Texigryphaea (Bivalvia) species from their lower Cretaceous (Albian) type localities in New Mexico and Oklahoma. [TX] Landman, N. H. 1994. Exceptionally well-preserved ammonites from the upper Cretaceous (Turonian-Santonian) of North America: implications for ammonite early ontogeny. American Museum Novitates 3086, pp. 15. [MT] Landman, N. H. and W. A. Cobban. 2003. Ammonites of the upper part of the Pierre Shale and Fox Hills Formation of Colorado. American Museum Novitates 3388:1-45. [CO] Landman, N. H., W. J. Kennedy, W. A. Cobban, and N. L. Larson. 2010. Scaphites of the “Nodosus” Group from the upper Cretaceous (Campanian) of the Western Interior of North America. Bulletin of the American Museum of Natural History 342:1-242. [KS] 289 Landry, R. J. 1984. A new reference locality for the Saratoga Chalk, Howard County, Arkansas. Gulf Coast Association of Geological Societies Transactions 34:95-97. [AR] Lawrence, D. T. 1992. Primary controls on total reserves, thickness, geometry, and distribution of coal seams: upper Cretaceous Adaville Formation, southwestern Wyoming. In Controls on the distribution and quality of Cretaceous coals. P. J. McCabe and J. T. Parrish (eds.). Geological Society of America Special Paper 267:69-100. [WY] Lawton, T. F. 1985. Style and timing of frontal structures, thrust belt, central Utah. American Association of Petroleum Geologists Bulletin 69:1145-1159. [UT] Lawton, T. F., S. L. Pollock, and R. A. J. Robinson. 2003. Integrating sandstone petrology and nonmarine sequence stratigraphy: application to the Late Cretaceous fluvial systems of southwestern Utah, USA. Journal of Sedimentary Research 73:389-406. [UT] Leckie, R. M., M. G. Schmidt, D. Finkelstein, and R. Yuretich. 1991. Paleoceanographic and paleoclimate interpretations of the Mancos Shale (upper Cretaceous), Black Mesa Basin, Arizona. In Stratigraphy, depositional environments, and sedimentary tectonics of the western margin, Cretaceous Interior Seaway. J. D. Nations and J. G. Eaton (eds.). Geological Society of America Special Paper 260:139-152. [AZ] Lee, K., X. Zeng, G. A. McMechan, C. D. Howell Jr., J. P. Bhattacharya, F. Marcy, C. Olariu. 2005. A ground-penetrating radar survey of a delta-front reservoir analog in the Wall Creek Member, Frontier Formation, Wyoming. American Association of Petroleum Geologists Bulletin 89:1139-1155. [WY] Lee, K., G. A. McMechan, M. R. Gani, J. P. Bhattarchya, X. Zeng, and C. D. Howell Jr. 2007. #-D architecture and sequence stratigraphic evolution of a forced regressive top-truncated 290 mixed-influenced delta, Cretaceous Wall Creek Sandstone, Wyoming, USA. Journal of Sedimentary Research 77:303-323. [WY] Lehman, T. M. 1985. Transgressive-regressive cycles and environments of coal deposition in the upper Cretaceous strata of Trans-Pecos Texas. Gulf Coast Association of Geological Societies Transactions 35:431-438. [TX] Lehman, T. M. 1987. Late Maastrichtian paleoenvironments and dinosaur biogeography in the Western Interior of North America. Palaeogeography, Palaeoclimatology, Palaeoecology 60:189-217. [MT, NM, UT, WY] Lehman, T. M. 1989a. Upper Cretaceous (Maastrichtian) paleosols in Trans-Pecos Texas. Geological Society of America Bulletin 101:188-203. [TX] Lehman, T. M. 1989b. Giant Cretaceous sawfish (Onchosaurus) from Texas. Journal of Paleontology 63:533-535. [TX] Lehman, T. M. 2010. Pachycephalosauridae from the San Carlos and Aguja Formations (upper Cretaceous) of west Texas, and observations of the frontoparietal done. Journal of Vertebrate Paleontology 30:786-798. [TX] Leier, A. 2000. Sedimentology and stratigraphy of the Bacon Ridge Sandstone, Teton County, Wyoming. Master’s Thesis, University of Wyoming, pp. 143. [WY] Leithold, E. L. 1993. Preservation of laminated shale in ancient clinoforms; comparison to modern subaqueous deltas. Geology 21:359-362. [UT] Leithold, E. L. 1994. Stratigraphical architecture at the muddy margin of the Cretaceous Western Interior Seaway, southern Utah. Sedimentology 41:521-542. [UT] 291 Levey, R. A. 1985. Depositional model for understanding geometry of Cretaceous coals: major coal seams, Rock Springs Formation, Green River Basin, Wyoming. American Association of Petroleum Geologists Bulletin 69:1359-1380. [WY] Liggett, G. A., K. Shimada, S. C. Bennett, and B. A. Schumacher. 2005. Cenomanian (Late Cretaceous) reptiles from northwestern Russell County, KS. PaleoBios 25:9-17. [KS] Lillegraven, J. A., A. W. Snoke, and M. C. McKenna. 2004. Tectonic and paleogeographic implications of late Laramide geologic history in the northeastern corner of Wyoming’s Hanna Basin. Rocky Mountain Geology 39:7-64. [WY] Lindsay, E. H., R. F. Butler, and N. M. Johnson. 1981. Magnetic polarity zonation and biostratigraphy of Late Cretaceous and Paleocene continental deposits, San Juan Basin, New Mexico. American Journal of Science 281:390-435. [NM] Liro, L M., W. C. Dawson, B. J. Katz, and V. D. Robison. 1994. Sequence stratigraphy elements and geochemical variability within a “condensed section”: Eagle Ford Group, east-central Texas. Gulf Coast Association of Geological Societies Transactions 44:393-402. [TX] Liu, S. and D. Nummedal. 2004. Late Cretaceous subsidence in Wyoming: quantifying the dynamic component. Geology 32:397-400. [WY] Liu, S.-F., D. Nummedal, P.-G. Yin, and H.-J. Luo. 2005. Linkage of Sevier thrusting episodes and Late Cretaceous foreland basin megasequences across southern Wyoming (USA). Basin Research 17:487-506. [WY] Liu, K. 2007. Sequence stratigraphy and orbital cyclicity of the Mooreville Chalk (Santonian—Campanian), northeastern Gulf of Mexico area, USA. Cretaceous Research 28:405-418. [MS] 292 Locke, K. A. and S. Gartner. 1994. Calcareous nannofossil biostratigraphy of the Taylor Group (Campanian) of north-central Texas. Gulf Coast Association of Geological Societies Transactions 44:403-411. [TX] Locklair, R. E. and C. E. Savrda. 1998. Ichnology of rhythmically bedded Demopolis Chalk (upper Cretaceous, Alabama): implications for paleoenvironment, depositional cycle origins, and tracemaker behavior. Palaios 13:423-438. [AL] Lockley, M. G., and A. P. Hunt. 1995. Ceratopsid tracks and associated ichnofauna from the Laramie Formation (upper Cretaceous: Maastrichtian) of Colorado. Journal of Vertebrate Paleontology 15:592-614. [CO] Lockley, M. G., G. Nadon, and P. J. Currie. 2003. A diverse dinosaur-bird footprint assemblage from the Lance Formation, upper Cretaceous, eastern Wyoming: implications for ichnotaxonomy. Ichnos 11:229-249. [MT, WY] Lockridge, J. P. and P. A. Scholle. 