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ABSTRACT 

FADS1 and FADS2 encode the rate-limiting enzymes responsible for arachidonic 

acid (ARA) and docosahexaenoic acid (DHA) synthesis.  Single nucleotide 

polymorphisms (SNPs) in FADS1 and FADS2 influence the proportion of blood lipid and 

breast milk DHA, and breastfeeding confers an IQ-point advantage to children carrying 

the major allele for a SNP in FADS2.  Previous studies have not examined the interaction 

between FADS genotypes and DHA supplementation, controlled for maternal DHA 

status to isolate the effect of FADS SNPs on breast milk DHA, or established whether 

maternal FADS genotypes influence infant cognition.  This series of studies aimed to (1) 

elucidate the effect of DHA supplementation and FADS1 rs174553 and FADS2 rs174575 

genotypes on red blood cell (RBC) ARA and DHA in a cohort of pregnant women, (2) 

determine if SNPs in maternal FADS1 and FADS2 influence the proportion of breast-

milk DHA after controlling for the proportion of DHA in maternal RBCs, and (3) 

determine if toddler performance on the Bayley Scales of Infant Development Mental 

Development Index (BSID MDI) at 18 months is predicted by either maternal or child 

genotype in breastfed and formula-fed infants.  The study population consisted of a 

subset of women enrolled in an NICHD-funded Phase-III clinical trial designed to 

determine the effects of consuming 600 mg/day of DHA throughout gestation on 

maternal and infant/toddler outcomes.  Women provided blood and breast-milk samples 

the morning after and six weeks following parturition, respectively.  Milk- and RBC-

DHA were quantified by gas chromatography in comparison with weighed standards.  

Genomic DNA was extracted from buccal collection brushes, and genotyping performed 
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with TaqMan SNP Genotyping Assays.  MDI was assessed at 18 months of age.  FADS1 

minor allele homozygotes had a lower proportion of RBC-ARA and DHA than major-

allele carriers (P ≤ 0.027) at enrollment.  At delivery, minor allele homozygotes in the 

placebo group had a lower RBC-DHA than major-allele carriers (P ≤ 0.031), whereas 

women in the treatment group had similar RBC-DHA regardless of genotype (P = 0.941).  

Both FADS minor alleles were related to lower ARA among women assigned to the 

treatment group (P ≤ 0.029).  RBC-ARA was not reduced in major allele homozygotes (P 

= 0.899).  The concentration of breast-milk DHA was higher among women assigned to 

the treatment group than those assigned to the placebo (P < 0.001).  However, when 

controlling for RBC-DHA to eliminate the influence of DHA supplementation and 

dietary intake, FADS2 minor allele homozygotes had a lower proportion of breast-milk 

DHA than major-allele carriers (P = 0.033).  MDI was not related to maternal FADS1 or 

FADS2 genotypes.  Finally, breastfed (but not formula-fed) infants carrying two copies 

of the FADS2 minor allele had a lower MDI at 18 months than major allele carriers (P = 

0.007).  Together, these results suggest that DHA supplementation compensates for the 

lower proportion RBC-DHA observed among FADS1 minor-allele homozygotes, but 

exaggerates the supplementation-associated reduction in RBC-ARA among FADS minor-

allele carriers.  They support the hypothesis that polymorphisms in FADS2 affect DHA in 

breast milk and confirm the previous observation that the FADS2 rs174575 genotype of 

the infant moderates the association between breastfeeding and a measure of cognition.   

 

 



v 

 

ACKNOWLEDGMENTS 

I thank Dr. Susan Carlson (advisor), Dr. John Colombo, Dr. Byron Gajewski, Dr. Debra 

Sullivan, and Dr. Hao Zhu for serving on my dissertation committee and guiding me 

through my Ph.D. training.  I thank Elizabeth Kerling, Jocelynn Thodosoff, and Jill 

Shaddy for conducting the clinical research and Shengqi Li for performing the fatty acid 

analyses.  I thank Dr. Jianghua Lu for her instruction on genotyping technology and Dr. 

Russell Swerdlow for allowing me to use his instrumentation.  I thank all of the families 

that participated in the Kansas University DHA Outcomes Study.  Finally, I thank my 

husband, Gregory Scholtz for all his love and support as I completed my doctoral degree. 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 

 

TABLE OF CONTENTS 

Acceptance Page ii 

Abstract iii 

Acknowledgements v 

Table of Contents vi 

Chapter One: Introduction 1 

Long Chain Polyunsaturated Fatty Acids 2 

Importance of DHA and ARA in Fetal Development and Infant Cognition 3 

Placental Transfer of DHA and ARA 5 

Endogenous Synthesis of DHA and ARA 7 

Importance of the Fatty Acid Desaturase Genes: FADS1 and FADS2 10 

Purpose of Dissertation 12 

Chapter Two: Docosahexaenoic Acid (DHA) Supplementation Differentially 

Modulates Arachidonic Acid and DHA Status across FADS Genotypes in Pregnancy 13 

 Abstract 14 

 Introduction 15 

 Subjects and Methods 16 



vii 

 

 Results 22 

 Discussion 28 

Chapter Three: FADS2 Gene Variant Influences the Proportion of Docosahexaenoic 

Acid (DHA) in Human Milk 32 

 Abstract 33 

 Introduction 35 

 Subjects and Methods 36 

 Results 40 

 Discussion 46 

Chapter Four:  FADS2 rs174575 Genotype Moderates the Association between Infant 

Feeding and a Measure of Developmental Status 48 

 Abstract 49 

 Introduction 50 

 Subjects and Methods 51 

 Results 56 

 Discussion 63 

Chapter Five: Discussion and Conclusion 66 



viii 

 

 Summary of Findings 67 

 Clinical Implications 69 

 Limitations 71 

 Future Directions 72 

 Conclusions 73 

References 74 

Appendices:  

 A: Procedure for the Collection of Buccal Cells 91 

 B: DNA Purification from a Buccal Brush 94 

 C: Preparation of Reaction Mix and Plate Using Wet DNA Delivery Method 98 

 D: PCR Protocol for FADS2 SNP rs174575 and rs174553 Genotyping 101



1 

 

 

 

 

 

 

CHAPTER ONE: 

 

INTRODUCTION 

 

 

 

 

 

 

 

 

 

 

 

 

 



2 

 

LONG CHAIN POLYUNSATURATED FATTY ACIDS 

 Polyunsaturated fatty acids (PUFAs) are essential constituents of all biological 

systems.  They serve as critical components of cellular membranes and regulate multiple 

physiological processes.  During critical periods of development, dietary-induced 

perturbations in PUFA homeostasis and metabolism have been linked to alterations in 

neurotransmitter systems (1), abnormalities in inflammatory (2) and synaptic (3) 

signaling, and neurocognitive deficits (4).  In addition, a growing body of evidence 

suggests that the composition of PUFAs in blood and tissue phospholipids is implicated 

in the pathophysiology of several diseases, including coronary heart disease (5), hepatic 

steatosis (6), rheumatoid arthritis (7), and psychiatric disorders such as major depression, 

bipolar disorder, and schizophrenia (8-10).    

 The effects of PUFAs on the aforementioned conditions are thought to be 

mediated primarily by long-chain polyunsaturated fatty acids (LC-PUFAs) (11, 12), 

lipids with at least 20 carbon atoms and 3 double bonds, such as arachidonic acid (ARA; 

20:4n-6) and docosahexaenoic acid (DHA; 22:6n-3).  Humans are not able to synthesize 

fatty acids with double bonds located 3 (n−3) or 6 (n−6) carbon atoms from the methyl 

terminus.  Thus, LC-PUFAs must be provided directly by the diet or via their essential 

dietary precursors, α-linolenic acid (ALA, 18:3n−3) and linoleic acid (LA, 18:2n−6).  

LC-PUFAs modulate the integrity and fluidity of cell membranes (13), act as 

second messengers in intracellular signaling pathways (14, 15), regulate gene 

transcription of proteins involved in lipid metabolism (16-20), and serve as precursors for 

the synthesis of prostaglandins, thromboxanes, and leukotrienes (21).  During 
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development, an adequate concentration of LC-PUFAs in neuronal cell membranes is 

essential for efficient neurogenesis (22), neurite outgrowth (23), myelination (24), 

dendritic maturation (25), and neurotransmission (26). 

 

IMPORTANCE OF DHA AND ARA IN FETAL DEVELOPMENT AND INFANT COGNITION 

DHA and ARA are arguably the most important LC-PUFAs in animals.  While 

they serve numerous essential functions throughout the lifespan (27), their effects are 

most notable during critical periods of fetal growth and in infancy, where they play an 

indispensible role in the maturation of the visual system and cognitive development (28).   

DHA is essential for optimal neuronal development of the fetus (29-35).  It is the 

most abundant (n-3) fatty acid in the mammalian brain and typically accounts for 25-33% 

of the total membrane aminophospholipids [phosphatidylethanolamine (PE) and 

phosphatidylserine (PS)] in the gray matter and 40-50% of the aminophospholipids in the 

visual elements of the retina (29-33, 36-39).  In humans, the most rapid rates of brain 

DHA accumulation occur during the last intrauterine trimester and the first 6-10 months 

after birth (29, 30, 38, 40).  This corresponds to the period of time in which brain growth 

is at peak velocity and suggests that the third trimester fetus and newborn infant are 

particularly susceptible to developmental deficits when maternal intake of DHA is 

limited (29, 30, 36).  The critical role of DHA in neurogenesis, however, suggests that 

adverse effects of inadequate DHA in early gestation are also important (36). 
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Prior to birth, DHA is provided by placental transfer and accumulates in the fetal 

brain in a manner that is dependent on maternal status (31).  Several observational studies 

in humans have linked higher intrauterine DHA exposure to a number of positive 

developmental outcomes, such as improved cognitive and visual function in children (29, 

30, 41), while animal models provide evidence that early DHA exposure may influence 

and program dopaminergic (42-45), serotoninergic (43, 46), cholinergic (47), and γ-

amino butyric acid neurotransmitter systems (48).  Similarly, postnatal supplementation 

has shown benefits on the Brunet-Lezine Scale (49, 50), Bayley Scales of Infant 

Development (51), and Weschler Primary Preschool Scale of Intelligence (52), and a 

recent randomized, controlled trial found that postnatal DHA supplementation lowered 

infant heart rate and increased sustained attention at 4, 6, and 9 months of age (53). 