1978. Niobrara gas in eastern Colorado and northwestern Kansas. Rocky Mountain Association of Geologists Symposium, 35-49. [CO, KS] Loeblich, A. R., Jr. and H. Tappan. 1962. Type localities of some American Cretaceous foraminiferal genotype species described by Ehrenberg. Journal of Paleontology 36:352-354. [AL, MS] Logan, W. N. 1899. A discussion and correlation of certain subdivisions of the Colorado Formation. Journal of Geology 7:83-91. [IA, CO] Longrich, N. R., J. Sankey, and D. Tanke. 2010. Texacephale langstoni, a new genus of pachycephalosaurid (Dinosauria: Ornithischia) from the Upper Campanian Aguja Formation, southern Texas, USA. Cretaceous Research 31:274-284. [TX] 293 Lorenz, J. C. and S. P. Cooper 2001. Tectonic setting and characteristics of natural fractures in Mesaverde and Dakota reservoirs of the San Juan Basin, New Mexico and Colorado. No. SAND2001-0054. Sandia National Labs, Albuquerque, NM and Livermore, CA, pp. 71. [CO] Løseth, T. M., R. J. Steel, J. P. Crabaugh, M. Schellpeper. 2006. Interplay between shoreline migration paths, architecture, and pinchout distance for siliciclastic shoreline tongues: evidence from the rock record. Sedimentology 53:735-767. [CO, UT, WY] Love, J. D. 1956. New geologic formation names in Jackson Hole, Teton County, northwestern Wyoming. American Association of Petroleum Geologists Bulletin 40:1899-1914. [WY] Love, J. D. 1989. Names and descriptions of new and reclassified formations in northwestern Wyoming. United States Geological Survey Professional Paper 932-C, pp. 52. Lucas, S. G. 2002. Invertebrate fossil assemblage from Galisteo Dam and the correlation of the Cretaceous Dakota-Mancos succession in north-central New Mexico. New Mexico Geology 24:15-18. [NM] Lucas, S. G. and N. J. Mateer. 1983. Vertebrate paleoecology of the late Campanian (Cretaceous) Fruitland Formation, San Juan Basin, New Mexico (USA). Acta Palaeontologica Polonica 28:195-204. [NM] Lucas, S. G. and T. F. Lawton. 2005. Upper Cretaceous marine strata in the Little Hatchet Mountains, southwestern New Mexico. New Mexico Geology 27:63-69. [NM] Lucas, S. G., A. B. Heckert, R. M. Sullivan. 2000. Cretaceous Dinosaurs in New Mexico. In Dinosaurs of New Mexico. S. G. Lucas and A. B. Heckert (eds.). New Mexico Museum of Natural History and Science Bulletin 17:83-90. [NM] 294 Lucas, S. G., L. F. Rinehart, and S. Kelley. 2009. Cenomanian invertebrate assemblage from the Dakota Sandstone near Ghost Ranch, Rio Arriba County, New Mexico. New Mexico Geology 31:59-64. [NM] Mack, G. H. 1987. Mid-Cretaceous (late Albian) change from rift to retroarc foreland basin in southwestern New Mexico. Geological Society of America Bulletin 98:507-514. [NM] Mack, G. H. 1992. Paleosols as an indicator of climate change at the Early-Late Cretaceous boundary, southwestern New Mexico. Journal of Sedimentary Petrology 62:483-494. [NM] Mack, G. H., and D. R. Cole. 2005. Geochemical model of δ18O of pedogenic calcite versus latitude and its application to Cretaceous paleoclimate. Sedimentary Geology 174:115-122. [MT] Peters, S. E. and N. A. Heim. Macrostrat Database: http://macrostrat.geology.wisc.edu. [AL, AR, AZ, CO, IA, KS, MS, MT, ND, NE, NM, OK, SD, TN, TX, UT, WY] Mancini, E. A. and T. M. Puckett. 2005. Jurassic and Cretaceous transgressive-regressive (T-R) cycles, northern Gulf of Mexico, USA. Stratigraphy 2:31-48. [AL, MS, TN, AR, TX, OK] Mancini, E. A., R. M. Mike, J. W. Payton, and B. L. Beardan. 1987. Environments of deposition and petroleum geology of Tuscaloosa Group (upper Cretaceous), South Carlton and Pollard Fields, southwestern Alabama. American Association of Petroleum Geologists Bulletin 71:1128-1142. [AL] Mancini, E. A., T. M. Puckett, B. H. Tew, and C. C. Smith. 1995. Upper Cretaceous sequence stratigraphy of the Mississippi-Alabama area. Gulf Coast Association of Geological Societies Transactions 45:377-384. [MS] 295 Mancini, E. A., J. Obid, M. Badali, K. Liu, and W. C. Parcell. 2008. Sequence-stratigraphic analyses of Jurassic and Cretaceous strata and petroleum exploration in the central and eastern Gulf Coastal Plain, United States. American Association of Petroleum Geologists Bulletin 92:1655-1686. [AL, MS, AR, TX, OK] Marks, P. and B. Stam. 1983. The Austin Chalk-Taylor Clay succession in Texas and the Santonian-Campanian boundary. Cretaceous Research 4:271-279. [AR, TX] Martinsen, O. J., A. Ryseth, W. Helland-Hansen, H. Flesche, G. Torkildsen, and S. Idil. 1999. Stratigraphic base level and fluvial architecture: Ericson Sandstone (Campanian), Rock Springs uplift, SW Wyoming, USA. Sedimentology 46:235-259. [WY] Martinsen, R. S. 2003. Depositional remnants, part 2: examples from the Western Interior Cretaceous basin of North America. American Association of Petroleum Geologists Bulletin 87:1883-1909. [NM, WY] Martinson, V. S., P. L. Heller, and W. E. Frerichs. 1998. Distinguishing middle Late Cretaceous tectonic events from regional sea-level change using foraminiferal data from the US Western Interior. Geological Society of America Bulletin 110: 259-268. [UT, WY] McCabe, W. S. 1948. Elk Basin, anticline, Park County, Wyoming, and Carbon County, Montana. American Association of Petroleum Geologists Bulletin 32:52-67. [WY] McCubbin, D. G. 1969. Cretaceous strike-valley sandstone reservoirs, northwestern New Mexico. American Association of Petroleum Geologists Bulletin 53:2114-2140. [NM] McLaurin, B. T. and R. J. Steel. 2000. Fourth-order nonmarine to marine sequences, middle Castlegate Formation, Book Cliffs, Utah. Geology 28:359-362. [CO, UT] McMannis, W. J. 1965. Resume of depositional and structural history of western Montana. American Association of Petroleum Geologists Bulletin 49:1801-1823. [MT] 296 Mederos, S. B. Tikoff, and V. Bankey. 2005. Geometry, timing, and continuity of the Rock Springs uplift, Wyoming, and Douglas Creek arch, Colorado: implications for uplift mechanisms in the Rocky Mountain foreland, USA. Rocky Mountain Geology 40:167-191. [CO, WY] Mellere, D. 1994. Sequential development of an estuarine valley fill: the Twowells Tongue of the Dakota Sandstone, Acoma Basin, New Mexico. Journal of Sedimentary Research B64:500-515. [NM] Mellere, D. 1996. Seminoe 3, a tidally influenced lowstand wedge and its relationships with subadjacent highstand and overlying transgressive deposits, Haystack Mountains Formation, Cretaceous Western Interior, Wyoming (USA). Sedimentary Geology 103:249-272. [WY] Mellere, D. and R. J. Steel. 