Conversely, a dietary deficiency of (n-3) fatty acids has been shown to decrease 

brain and retinal DHA, impair neurogenesis, reduce learning ability, alter emotional 

reactivity, decrease the kinetics of the visual photocycle, and alter gene expression and 

neurotransmitter metabolism (31, 36, 54).  Behaviors observed in nonhuman primates 

with reduced brain DHA accumulation include altered electroretinogram (ERG) 

responses and lower visual acuity (55), changes in attention suggestive of slower brain 

maturation (56), a higher frequency of stereotyped behavior (57), and increased 

locomotor activity indicative of behavioral reactivity (57). 

In contrast to DHA, ARA is considered important for fetal and infant growth (58, 

59) and is currently added to US infant formulas with DHA.  ARA is found in 

phospholipids throughout the body and serves as a precursor for eicosanoids pivotal in 
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numerous immunological and inflammatory pathways (31, 39, 60-62). Eicosanoid 

metabolism is complex. Although early work considered eicosanoids derived from 

eicosapentaenoic acid as anti-inflammatory and those derived from ARA as pro-

inflammatory, recent advances have demonstrated that ARA-derived lipoxins are 

important in the resolution of inflammation (63). 

A recent study demonstrated that a dietary deficiency of ARA results in reduced 

growth, reproductive failure, skin and hair changes, and abnormal liver pathology (64).  

The extent of the developmental effect appears to be related to one’s maturational stage 

and is influenced by the concentration and ratio of DHA to ARA in the tissue (64).  Long 

chain n-3 fatty acids lower ARA by inhibiting the conversion of linoleic acid to ARA and 

competing for acylation into phospholipids (36).  Thus, an appropriate balance of ARA 

and DHA is important to support normal growth, immune function, and neuronal 

development (36).  When given in combination with DHA supplementation, dietary ARA 

exhibites limited beneficial effect on brain development and function (51).  However, 

some evidence suggests that low ARA status may be involved in the development of 

neuromental disorders such as schizophrenia (65). 

 

PLACENTAL TRANSFER OF DHA AND ARA 

Intrauterine life constitutes a particularly vulnerable period of brain development, 

as the fetus is entirely dependent upon the maternal supply of nutrients for growth (30, 

31).  While the fetus can synthesize some saturated and monounsaturated fatty acids de 

novo from glucose, the DHA and ARA required for fetal development must be provided 
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by placental transfer (29, 31, 40) because the placenta lacks the 5 and 6 desaturase 

enzymes required for conversion of essential fatty acids to LC-PUFAs (66), and the fetus 

has only limited desaturase activity (67).  (Please refer to the section entitled 

“Endogenous Synthesis of DHA and ARA” for a detailed discussion of ARA and DHA 

synthesis from their dietary precursors, α-linolenic acid and linoleic acid, respectively.)   

The transfer of DHA and ARA across the placenta involves a multi-step process 

of uptake and translocation facilitated by fatty acid binding proteins, such as fatty acid 

transport protein 4 (FATP-4), fatty acid translocase, and the plasma membrane fatty acid-

binding protein (FABPpm) (41, 68).  Although the endogenous synthesis of DHA and 

ARA is likely to be higher in preterm than in term infants (69), the amount of DHA and 

ARA produced from their dietary precursor is insufficient to match the rate of in utero 

accretion (70), providing further evidence that placental transfer serves as the primary 

source of these important LC-PUFAs in fetal development. 

    The proportions of DHA and ARA differ significantly in maternal and fetal 

circulation.  Specifically, the proportions of DHA and ARA are higher in cord than in 

maternal plasma phospholipids (71, 72). This phenomenon, referred to as 

“biomagnification,” gave rise to the hypothesis that DHA and ARA are transferred 

preferentially across the human placenta to support their accretion in nervous tissue 

during periods of rapid brain growth (73, 74).  Indeed, DHA and ARA accumulate in the 

fetal brain in a manner that is dependent on maternal status (31), and observational and 

intervention studies concur that higher dietary intake of DHA and ARA during pregnancy 

results in an increased maternal-to-fetal transfer of DHA and ARA (31).   
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ENDOGENOUS SYNTHESIS OF DHA AND ARA 

While DHA and ARA can be provided directly by the diet via animal fats, such as 

fish, fish oils, and specialty egg and dairy products, they are also synthesized 

endogenously from their essential dietary precursors, linoleic acid (18:2 n-6) and α-

linolenic acid (18:3n-3), respectively (31, 36, 37, 39).  The conversion pathway consists 

of a succession of desaturations and elongations in the endoplasmic reticulum and in one 

terminal cycle of β-oxidation in the peroxisomes (31, 33, 36, 37, 39) (Figure 1.1).  DHA 

may also be synthesized through the same pathway from an upstream metabolic precursor 

abundant in fat fishes and marine products, eicosapentaenoic acid (EPA, 20:5n-3) (37). 

Two key enzymes, Δ-5 and Δ-6 desaturase, encoded by FADS1 and FADS2, 

respectively, are thought to govern the rate of endogenous DHA and ARA synthesis 

(Figure 1.1) (31, 36, 37, 39).  Although both Δ-5 and Δ-6 desaturase are expressed in the 

majority of human tissues, the highest concentrations are found in the liver, brain, heart, 

and lung (75, 76), and the liver serves as the primary site of conversion.   

FADS1 and FADS2 are located in a cluster on chromosome 11 (11q12-13.1) with 

head-to-head orientation (Figure 1.2).  The first exons of FADS1 and FADS2 are 

separated by an 11-kb region, and each contains 12 exons and 11 introns (75-78).  Figure 

1.2 depicts the position of the exons, hypothetical promoter regions, and hypothetical 

transcription factor binding sites for the Δ-5 and Δ-6 desaturase genes (79).   
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Figure 1.1.  Mammalian pathway of endogenous arachiconic acid and docosahexaenoic 

acid synthesis from essential dietary precursors, linoleic acid and α-linolenic acid. 
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Figure 1.2.  The FADS1 and FADS2 gene structure on chromosome 11q12.2.  The figure 

depicts the position of the exons (vertical blue lines), hypothetical promoter regions 

(green rectangles), and hypothetical transcription factor binding sites (blue arrowheads) 

(79).  Adapted from Caspi et al (80).   
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IMPORTANCE OF THE FATTY ACID DESATURASE GENES: FADS1 AND FADS2 

It is well established that single nucleotide polymorphisms (SNPs) in the FADS1 

FADS2 gene cluster influence fatty acid composition in adult populations, with minor 

allele carriers having lower product to precursor ratios and reduced proportions of ARA 

and DHA in plasma and red blood cell (RBC) phospholipids (81-87).  For example, 

Koletzko et al. explored the relation between 17 SNPs in the FADS gene cluster and the 

composition of RBC fatty acids in more than 4000 pregnant women participating in the 

Avon Longitudinal Study of Parents and Children (82).  Independent of dietary effects, 

FADS minor alleles were consistently positively associated with precursor fatty acids and 

negatively associated with LC-PUFAs and product:substrate ratios of n-6 and n-3 

pathways (82).  Similarly, Xie and Innis found that minor allele homozygotes of 

rs174553 (G/G), rs99780 (T/T), and rs174583 (T/T) have a lower proportion of ARA, but 

higher linolenic acid in plasma phospholipids and erythrocyte ethanolamine 

phosphoglyceride and decreased n-6 and n-3 fatty acid product to precursor ratios at 16 

and 36 weeks of gestation (85).  Together, these results demonstrate that FADS1 and 

FADS2 genotypes influence the proportions of DHA and ARA in maternal phospholipids 

and may affect the supply of DHA to the growing fetus.  

Previous studies have also demonstrated that SNPs in FADS1 and FADS2 

influence the proportion of breast-milk DHA (82, 83, 85).  After birth, human milk and 

supplemented formulas serve as the primary source of DHA and ARA.  Several 

observational studies in humans have linked breastfeeding to positive developmental 

outcomes (88-91), and breast-fed infants have a greater proportion of erythrocyte- and 
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cortical-DHA relative to those fed with unsupplemented formulas (92).  While 

breastfeeding is often correlated with a more favorable socioeconomic environment, a 

recent randomized, controlled trial found that postnatal DHA supplementation in infant 

formula lowers infant heart rate and increases sustained attention, independent of 

environmental factors (53).  This suggests a significant dose-response relationship exists 

between infant cognition and postnatal, dietary exposure to DHA. 

Interestingly, one study observed that the proportion of DHA in plasma 

phospholipids increases with dietary intake, irrespective of the genotype, while DHA 

proportions in milk increase only in FADS major-allele carriers (83).  Caspi et al. found 

that breastfeeding confers a 6.4 to 7.0-IQ-point advantage only among children carrying 

the major allele for a SNP in FADS2 (80).  This suggests that genetic variations in FADS 

may confer particular benefits of breastfeeding among some children.    

Similar to most known polymorphisms, the frequency of FADS minor alleles 

differs according to race, and new reports indicate that SNPs in the FADS gene cluster 

may contribute to health disparities between populations of European and African 

descent (93, 94).  For example, some recent studies have linked FADS minor alleles to an 

increased incidence of asthma, allergic rhinitis, and atopic eczema in pediatric 

populations (95-97), and others have demonstrated that an association may exist between 

FADS alleles, intelligence (80, 98), and attention-deficit/hyperactivity disorder (99).  

Thus, it is important to account for the influence of FADS polymorphisms on DHA and 

ARA status among studies examining racial differences in LC-PUFA status.  