1995. Facies architecture and sequentiality of nearshore and ‘shelf’ sandbodies; Haystack Mountains Formation, Wyoming, USA. Sedimentology 42:551-574. [WY] Mellere, D. and R. Steel. 2000. Style contrast between forced regressive and lowstand/transgressive wedges in the Campanian of south-central Wyoming (Hatfield Member of the Haystack Mountains Formation). In Sedimentary Responses to Forced Regressions. D. Hunt and R. L. Gawthorpe. Geological Society of London Special Publication 172:141-162. [WY] Merewether, E. A., W. A. Cobban, R. T. Ryder. 1975. Lower upper Cretaceous strata, Bighorn Basin, Wyoming and Montana. Wyoming Geological Association Guidebook, 27th Annual Field Conference, 73-84. [CO, WY] 297 Merewether, E. A. and G. E. Claypool. 1980. Organic composition of some upper Cretaceous shale, Powder River Basin, Wyoming. American Association of Petroleum Geologists Bulletin 64:488-500. [WY] Merewether, E. A., W. A. Cobban, and J. D. Obradovich. 2007. Regional disconformities in Turonian and Coniacian (upper Cretaceous) strata in Colorado, Wyoming, and adjoining states – biochronological evidence. Rocky Mountain Geology 42:95-122. [NM, WY] Meyers, P. A. and B. R. T. Simoneit. 1999. Effects of extreme heating on the elemental and isotopic compositions of an upper Cretaceous coal. Organic Geochemistry 30:299-305. [CO] Miall, A. D. 1993. The architecture of fluvial-deltaic sequences in the upper Mesaverde Group (upper Cretaceous), Book Cliffs, Utah. In Braided Rivers. J. L. Best and C. S. Bristow (eds.). Geological Society Special Publication 75:305-332. [CO, UT] Miall, A. D. and M. Arush. 2001. The Castlegate Sandstone of the Book Cliffs, Utah: sequence stratigraphy, paleogeography, and tectonic controls. Journal of Sedimentary Research 71:537-548. [CO, UT] Miller, C. N., Jr. 1987. Land plants of the northern Rocky Mountains before the appearance of flowering plants. Annals of the Missouri Botanical Garden 74:692-706. [CO, UT] Miller, F. X. 1977. Biostratigraphic correlation of the Mesaverde Group in southwestern Wyoming and northwestern Colorado. Rocky Mountain Association of Geologists Symposium, 117-137. [WY] Miller, D. N., Jr., J. A. Barlow Jr., and J. D. Haun. 1965. Stratigraphy and petroleum potential of latest Cretaceous rocks, Bighorn Basin, Wyoming. American Association of Petroleum Geologists Bulletin 49:277-285. [WY] 298 Milner, M. K., C. Johnson, and S. R. Bereskin. 2004. Interpretation of the Paleocene-Eocene sequence boundary, northwest San Juan Basin, New Mexico. The Mountain Geologist 42:11-22. [NM] Moiola, R. J., J. E. Welton, J. B. Wagner, L. B. Fearn, M. E. Farrell, R. J. Enrico, and R. J. Echols. 2004. Integrated analysis of the upper Ferron deltaic complex, southern Castle Valley, Utah. In Analog for Fluvial-Deltaic Reservoir Modeling: Ferron Sandstone of Utah. T. C. Chidsey Jr., R. D. Adams, and T. H. Morris (eds.). American Association of Petroleum Geologists Studies in Geology 50:79-92. [UT] Molenaar, C. M. 1974. Correlation of the Gallup Sandstone and associated formations, upper Cretaceous, eastern San Juan and Acoma Basins, New Mexico. New Mexico Geology Society Guidebook, 25th Field Conference, Ghost Ranch (Central-Northern, NM), 251-258. [NM] Molenaar, C. M. 1983. Major depositional cycles and regional correlations of upper Cretaceous rocks, southern Colorado Plateau and adjacent areas. Mesozoic Paleogeography of West-Central United States: SEPM Rocky Mountain Section, 201-223. [CO, NM] Molenaar, C. M., W. A. Cobban, E. A. Merewether, C. L. Pillmore, D. G. Wolfe, and J. M. Holbrook. 2002. Regional stratigraphic cross sections of Cretaceous rocks from east-central Arizona to the Oklahoma panhandle. United States Geological Survey Miscellaneous Field Studies Map MF-2382, pp. 6. [CO, NM] Monroe, W. H. 1947. Stratigraphy of outcropping Cretaceous beds of southeastern states. Bulletin of the American Association of Petroleum Geologists 31:1817-1824. [MS] Moreman, W. L. 1942. Paleontology of the Eagle Ford Group of north and central Texas. Journal of Paleontology 16:192-220. [TX] 299 Moutoux, J. J. 2000. Facies architecture and paleoenvironment of the Santonian Hosta-Dalton Sandstone at its pinchout, Hagan Basin, New Mexico. Master’s Thesis, University of Wyoming, pp. 125. [NM] Mudge, M. R. and R. A. Sheppard. 1968. Provenance of igneous rocks in Cretaceous conglomerates in northwestern Montana. United States Geological Survey Professional Paper 600-D, D137-D146. [MT] Myers, T. S. 2010. A new ornithocheirid pterosaur from the upper Cretaceous (Cenomanian-Turonian) Eagle Ford Group of Texas. Journal of Vertebrate Paleontology 30:280-287. [TX] Nadon, G. C. 1993. The association of anastomosed fluvial deposits and dinosaur tracks, eggs, and nests: implications for the interpretation of floodplain environments and a possible survival strategy for ornithopods. Palaios 8:31-44. [MT] Nelson, P. H. 2003. A review of the multiwall experiment, Williams Fork and Iles Formations, Garfield County, CO. USGS Uinta-Piceance Assessment Team, Petroleum Systems and Geologic Assessment of Oil and Gas in the Uinta-Piceance Province, Utah and Colorado, United States Geological Survey Digital Data Series DDS-69-B (CD-ROM), pp. 28. [CO] Newman, H. E., III. 1981. Greater Green River Basin stratigraphy as it relates to natural gas potential. Symposium on Low Permeability Gas Reservoir Proceedings, SPE/DOE 9845:177-192. [WY] Nichols, D. J. and S. R. Jacobson. 1982. Palynostratigraphic framework for the Cretaceous (Albian-Maastrichtian) of the Overthrust Belt of Utah and Wyoming. Palynology 6:119-147. [UT, WY] 300 Nichols, D. J. and A. R. Sweet 1993. Biostratigraphy of upper Cretacous non-marine palynofloras in a north-south transect of the Western Interior Basin. In Evolution of the Western Interior Basin. W. G. E. Caldwell and E. G. Kauffman (eds.). Geological Association of Canada Special Paper 39:539-584. [UT, MT] Nichols, D. J. and R. F. Fleming. 2002. Palynology and palynostratigraphy of Maastrichtian, Paleocene, and Eocene strata in the Denver Basin, Colorado. Rocky Mountain Geology 37:135-163. [CO] Nielsen, K. S., C. L. Schröder-Adams, D. A. Leckie, J. W. Haggart, and K. Elberdak. 2008. Turonian to Santonian paleoenvironmental changes in the Cretaceous Western Interior Sea: the Carlile and Niobrara formations in southern Alberta and southwestern Saskatchewan, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology 270:64-91. [MT] Nummedal, D. and C. M. Molenaar. 