 



12 

 

PURPOSE OF DISSERTATION 

Continued research regarding the influence of FADS SNPs on maternal LC-

PUFA status and outcomes in pediatric populations is warranted.  The goal of the present 

project was to elucidate the influence of maternal FADS SNPs on DHA and ARA status 

in breast milk and maternal phospholipids and determine whether maternal or infant 

polymorphisms are predictive of a measure of early developmental status. 
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DOCOSAHEXAENOIC ACID (DHA) SUPPLEMENTATION DIFFERENTIALLY MODULATES 

ARACHIDONIC ACID AND DHA STATUS ACROSS FADS GENOTYPES IN PREGNANCY 
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ABSTRACT 

FADS1 and FADS2 encode the rate-limiting enzymes responsible for arachidonic 

acid (ARA) and docosahexaenoic acid (DHA) synthesis.  FADS1 and FADS2 influence 

the proportions of ARA and/or DHA in plasma and red blood cell (RBC) phospholipids, 

but previous studies have not examined the interaction between FADS genotypes and 

DHA supplementation.  This study aimed to elucidate the effect of DHA supplementation 

and FADS1 and FADS2 genotypes on RBC-ARA and DHA in a cohort of pregnant 

women.  Women enrolled in a trial designed to determine the effects of consuming 600 

mg/day of DHA throughout gestation on maternal and infant/toddler outcomes provided 

blood at enrollment and the morning following parturition.  RBC-ARA and DHA were 

quantified by gas chromatography.  Genomic DNA was extracted from buccal collection 

brushes and genotyping performed with TaqMan SNP Genotyping Assays.  FADS1 

minor allele homozygotes had a lower proportion of RBC-ARA and DHA than major-

allele carriers (P ≤ 0.027) at enrollment.  At delivery, minor allele homozygotes in the 

placebo group had a lower RBC-DHA than major-allele carriers (P ≤ 0.031), whereas 

women in the treatment group had similar RBC-DHA regardless of genotype (P = 0.941).  

Both FADS minor alleles were related to lower ARA among women assigned to the 

treatment group (P ≤ 0.029), RBC-ARA was not reduced in major allele homozygotes (P 

= 0.899).  DHA supplementation appears to compensate for the lower proportion RBC-

DHA observed among FADS1 minor-allele homozygotes, but exaggerates the 

supplementation-associated reduction in RBC-ARA among FADS minor-allele carriers. 
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INTRODUCTION 

The long chain polyunsaturated fatty acids, docosahexaenoic acid (DHA, 22:6n-3) 

and arachidonic acid (ARA, 20:4n-6) are important constituents of neural tissue and play 

an indispensible role in cognitive and visual development (28).  While ARA and DHA 

can be provided directly by the diet via animal fats, they are also synthesized 

endogenously from essential dietary precursors, linoleic acid (18:2 n-6) and α-linolenic 

acid (18:3n-3), respectively.  The conversion pathway consists of a succession of 

desaturations and elongations, and two key enzymes, Δ-5 and Δ-6 desaturase (encoded by 

FADS1 and FADS2, respectively) are thought to govern their rate of synthesis (Figure 

1.1).  FADS1 and 2 are located in a cluster on chromosome 11 (11q12-13.1) with head-

to-head orientation.  Both Δ-5 and Δ-6 desaturase are expressed in the majority of human 

tissues, but the highest concentrations are found in the liver, brain, heart, and lung (75, 

76).     

It is well established that single nucleotide polymorphisms (SNPs) in FADS1 and 

2 influence fatty acid composition in adult populations, with minor allele carriers having 

lower product to precursor ratios and reduced proportions of ARA and DHA in plasma 

and red blood cell (RBC) phospholipids (81-86).  The frequency of FADS minor alleles 

differs according to race and may contribute to health disparities between populations of 

European and African descent (93, 94).  The impact of FADS genetic variants on LC-

PUFA metabolism, specifically ARA levels, appears to be more pronounced in African 

Americans due to the larger proportion of individuals carrying the genotype associated 

with increased FADS1 enzymatic conversion of dihomo-gamma-linolenic acid to ARA 
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(93, 94).  It is thought that these genetic differences may account for the observation that 

multifactorial diseases of chronic inflammation tend to disproportionately affect African 

Americans in industrialized settings (94).    

Recent studies have linked FADS minor alleles to an increased incidence of 

asthma, allergic rhinitis, and atopic eczema in pediatric populations (95-97).  Others have 

demonstrated that an association may exist between FADS alleles, intelligence (80, 98), 

and attention-deficit/hyperactivity disorder (99).  To our knowledge, no studies have been 

conducted to examine the interaction between FADS genotypes and DHA 

supplementation, and it is not known if supplementation is able to compensate for the 

observed reduction in DHA status among minor allele carriers.  This study aimed to 

determine if DHA supplementation modulates RBC-ARA and DHA across FADS1 

rs174553 and FADS2 rs174575 genotypes in a cohort of pregnant women. 

 

SUBJECTS AND METHODS 

SUBJECTS 

 The study population consisted of a subset of women enrolled in an NICHD-

funded Phase-III clinical trial (NCT00266825), designed to determine the effects of 

consuming 600 mg/day of DHA throughout gestation on maternal and infant/toddler 

outcomes.  A total of 350 women were enrolled in the trial.  Those who provided both 

blood and DNA samples were included in the current analysis (Figure 2.1).  Women 

were eligible for enrollment if they were English-speaking, between 16 to 35.99 years of  
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Figure 2.1.  Consort flow diagram depicting subjects included in the current analysis. 

Enrolled in primary 

Phase-III clinical trial: 

N = 350 

Obtained delivery data: 

N = 301 

Agreed to enter follow-up:  

N = 227 

Discontinued during treatment phase: N=49 

withdrew: N=16 

miscarriage: N=7 

lost contact: N=26 

 

Complete dataset 

available:  

N =202 

Provided baseline and 

postpartum blood:  

N = 262 

Missing blood sample: N=39 

no baseline sample: N=1 

no postpartum sample: N=38 

Did not provide DNA sample: N=25  

lost to follow-up: N = 24 

refused to supply DNA: N = 1 

No enrollment in infant follow up: N=35 

too busy/lost interest: N=25 

no transportation/infant unavailable: N=4 

premature birth: N=6 
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age, and in their 8
th

 to 20
th

 week of gestation.  Subjects were excluded if they were 

expecting multiple infants or had any serious health condition likely to affect the growth 

and development of their fetus or the postnatal growth and development of their newborn 

infants.  This included, but was not limited to, subjects with cancer, lupus, hepatitis, 

HIV/AIDS, and those with pre-pregnancy or gestational diabetes mellitus at enrollment.  

As morbid obesity and elevated blood pressure present a high risk for co-morbid 

conditions independent of and including obstetric complications, women were also 

excluded if they had a baseline BMI ≥ 40 or systolic blood pressure ≥ 140 mm Hg.  

Subject characteristics, including maternal age, race, and education, were obtained via 

questionnaire at enrollment (Table 2.1).  The research protocol and informed consent 

forms adhered to the Declaration of Helsinki (including the October 1996 amendment) 

and were approved by the Institutional Review Board/ethics committee at the 

participating institution, the University of Kansas Medical Center (HSC #10186). 

 

SUPPLEMENTATION  

Women assigned to the treatment group received capsules of a marine algae oil 

source of DHA (DHASCO, Martek Biosciences, Columbia, MD) (200 mg DHA/capsule), 

while those in the control group received capsules containing half soybean and half corn 

oil (Martek Biosciences, Columbia, MD).  All subjects were asked to consume three 500 

mg capsules daily throughout gestation.  While the soybean and corn oil combination did 

not contain DHA, each capsule provided 20 mg of -linolenic acid.  Thus, the 

consumption of  3 control capsules could theoretically result in the synthesis of  
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approximately 8 mg of DHA (100).  As this value is far below that provided by the 

treatment capsules (600 mg DHA/day), the potential conversion of -linolenic acid to 

DHA was not considered a limitation of the study design.   

A monthly supply of capsules was mailed directly to subjects.  A self-addressed, 

stamped envelope was also provided to return any remaining capsules from the previous 

month.  The Investigational Pharmacy recorded the number of remaining capsules, and 

the weekly and overall capsule intake of each subject was calculated at the end of the 

treatment phase.  

 

ANALYSIS OF RED BLOOD CELL DHA AND ARA 

Women provided blood samples at enrollment and the morning following 

parturition.  Blood samples were collected by venipuncture into 2 mL K2EDTA tubes 

(BD Vacutainer, Franklin Lakes, NJ).  Plasma and RBC were separated by centrifugation 

(3000×g, 10 minutes; 4°C), frozen, and stored under nitrogen at −80°C until analysis.  

Lipids were isolated according to a modification of the Folch protocol (101), and RBC 

lipids were fractionated (102) by thin-layer chromatography.  RBC phospholipids were 

transmethylated with boron trifluoride-methanol (103), and the resulting fatty acid methyl 

esters (FAME) were separated using a Varian 3900 gas chromatograph with an SP-2560 

capillary column (100 m, Sigma Aldrich) and a Star 6.41 Chromatography Workstation 

for peak integration and analysis as previously reported (104).  Injector and detector 

temperatures were programmed at 260° C.  The temperature program for the 41-minute 

column run was: 140° C, 5 minutes; 4° C increase/minute to 240° C; 240° C, 11 minutes.  
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Individual peaks were identified by comparison with a qualitative standard (PUFA No. 1 

Marine Source 100 mg; PUFA No. 2 Animal Source 100 mg; Sigma Aldrich) and a 

weighed standard mixture (Supelco 37 Component FAME mix, Sigma Aldrich) was 

employed to determine a final weight percent of total fatty acids. 

 

GENOTYPING 

 FADS1 rs174553 and FADS2 rs174575 SNPs were selected among those 

previously studied because of their relatively common minor allele frequencies (33% and 

24%, respectively) and observed association with blood lipid and breast milk DHA (82, 

83, 85). Genomic DNA was extracted from buccal collection brushes using the Gentra 

Puregene Buccal Cell Kit (QIAGEN, Hilden, Germany), and genotyping was performed 

with made-to-order TaqMan SNP Genotyping Assays (Applied Biosystems, Foster City, 

CA) using real-time polymerase chain reaction (PCR).  Five-microliter total reactions 

were prepared according to manufacturer instructions, and individual genotypes were 

determined with StepOne Software (Version 2.0; Applied Biosystems). 