1995. Chapter 9: Sequence stratigraphy of ramp-setting strand plain successions: the Gallup Sandstone, New Mexico. In Sequence Stratigraphy of Foreland Basin Deposits. J. C. Van Wagoner, G. T. Bertram (eds.). American Association of Petroleum Geologists Memoir 64:277-310. [NM] Nummedal, D., N. R. Wolter, T. F. Fleming, I. Bersohn, D. J. P. Swift. 1993. Lowstand, shallow marine sandstones in upper Cretaceous strata of the San Juan Basin, New Mexico. In Evolution of the Western Interior Basin. W. G. E. Caldwell and E. G. Kauffman (eds.). Geological Association of Canada Special Paper 39:199-218. [NM] Nydam, R. L. and R. L. Cifelli. 2002. A new teiid lizard from the Cedar Mountain Formation (Albian—Cenomanian boundary) of Utah. Journal of Vertebrate Paleontology 22:276-285. [UT] 301 Oboh-Ikuenobe, F. E., D. G. Benson, R. W. Scott, J. M. Holbrook, M. J. Evetts, and J. Erbacher. 2007. Re-evaluation of the Albian-Cenomanian boundary in the US Western Interior based on dinoflagellate cysts. Review of Palaeobotany and Palynology 144:77-97. [MT, WY] Oheim, K. B. 2007. Fossil site prediction using geographic information systems (GIS) and suitability analysis: the Two Medicine Formation, MT, a test case. Palaeogeography, Palaeoclimatology, Palaeoecology 251-354-365. [MT] Olesen, J. 1991. Foraminiferal biostratigraphy and paleoecology of the Mancos Shale (upper Cretaceous), southwestern Black Mesa, Arizona. In Stratigraphy, depositional environments, and sedimentary tectonics of the western margin, Cretaceous Western Interior Seaway. J. D. Nations and J. G. Eaton (eds.). Geological Society of America Special Paper 260:153-166. [AZ] Olsen, T. R., D. Mellere, and T. Olsen. 1999. Facies architecture and geometry of landward-stepping shoreface tongues: the upper Cretaceous Cliff House Sandstone (Mancos Canyon, south-west Colorado). Sedimentology 46:603-625. [CO] O'Shea, C. 2009. Volcanic influence over fluvial sedimentation in the Cretaceous McDermott Member, Animas Formation, southwestern Colorado. Master’s Science, Bowling Green State University, pp.98. [CO] Page, H. G. and C. A. Repenning. 1958. Late Cretaceous stratigraphy of Black Mesa, Navajo and Hopi Indian Reservations, Arizona. New Mexico Geological Society Ninth Field Conference, 115-122. [AZ] Painter, S. C. 2009. The Shannon Sandstone: new observations and constraints applied to depositional models. Master’s Thesis, University of Wyoming, pp. 127. [WY] 302 Palmer, F. J. and A. J. Scott. 1984. Stacked shoreline and shelf sandstone of La Ventana Tongue (Campanian), northwestern New Mexico. American Association of Petroleum Geologists Bulletin 68:4-91. [CO, NM] Patrick, D., J. E. Martin, D. C. Parris, D. E. Grandstaff. 2004. Paleoenvironmental interpretations of rare earth element signatures in mosasaurs (reptilian) from the upper Cretaceous Pierre Shale, central South Dakota, USA. Palaeogeography, Palaeoclimatology, Palaeoecology 212:277-294. [ND, SD] Patrick, D. J. E. Martin, D. C. Parris, and D. E. Grandstaff. 2007. Rare earth element (REE) analysis of fossil vertebrates from the upper Cretaceous Pierre Shale Group for the purposes of paleobathymetric interpretations of the Western Interior Seaway. In Geology and Paleontology of the Late Cretaceous Marine Deposits of the Dakotas. J. E. Martin and D. C. Parris (eds.). Geological Society of American Special Paper 427:71-83. [ND] Pattison, S. A. J. 1995. Sequence stratigraphic significance of sharp-based lowstand shoreface deposits, Kenilworth Member, Book Cliffs, Utah. American Association of Petroleum Geologists Bulletin 79:444-462. [UT] Payenberg, T. H. D., D. R. Braman, D. W. Davis, and A. D. Miall. 2002. Litho- and chronostratigraphic relationships of the Santonian-Campanian Milk River Formation in southern Alberta and Eagle Formation in Montana utilizing stratigraphy, U-Pb geochronology, and palynology. Canadian Journal of Earth Sciences 39:1553-1577. [MT, WY] Payenberg, T. H. D., D. R. Braman, and A. D. Miall. 2003. Depositional environments and stratigraphic architecture of the Late Cretaceous Milk River and Eagle Formations, 303 southern Alberta and north-central Montana: relationships to shallow biogenic gas. Bulletin of Canadian Petroleum Geology 51:155-176. [MT, WY] Payne, D. F., K. Tuncay, A. Park, J. B. Comer, and P. Ortoleva. 2000. A reaction-transport-mechanical approach to modeling the interrelationships among gas generation, overpressuring, and fracturing: implications for the upper Cretaceous natural gas reservoirs of the Piceance Basin, Colorado. American Association of Petroleum Geologists Bulletin 84:545-565. [CO] Peppe, D. J., M. Erickson, and L. J. Hickey. 2007. Fossil leaf species from the Fox Hills Formation (upper Cretaceous: North Dakora, USA) and their paleogeographic significance. Journal of Paleontology 81:550-567. [ND] Perman, R. C. 1990. Depositional history of the Maastrichtian Lewis Shale in south-central Wyoming: deltaic and interdeltaic, marginal marine through deep-water marine, environments. American Association of Petroleum Geologists Bulletin 74:1695-1717. [WY] Pettijohn, F. J. 1957. Sedimentary Rocks, 2nd ed. Harper, New York, pp. 718. Phillips, P. L. Jr, G. A. Ludvigson, R. M. Joeckel, L. A. González, R. L. Brenner, and B. J. Witzke. 2007. Sequence stratigraphic controls on synsedimentary cementation and preservation of dinosaur tracks: example from the lower Cretaceous, (upper Albian) Dakota Formation, southeastern Nebraska, USA. Palaeogeography, Palaeoclimatology, Palaeoecology 246:367-389. [CO] Pitakpaivan, K. and J. E. Hazel. 1994. Ostracodes and chronostratigraphic position of the upper Cretaceous Arkadelphia Formation of Arkansas. Journal of Paleontology 68:111-222. [AL, AR] 304 Pittman, J. S., Jr. 1959. Silica in Edwards Limestone, Travis County, Texas. Silica in Sediments: A Symposium with Discussions. Tulsa Society of Economic Paleontologists and Mineralogists, 121-134. [TX] Powell, J. D. 1965. Late Cretaceous platform-basin facies, northern Mexico and adjacent Texas. American Association of Petroleum Geologists Bulletin 49:511-525. [TX] Pranter, M. J., R. D. Cole, H. Panjaitan, and N. K. Sommer. 2009. Sandstone-body dimensions in a lower coastal-plain depositional setting: lower Williams Fork Formation, Coal Canyon, Piceance Basin, Colorado. American Association of Petroleum Geologists Bulletin 93:1379-1401. [CO] Puckett, T. M. 1992. Distribution of ostracodes in the upper Cretaceous (Late Santonian through middle Maastrichtian) of Alabama and Mississippi. Gulf Coast Association of Geological Societies Transactions 42:613-631. [AL, MS] Puckett, T. M. 1996. Ecologic atlas of upper Cretaceous ostracodes of Alabama. Geological Survey of Alabama, Economic Geology Division, pp. 176. [AL] Puckett, T. M. 1997. The genus Krithe (Ostracoda) from the Campanian and Maastrichtian (upper Cretaceous) of the northern US Gulf Coastal Plain. Journal of Micropaleontology 16:145-157. [AL] Puckett, T. M. and E. A. Mancini. 2000. Microfossil characteristics of deposits of systems tracts in the upper Cretaceous strata of Mississippi and Alabama. Gulf Coast Association of Geological Societies Transactions 50:389-398. [AL, MS] Ravn, R. L. and B. J. Witzke. 1994. The mid-Cretaceous boundary in the Western Interior Seaway, central United States: implications of palynostratigraphy from the type Dakota Formation. In Perspectives on the Eastern Margin of the Cretaceous Western Interior 305 Basin. G. W. Shurr, G. A. Ludvigson, R. H. Hammond, (eds.). Geological Society of America Special Paper 287:111-128 [OK] Rice, D. D. 1980. Coastal and deltaic sedimentation of upper Cretaceous Eagle Sandstone: relation to shallow gas accumulations, north-central Montana. American Association of Petroleum Geologists Bulletin 64:316-338. [MT] Rice, D. D. 1984. Widespread, shallow-marine, storm-generated sandstone units in the upper Cretaceous Mosby Sandstone, central Montana. Siliciclastic Shelf Sediments, SEPM Special Publication 34:143-161. [MT] Rice, D. D. and W. A. Cobban. 1977. Cretaceous stratigraphy of the Glacier National Park area, northwestern Montana. Bulletin of Canadian Petroleum Geology 25:828-841. [MT] Rice, D. D. and G. W. Shurr. 1980. Shallow, low-permeability reservoirs of northern Great Plains – assessment of their natural gas resources. American Association of Petroleum Geologists Bulletin 64:969-987. [MT, WY] Ridgeley, J. 2000. Sequence stratigraphic analysis and facies architecture of the Cretaceous Mancos Shale on and near the Jicarilla Apache Indian Reservation, New Mexico – their relation to sites of oil accumulation. United States Geological Survey Combined Final Technical Report on Mancos Shale Phase 1 and Phase 2, pp. 97. [NM] Rich, E. I. 1958. Stratigraphic relation of latest Cretaceous rocks in parts of Powder River, Wind River, and Big Horn Basins, Wyoming. American Association of Petroleum Geologists Bulletin 42:2424-2443. [WY] Roberts, E. M., A. L. Deino, and M. A. Chan. 2005. 40Ar/39Ar age of the Kaiparowits Formation, southern Utah, and the correlation of contemporaneous Campanian strata and vertebrate 306 faunas along the margin of the Western Interior Basin. Cretaceous Research 26:307-318. [MT, NM, TX, UT, WY] Robinson, C. S., W. J. Mapel, and W. A. Cobban. 1959. Pierre Shale along western and northern flanks of Black Hills, Wyoming and Montana. American Association of Petroleum Geologists Bulletin 43:101-123. [MT, WY] Robinson, E. D. 2005. Facies architecture of the upper Sego Member of the Mancos Shale Formation, Book Cliffs, Utah. Master’s Thesis, Texas A&M University, pp. 60. [CO, UT] Robinson, R. A. and R. L. Slingerland. 1998. Grain-size trends, basin subsidence and sediment supply in the Campanian Castlegate Sandstone and equivalent conglomerates of central Utah. Basin Research 10:109-127. [CO, UT] Rogers, R. R. and M. E. Brady. 2010. Origins of microfossil bonebeds: insights from the upper Cretaceous Judith River Formation of north-central Montana. Paleobiology 36:80-112. [MT] Rogers, R. R., H. C. Fricke, V. Addona, R. R. Canavan, C. N. Dwyer, C. L. Harwood, A. E. Koenig, R. Murray, J. T. Thole, and J. Williams. 2010. Using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to explore geochemical taphonomy of vertebrate fossils in the upper Cretaceous Two Medicine and Judith River Formations of Montana. Palaios 25:183-195. [MT] Ross, J. E. and R. F. Maddocks. 1983. Recurrent species associations and species diversity of cytheracean ostracodes in the upper Austin and lower Taylor Groups (Campanian, upper Cretaceous) of Travis County, Texas. Gulf Coast Association of Geological Societies Transactions 33:397-406. [TX] 307 Rowe, T., R. L. Cifelli, T M. Lehman, and W. Weil. 1992. The Campanian Terlingua local fauna, with a summary of other vertebrates from the Aguja Formation, Trans-Pecos Texas. Journal of Vertebrate Paleontology 12:472-493. [TX] Russell, L. S. 1930. Upper Cretaceous dinosaur faunas of North America. Proceedings of the American Philosophical Society 69:133-159. [MT] Russell, L. S. 1950. Correlation of the Cretaceous-Tertiary transition in Saskatchewan and Alberta. Geological Society of America Bulletin 61:27-42. [MT] Ryer, T. A. 1977. Patterns of Cretaceous shallow-marine sedimentation, Coalville and Rockport areas, Utah. Geological Society of America Bulletin 88:177-188. [UT] Ryer, T. A. 1981. Deltaic coals of Ferron Sandstone Member of Mancos Shale: predictive model for Cretaceous coal-bearing strata of Western Interior. American Association of Petroleum Geologists Bulletin 65:2323-2340. [UT] Ryer, T. A. 1983. Transgressive-regressive cycles and the occurrence of coal in some upper Cretaceous strata of Utah. Geology 11:207-210. [UT] Ryer, T. A. 1991. Stratigraphy, facies, and depositional history of the Ferron Sandstone in the canyon of Muddy Creek east-central Utah. Utah Geological Association Publication 19:45-54. [UT] Ryer, T. A. 1993. Speculations on the origins of mid-Cretaceous clastic wedges, central Rocky Mountain region, United States. In Evolution of the Western Interior Basin. W. G. E. Caldwell and E. G. Kauffman (eds). Geological Association of Canada Special Paper 39:189-198. [UT, WY] 308 Sadeque, J. 2006. Regional reservoir compartmentalization within offlapping, top-truncated, mixed-influenced deltas, Wall Creek Member, Frontier Formation, Powder River Basin, Wyoming. Doctoral Dissertation, University of Texas—Dallas, pp. 158. [WY] Sageman, B. B. 1996. Lowstand tempestites: depositional model for Cretaceous skeletal limestones, Western Interior Basin. Geology 24:888-892. [AZ, CO, KS, NM, UT] Salisbury, R. D. 1895. [untitled]. The Journal of Geology 3:101-108. [AL, MS] Savrda, C. E. and L. L. Nanson. 2003. Ichnology of fair-weather and storm deposits in an upper Cretaceous estuary (Eutaw Formation, western Georgia, USA). Palaeogeography, Palaeoclimatology, Palaeoecology 202:67-83. [AL] Savrda, C. E., R. E. Locklair, J. K. Hall, M. T. Sadler, M. W. Smith, and J. D. Warren. 