 

STATISTICAL ANALYSIS 

The present study group was compared to the original cohort using Student’s t-

test.  One-way ANOVA was used to compare RBC-DHA and ARA across maternal 

FADS genotypes in samples collected at enrollment and in postpartum samples from 

women assigned to the placebo group.  When indicated, Fisher's Least Significant 
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Difference (LSD) was used to conduct pairwise comparisons.  To control for the effect of 

variable adherence to the prescribed DHA supplementation regimen in the treatment 

group, ANCOVA was used to compare RBC-DHA and ARA across maternal FADS 

genotypes in postpartum samples from women assigned to the treatment group, with 

average weekly capsule intake serving as the covariate.  Although the frequency of FADS 

minor alleles differs between individuals of European and African descent (93, 94), race 

was not included as a covariate in the present analyses.  This would have introduced 

multicollinearity into the model and dramatically reduced our power to observe 

differences in RBC-DHA and ARA across maternal genotypes.  Before conducting each 

ANCOVA, preliminary analyses were performed to evaluate the homogeneity-of-

regression (slopes) assumption.  When the ANCOVA was significant, follow-up tests 

using contrast coefficients (L’ Matrix) were conducted to evaluate pairwise differences 

among genotypes.  Model assumptions were examined using the Kolmogorov-Smirnov 

test, Shapiro-Wilk test, and Levene’s Test of Equality of Error Variances.  All data were 

analyzed with SPSS Statistics 17.0 software (SPSS, Chicago, IL), and P-values ≤ 0.05 

were considered significant.   

 

RESULTS 

Compared to the population from which this study originates, the subset of 

women included in the current analysis consumed, on average, a greater number of 

capsules per week (P = 0.013) (Table 2.1).  No differences in maternal race, age, and 

education at enrollment were noted (Table 1).  The observed genotypic and minor allele 
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frequencies for each SNP are provided in Table 2.2.  The normality and homogeneity of 

variance assumptions were satisfied, and the preliminary analysis evaluating the 

homogeneity-of-regression (slopes) assumption indicated that the relationship between 

average weekly capsule intake and postpartum RBC-DHA and ARA did not differ 

significantly as a function of genotype (P = 0.421 and 0.519 for FADS1 vs, DHA and 

ARA, respectively; P = 0.449 and 0.827 for FADS2 vs, DHA and ARA, respectively.)   

At enrollment, FADS1 rs174553 genotype significantly influenced both RBC-

DHA (P = 0.035) and ARA (P = 0.002) (Table 2.3).  Specifically, minor allele 

homozygotes had a lower proportion of RBC-DHA than major allele homozygotes and 

heterozygotes (P = 0.010 and 0.027, respectively), and minor-allele carriers had a lower 

proportion of RBC-ARA than major allele homozygotes (P = 0.009 and 0.003 for A/G 

and G/G, respectively).  FADS2 rs174575 genotype was unrelated to RBC-DHA (P = 

0.164) or ARA (P = 0.300) at enrollment (Table 3). 

At delivery, minor allele homozygotes of FADS1 in the placebo group had a 

lower proportion of RBC-DHA than major-allele carriers (P = 0.005 and 0.031 for A/A 

and A/G, respectively), whereas women in the treatment group had similar RBC-DHA 

regardless of genotype (P = 0.941) (Figure 2.2A).  In contrast, FADS1 genotype did not 

influence RBC-ARA in the placebo group (P = 0.215), but was related to lower ARA in 

those assigned to the treatment group (P = 0.001) (Figure 2.2B).  Specifically, 

heterozygotes and minor allele homozygotes had a lower proportion of RBC-ARA than 

major allele homozygotes (P = 0.008 and 0.001, respectively).  In this case, minor allele 

homozygotes also had a lower proportion of RBC-ARA than heterozygotes (P = 0.044).   
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Figure 2.2.  Proportion of (A) docosahexaenoic acid and (B) arachidonic acid in 

RBC phospholipids across FADS1 rs174553 genotypes at delivery.  Columns 

bearing different letters are significantly different (P < 0.05; ANOVA/ANCOVA, 

Fisher's Least Significant Difference).  Bars represent means ± SE. 
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Figure 2.3.  Proportion of (A) docosahexaenoic acid and (B) arachidonic acid in 

RBC phospholipids across FADS2 rs174575 genotypes at delivery.  Columns 

bearing different letters are significantly different (P < 0.05; ANCOVA, Fisher's 

Least Significant Difference).  Bars represent means ± SE. 
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Compared to the placebo group, RBC-ARA was not reduced in major allele homozygotes 

assigned to the treatment group (P = 0.899).  

At delivery, FADS2 genotype did not influence RBC-DHA in women assigned to 

the placebo (P = 0.403) or treatment (P = 0.754) groups (Figure 2.3A).  Analogous to  

FADS1, FADS2 genotype also did not influence RBC-ARA in the placebo group (P = 

0.972), but was related to lower ARA among women assigned to the treatment group (P 

= 0.029) (Figure 2.3B).  Minor allele homozygotes had a lower proportion of ARA than 

major allele homozygotes (P = 0.008) and heterozygotes (P = 0.023).  Again, RBC-ARA 

was not reduced in major allele homozygotes in the treatment group when compared to 

that in the placebo group (P = 0.125).      

 

DISCUSSION 

To our knowledge, this study is the first to examine the interaction between FADS 

genotypes and DHA supplementation in pregnant women.  We show that DHA 

supplementation increases RBC-DHA to similar proportions, regardless of FADS1 

rs174553 genotype (Figure 3A) and amplifies the supplementation-associated reduction 

in RBC-ARA among FADS minor-allele carriers (Figures 3B and 4B).  For the first 

time, we show that FADS major allele homozygotes do not experience a reduction in 

RBC-ARA with DHA supplementation. 