1998. Ichnofabrics, ichnocoenoses, and ichnofacies implications of an upper Cretaceous tidal-inlet sequence (Eutaw Formation, central Alabama). Ichnos 6:53-74. [AL] Schemel, M. P. 1950. Cretaceous plant microfossils from Iowa. American Journal of Botany 37:750-754. [IA, CO] Scherzer, B. A. and D. A. Varricchio. 2010. Taphonomy of a juvenile lambeosaurine bonebed from the Two Medicine Formation (Campanian) of Montana, United States. Palaios 25:780-795. [MT] Schmitt, J. G. and J. R. Steidtmann. 1990. Interior ramp-supported uplifts: implications for sediment provenance in foreland basins. Geological Society of America Bulletin 102:494-501. [WY] Schultz, L. G., H. A. Tourtelot, and F. J. Flanagan. 1976. Descriptions and analyses of eight new usgs rock standards: Cody Shale, SCo-1, from Natron County, Wyoming. Geological Survey Professional Paper 840:21-23. [WY] 309 Schumacher, B. A. 2008. On the skull of a pliosaur (Plesiosauria; Pliosauridae) from the Cretaceous (Early Turonian) of the North American Western Interior. Transactions of the Kansas Academy of Science 111:203-218. [KS] Schumacher, B. A. and M. J. Everhart. 2005. A stratigraphic and taxonomic review of plesiosaurs from the old “Fort Benton Group” of central Kansas: a new assessment of old records. Paludicola 5:33-54. [CO, KS, NM] Schwimmer, D. R., G. D. Williams, J. L. Dobie, and W. G. Siesser. 1993. Late Cretaceous dinosaurs from the Blufftown Formation in western Georgia and eastern Alabama. Journal of Paleontology 67:288-296. [AL] Scott, R. W. 1970. Stratigraphy and sedimentary environments of lower Cretaceous Rocks, southern Western Interior. American Association of Petroleum Geologists Bulletin 54:1225-1244. [CO] Scott., R. W. 1977. Paleobiology of lower Cretaceous carditid bivalves, North America. Journal of Paleontology 51:1150-1160. [TX] Scott, R. W., J. M. Holbrook, F. E. Oboh-Ikuenobe, M. J. Evetts, D. G. Benson, B. S. Kues. 2004. Middle Cretaceous stratigraphy, southern Western Interior Seaway, New Mexico and Oklahoma. The Mountain Geologist 41:33-61. [NM] Seager, W. R., G. H. Mack, and T. F. Lawton. 1997. Structural kinematics and depositional history of a Laramide uplift-basin pair in southern New Mexico: implications for development of intraforeland basins. [NM] Secord, R. 1998. Paleocene mammalian biostratigraphy of the Carbon Basin, southeastern Wyoming, and age constraints on local phases of tectonism. Rocky Mountain Geology 33:119-154. [WY] 310 Seidler, L. and R. Steel. 2001. Pinch-out style and position of tidally influenced strata in a regressive-transgressive wave-dominated deltaic sandbody, Twentymile Sandstone, Mesaverde Group, NW Colorado. Sedimentology 48:399-414. [CO] Serbeck, J. W. 1981. Foraminiferal paleoecology of the Sage Breaks Shale, Centennial Valley, Wyoming. Master’s Thesis, University of Wyoming, pp. 147. [WY] Sethi, P. S., R. E. Hannigan, and E. L. Leithold. 1998. Rare-earth element chemistry of Cenomanian-Turonian shales of the North American Greenhorn Sea, Utah. Shales and Mudstones, Volume II: Petrography, Petrophysics, Geochemistry, and Economic Geology. E. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, 195-208. [UT] Sethi, P. S. and E. L. Leithold. 1994. Climatic cyclicity and terrigenous sediment influx to the early Turonian Greenhorn sea, southern Utah. Journal of Sedimentary Research B64:26-39. [UT] Sethi, P. S. and E. L. Leithold. 1997. Recurrent depletion of benthic oxygen with 4th-order transgressive maxima in the Cretaceous Western Interior Seaway. Palaeogeography, Palaeoclimatology, Palaeoecology 128:39-61. [KS, MT, SD, UT] Shanley, K. W. and P. J. McCabe. 1991. Predicting facies architecture through sequence stratigraphy – an example from the Kaiparowits Plateau, Utah. Geology 19:742-745. [UT] Shanley, K. W. and P. J. McCabe. 1995. Sequence stratigraphy of Turonian—Santonian strata, Kaiparowits Plateau, southern Utah, USA: implications for regional correlation and foreland basin evolution. American Association of Petroleum Geologists Memoir 64:103-136. [AZ, NM, UT] 311 Shaver, R. H. 1985. Midwestern basin and arches region. In Stratigraphic Units of North America (COSUNA) Project. F. A. Lindberg (ed). American Association of Petroleum Geologists. [TN, AL] Shaw, N. G. 1967. Cheilostomata from Gulfian (upper Cretaceous) rocks of southwestern Arkansas. Journal of Paleontology 41:1393-1432. [AR, OK] Shelton, J. W. 1965. Trend and genesis of lowermost sandstone unit of Eagle Sandstone at Billings, Montaina. American Association of Petroleum Geologists Bulletin 49:1385-1397. [MT, WY] Shimada, K. C. K. Rigsby, and S. H. Kim. 2009. Partial skull of Late Cretaceous durophagous shark, Ptychodus occidentalis (Elasmobranchii: Ptychodontidae), from Nebraska, USA. Journal of Vertebrate Paleontology 29:336-349. [NE] Shurr, G. W., G. A. Ludvigson, and R. H. Hammond. 1994. Introductory remarks: perspectives on the eastern margin of the Cretaceous Western Interior Seaway. In Perspectives on the Eastern Margin of the Cretaceous Western Interior Basin. G. W. Shurr, G. A. Ludvigson, and R. H. Hammond (eds.). Geological Society of America Special Paper 287:1-4. [AL, KS, IA, SD, ND, MT] Simmons, G. C. 1957. Contact of Burro Canyon Formation with Dakota Sandstone, Slick Rock District, Colorado, and correlation of Burro Canyon Formation. American Association of Petroleum Geologists Bulletin 41:2519-2529. [CO, UT] Siverson, M., J. Lindgren, and L. S. Kelley. 2007. Anacoracid sharks from the Albian (lower Cretaeous) Pawpaw Shale of Texas. Palaeontology 50:939-950. [TX] Sixsmith, P. J., G. J. Hampson, S. Gupta, H. D. Johnson, and J. F. Fofana. 2008. Facies architecture of a net transgressive sandstone reservoir analog: the Cretaceous Hosta 312 Tongue, New Mexico. American Association of Petroleum Geologists Bulletin 92:513-547. [NM] Snedden, J. W. 1991. Origin and sequence stratigraphic significance of large dwelling traces in the Escondido Formation (Cretaceous, Texas, USA). Palaios 6:541-552. [TX] Spielman, J. A. and S. G. Lucas. 2006. Late Cretaceous marine reptiles (Mosasauridae and Plesiosauria) from New Mexico and their biostratigraphic distribution. New Mexico Museum of Natural History and Science Bulletin 35:217-222. [NM] Stephenson, L. W. and J. B. Reeside, Jr. 1938. Comparison of upper Cretaceous deposits of Gulf Region and Western Interior Region. Bulletin of the American Association of Petroleum Geologists 22:1629-1638. [AL, AR, CO, IA, KS, MS, MT, ND, NE, SD, TX, UT, WY] Stephenson, L. W. and W. H. Monroe. 1938. Stratigraphy of upper Cretaceous series in Mississippi and Alabama. Bulletin of the American Association of Petroleum Geologists. 22:1638-1657. [MS] Stockey, R. A., G. W. Rothwell, and K. R. Johnson. 2007. Cobbania corrugata gen. et comb. Nov. (Araceae): a floating aquatic monocot from the upper Cretaceous of western North America. American Journal of Botany 94:609-624. [WY] Stoffer, P. W. 2003. Geology of Badlands National Park: a preliminary report. United States Geological Survey Open-File Report 03-35, pp. 65. [ND, SD] Summesberger, H. M. Machalski, and M. Wagreich. 2007. First record of the Late Campanian heteromorphy ammonite Nostoceras hyatti from the Alpine Cretaceous (Grunbach, Gosau Group, Lower Austria) Acta Geologica Polonica 57:443-451. [AR] Sweeney, I. J., K. Chin, J. C. Hower, D. A. Budd, D. G. Wolfe. 2009. Fossil wood from the middle Cretaceous Moreno Hill Formation: unique expressions of wood mineralization 313 and implications for the processes of wood preservation. International Journal of Coal Geology 79:1-17. [NM] Swezey, C. S. and E. C. Sullivan. 2004. Straatigraphy and sedimentology of the upper Cretaceous (Campanian) Anacacho Limestone, Texas, USA. Cretaceous Research 25:473-497. [TX] Swift, D. J P., J. A. Thorne, and D. Nummedal. 1985. Sequence stratigraphy in foreland basins: inferences from the Cretaceous Western Interior. 17th Annual Offshore Technology Conference Proceedings 1:47-54. [MT, WY] Talling, P. J., T. F. Lawton, D. W. Burbank, and R. S. Hobbs. 1995. Evolution of latest Cretaceous-Eocene nonmarine deposystems in the Axhandle piggyback basin of central Utah. Geological Society of America Bulletin 107-297-315. [UT] Tappan, H. 1943. Foraminifera from the Duck Creek Formation of Oklahoma and Texas. Journal of Paleontology 17:476-517. [TX, OK] Taylor, K. G., J A. (Toni) Simo, D. Yocum, and D. A. Leckie. 2002. Stratigraphic significance of ooidal ironstones from the Cretaceous Western Interior Seaway: the Peace River Formation, Alberta, Canada, and the Castlegate Sandstone, Utah, USA. Journal of Sedimentary Research 72:316-327. [UT] Thomas, J. B. 1978. Diagenetic sequences in low-permeability argillaceous sandstones. Journal of the Geological Society of London 135:93-99. [MT, WY] Tibert, N. E., J.-P. Colin, and R. M. Leckie. 2009. Taxonomy, biostratigraphy, and paleoecology of Cenomanian and Turonian ostracodes from the Western Interior Basin, southwest Utah, USA. Revue de micropaléontologie 52:85-105. [AZ, CO, KS, MT, ND, SD, UT, WY] 314 Tillman, R. W. and W. R. Almon. 1979. Diagenesis of Frontier Formation offshore bar sandstones, Spearhead Ranch Field, Wyoming. SEPM Special Publication 26:337-378. [WY] Tomasso, M., R. Bouroullec, and D. R. Pyles. 2010. The use of spectral recomposition in tailored forward seismic modeling of outcrop analogs. American Association of Petroleum Geologists Bulletin 94:457-474. [WY] Toolson, E. K. and B. S. Kues. 1996. Decapod crustaceans from the Semilla Sandstone Member, Mancos Shale (upper Cretaceous). Journal of Paleontology 70:111-116. [NM] Trevino, R. H., R. G. Loucks, J. F. W. Gale, and A. K. Abdelmoniem. 2007. Extending facies interpretations by integrating core, image-log, and wireline-log data in the upper Cretaceous Olmos Formation of south Texas. Gulf Coast Association of Geological Societies Transactions 57:729-736. [TX] Tucker, D. R. and D. P. Hencey 1987. Mini-shelves in the Taylor Shale: stratigraphy of the Late Cretaceous and early Tertiary units of Bastrop County, Texas. Gulf Coast Association of Geological Societies Transactions 37:263-276. [TX] Tysdal, R. G. and D. J. Nichols. 1991. Chapter B: Biostratigraphic correlation of Santonian and Campanian Formations in the northwestern part of Yellowstone National Park, and the Madison Range and Livingston area of southwestern Montana. In Contributions to Late Cretaceous Stratigraphy and Paleontology, Western Montana. United States Geological Survey 1962:11-19. [WY] Tysdal, R. G., R. F. Marvin, and E. DeWitt. 1986. Late Cretaceous stratigraphy, deformation, and intrustion in the Madison Range of southwestern Montana. Geological Society of America Bulletin 97:859-868. [WY] 315 United States Geological Survey Geologic Map Database: http://ngmdb.usgs.gov. [AZ, CO, IA, MT, ND, NM, OK, SD, TX, UT, WY] Uroza, C. A. 2008. Processes and architecture of deltas in shelf-break and ramp platforms: examples from the Eocene of west Spitsbergen (Norway), the Pliocene Paleo-Orinoco Delta (SE Trinidad), and the Cretaceous Western Interior Seaway (S Wyoming and NE Utah). Doctoral Dissertation, University of Texas at Austin, pp. 262. [CO, WY] Vakarelov, B. K. and J. P. Bhattacharya. 2009. Local tectonic control on parasequence architecture: second Frontier sandstone, Powder River Basin, Wyoming. American Association of Petroleum Geologists Bulletin 93:295-327. [WY] Valasek, D. 1995. Chapter 11: The Tocito Sandstone in a sequence stratigraphic framework: an example of landward-stepping small-scale genetic sequences. American Association of Petroleum Geologists Memoir 64:349-369. [NM] Vermeij, G. J., and E. C. Dudley. 1982. Shell repair and drilling in some gastropods from the Ripley Formation (upper Cretaceous) of the southeastern USA. Cretaceous Research 3:397-403. [AL, MS, TN] Vuke, S. M. 2000. Geologic map of the Great Falls South 30’ x 60’ Quadrangle. Montana Bureau of Mines and Geology Open File Report MBMG 407, pp. 19. [MT] Waggoner, K. J. 2006. Sutural form and shell morphology of Placenticeras and systematic descriptions of Late Cretaceous ammonites from the Big Bend region, Texas. Doctoral Dissertation, Texas Tech University, pp. 414. [AR, TX, OK] Wagner, J. R. 2001. The hadrosaurian dinosaurs (Ornithischia: Hadrosauria) of Big Bend National Park, Brewster County, Texas, with implications for Late Cretaceous Paleozoogeography. Master’s Thesis, Texas Tech University, pp. 452. [TX] 316 Wagner, J. R. and T. M. Lehman 2009. An enigmatic Lambeosaurine hadrosaur (Reptilia: Dinosauria) from the Upper Shale Member of the Campanian Aguja Formation of Trans-Pecos Texas. Journal of Vertebrate Paleontology 29:605-611. [TX] Walker, R. G. and K. M. Bergman. 1993. Shannan Sandstone in Wyoming: a shelf-ridge complex reinterpreted as lowstand shoreface deposits. Journal of Sedimentary Petrology 63:839-851. [WY] Wallace, C. A., D. J. Lidke, and R. G. Schmidt. 1990. Faults of the central part of the Lewis and Clark line and fragmentation of the Late Cretaceous foreland basin in west-central Montana. American Association of Petroleum Geologists Bulletin 102:1021-1037. [MT] Warner, D. L. 1964. Mancos-Mesaverde (upper Cretaceous) intertonguing relations southeast Piceance Basin, Colorado. American Association of Petroleum Geologists Bulletin 48:1091-1107. [CO, UT] Weimer, R. J. 1960. Upper Cretaceous stratigraphy, Rocky Mountain area. American Association of Petroleum Geologists Bulletin 44:1-20. [CO] Whetstone, K. N. and J. S. H. Collins. 1982. Fossil crabs (Crustacea: Decapoda) from the upper Cretaceous Eutaw Formation of Alabama. Journal of Paleontology 56:1218-1222. [AL] White, C. A. 1887. On the Cretaceous formations of Texas and their relation to those of other portions of North America. Proceedings of the Academy of Natural Sciences of Philadelphia 39:39-47. [AL, MS] Williamson, T. E. 1996. ?Brachychampsa sealetyi, sp. nov., (Crocodylia, Alligatoroidea) from the upper Cretaceous (Lower Campanian) Menefee Formation, northwestern New Mexico. Journal of Vertebrate Paleontology 16:421-431. [CO, NM] 317 Williamson, T. E. and S. G. Lucas. 1990. Late Cretaceous vertebrates from the Mulatto Tongue of the Mancos Shale, central New Mexico. New Mexico Journal of Science 30:27-34. [NM] Williamson, T. E., B. S. Kues, G. S. Weissmann, T. A. Stidham, and S. L. Yurchyk. 2009. A feather from the upper Cretaceous (Lower Campanian) Point Lookout Sandstone, San Juan Basin, northwestern New Mexico. Cretaceous Research 30:547-550. [CO, KS, NM] Willis, B. J. and S. Gabel. 2001. Sharp-based, tide-dominated deltas of the Sego Sandstone, Book Cliffs, Utah, USA. Sedimentology 48:479-506. [CO, UT] Willis, B. J. and S. L. Gabel. 2003. Formation of deep incisions into tide-dominated river deltas: implications for the stratigraphy of the Sego Sandstone, Book Cliffs, Utah, USA. Journal of Sedimentary Research 73:246-263. [UT] Willis, B. J., J. P. Bhattacharya, S. L. Gabel, and C. D. White. 1999. Architecture of a tide-influenced river delta in the Frontier Formation of central Wyoming, USA. Sedimentology 46:667-688. [UT, WY] Wilson, L. E. 2006. Comparative taphonomy and paleoecological reconstruction of two microvertebrate accumulations from the Late Cretaceous (Maastrichtian) Hell Creek Formation, eastern Montana. Master’s Thesis, Montana State University, pp. 116. [MT, ND] Wilson, M. S., T. S. Dyman, V. F. Nuccio. 2001. Potential for deep basin-centered gas accumulation in Hanna Basin, Wyoming. United States Geological Survey Bulletin 2184-A, pp. 16. [WY] 318 Wiltschko, D. V. and J. A. Dorr Jr. 1983. Timing of deformation in overthrust belt and foreland of Idaho, Wyoming, and Utah. American Association of Petroleum Geologists Bulletin 67:1304-1322. [UT, WY] Winn, R. D., Jr. 1989. Storm deposition in marine sand sheets: Wall Creek Member, Frontier Formation, Powder River Basin, Wyoming. Journal of Sedimentary Petrology 61:86-101. [WY] Wolberg, D. L. 1985a. Selachians from the Atarque Sandstone Member of the Tres Hermanos Formation (upper Cretaceous: Turonian), Sevilleta Grant near La Joya, Socorro County, New Mexico. New Mexico Bureau of Mines and Mineral Resources Circular 195:7-19. [NM] Wolberg, D. L. 1985b. Contributions to Late Cretaceous paleontology and stratigraphy of New Mexico Vol. 195. New Mexico Bureau of Mineral Resources. [NM] Wolfe, D. G., J. I. Kirkland, D. Smith, K. Poole, B. Chinnery-Allgeier, A. McDonald. 2010. Zuniceratops christopheri: the North American ceratopsid sister taxon reconstructed on the basis of new data. In New Perspectives on Horned Dinosaurs: The Royal Tyrrell Museum Ceratopsian Symposium. M. J. Ryan, B. J. Chinnery-Allgeier, and D. A. Eberth (eds.). Indiana University Press, Bloomington, 91-98. [NM] Wolfe, D. G. 1995. The paleoenvironments of Cretaceous rocks in east-central Arizona. Proceedings of the Third Annual Fossils of Arizona Symposium Proceedings, 81-84. [NM] Wolfe, J. A. and G. R. Upchurch Jr. 1987. Leaf assemblages across the Cretaceous-Tertiary boundary in the Raton Basin, New Mexico and Colorado. Proceedings of the National Academy of Sciences USA 84:5096-5100. [CO, NM] 319 Wright, R. 1986. Cycle stratigraphy as a paleogeographic tool: Point Lookout Sandstone, southeastern San Juan Basin, New Mexico. Geological Society of America Bulletin 96:661-673. [NM] Wroblewski, A. F.-J. 2004. New selachian paleofaunas from “fluvial” deposits of the Ferris and lower Hanna Formations (Maastrichtian-Selandian: 66-58 Ma), southern Wyoming. Palaios 19:249-258. [WY] Yang, Y. 2011. Tectonically-driven underfilled-overfilled cycles, the middle Cretaceous in the northern Cordilleran foreland basin. Sedimentary Geology 233:15-27. [MT] Yang, Y. and A. D. Miall. 2009. Evolution of the northern Cordilleran foreland basin during the middle Cretaceous. Geological Society of America Bulletin 121:483-501. [SD, WY] Yang, Y. and A. D. Miall. 2010. Migration and stratigraphic fill of an underfilled foreland basin: middle-late Cenomanian Belle Fourche Formation in southern Alberta, Canada. Sedimentary Geology 227:51-64. [MT] York, C. C., C. S. Painter, and B. Carrapa. 2011. Sedimentological characterization of the Sego Sandstone (NW Colorado, USA): a new scheme to recognize ancient flood-tidal-delta deposits and implications for reservoir potential. Journal of Sedimentary Research 81:401-419. [CO, UT] Yoshida, S. 2000. Sequence and facies architecture of the upper Blackhawk Formation and the lower Castlegate Sandstone (upper Cretaceous), Book Cliffs, Utah, USA. Sedimentary Geology 136:239-276. [UT] Young, K. 1951. Foraminifera and stratigraphy of the Frontier Formation (upper Cretaceous), southern Montana. Journal of Paleontology 25:35-68. [CO, MT] 320 Young, K. 1957. Cretaceous ammonites from eastern Apache County, Arizona. Journal of Paleontology 31:1167-1174. [AZ] Young, K. 1958. Cenomanian (Cretaceous) ammonites from Trans-Pecos Texas. Journal of Paleontology 32:286-294. [TX] Young, K. 1986. Cretaceous, marine inundations of the San Marcos Platform, Texas. Cretaceous Research 7:117-140. [TX] Young, R. G. 1960. Dakota Group of Colorado Plateau. American Association of Petroleum Geologists Bulletin 44:156-194. [NM, UT] Young, K. and E. Marks. 1952. Zonation of upper Cretaceous Austin Chalk and Burditt Marl, Williamson County, Texas. American Association of Petroleum Geologists Bulletin 36:477-488. [TX]