Similar to the findings of previous studies (84, 85), we found that the FADS1 

rs174553 minor allele decreases the proportion of DHA and ARA in maternal RBC 

phospholipids (Figure 3).  Moltó-Puigmartí et al. recently observed an association 
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between FADS2 rs174575 genotype and the proportion of plasma phospholipid DHA and 

ARA (83).  Although not significant, a similar trend was observed with minor allele 

homozygotes having a lower proportion of RBC-DHA and ARA (Figure 4).   

A number of studies have revealed a reduction in the concentration of plasma and 

erythrocyte ARA with DHA supplementation (105-108).  Interestingly, we found that 

FADS minor alleles exaggerated the observed supplementation-associated reduction in 

RBC-ARA in a dose-response manner, whereas RBC-ARA was not reduced among 

FADS major allele homozygotes (Figures 5B and 6B).  In light of a recent animal study 

designed to examine the effect of dietary -linolenic acid on FADS expression (109), it is 

possible that DHA supplementation decreases the expression of the Δ-5 and Δ-6 

desaturase, further reducing ARA synthesis.  Specifically, the researchers found that a 

diet containing very low levels of PUFAs elevated the expression of FADS2 relative to 

that with higher PUFA diets (109).  A recent study in preterm infants utilizing stable 

isotope technology provides supporting evidence to this hypothesis (110).  Compared to 

infants fed a formula devoid of LC-PUFAs, those fed 0.97% and 0.64% n-6 and n-3 

LCPUFAs by weight (111) showed a dramatic reduction in endogenous LC-PUFA 

synthesis by 7 months of age (110).  Thus, it seems likely that substrate availability plays 

an important role in the regulation of FADS gene expression.  Our findings suggest that 

individuals more susceptible to reduced enzymatic function (FADS minor allele carriers) 

are more affected by supplementation in contrast to major allele homozygotes. 

A limitation of this study is that it used a sample of convenience from a trial 

powered to examine the influence of prenatal DHA supplementation on birth outcomes.  



30 

 

Few women had two copies of the minor allele for the genes examined.  Although we 

found highly significant differences, small sample size is a potential concern..   

The results of the present analysis have important implications for the design of 

future studies intended to assess the influence of DHA supplementation on maternal and 

infant outcomes.  Overall, our results suggest DHA supplementation compensates for the 

lower proportion of RBC-DHA observed among FADS1 minor-allele homozygotes, but 

exaggerates the reduction in RBC-ARA among FADS1 and 2 minor-allele carriers.  As 

the effects of reduced RBC-ARA on the growing fetus and child are not fully understood, 

it is possible that an optimal level of DHA supplementation exists, beyond which less 

advantageous outcomes are observed.  ARA is considered important for fetal and infant 

growth and development (58, 59) and it is currently added to US infant formulas with 

DHA.  When given in combination with DHA supplementation, there is limited evidence 

for a beneficial effect of ARA on brain development and function (51).  However, low 

ARA status may be involved in the development of neuromental disorders such as 

schizophrenia (65).  Geppert et al. recently investigated the effect of a fish oil/evening 

primrose oil blend (456 mg DHA, 72 mg eicosapentaenoic acid, and 353 mg γ-linolenic 

acid/day) on plasma fatty acid composition in non-pregnant women (108).  The oil blend 

was well tolerated and increased plasma DHA without reducing the concentration of 

ARA in plasma phospholipids (108).  If future studies demonstrate that the observed 

reduction in ARA status that accompanies DHA supplementation in minor-allele carriers 

adversely affects development, a fish oil/evening primrose oil blend may be a viable 

alternative.  Future studies should elucidate the potential effects of reduced maternal 
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ARA status on pregnancy and developmental outcomes in infants.  As the ideal level of 

intake is likely to be genotype-specific, studies should also include various FADS 

genotypes as covariates of projected outcomes.   
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CHAPTER 3: 

 

FADS2 GENE VARIANT INFLUENCES THE PROPORTION OF DOCOSAHEXAENOIC ACID 

(DHA) IN HUMAN MILK 
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ABSTRACT 

FADS1 and FADS2 encode the rate-limiting enzymes responsible for endogenous 

docosahexaenoic acid (DHA) synthesis.  Single nucleotide polymorphisms (SNPs) in 

FADS1/2 influence the proportion of blood lipid and human milk DHA, and human milk 

feeding confers an IQ-point advantage to children carrying the major allele for a SNP in 

FADS2.  Previous studies have not controlled for maternal DHA status to isolate the 

effect of FADS SNPs on human-milk DHA.  This study aimed to determine if SNPs in 

maternal FADS1 rs174553 and FADS2 rs174575 alleles influence the proportion of 

human-milk DHA in a group of supplemented women with variable status, after 

controlling for the proportion of DHA in maternal red blood cells (RBCs).  The study 

population consisted of a subset of women enrolled in an NICHD-funded Phase-III 

clinical trial designed to determine the effects of consuming 600 mg/day DHA 

throughout gestation on maternal and infant/toddler outcomes.  Women provided blood 

and milk samples the morning after and six weeks following parturition, respectively.  

Milk- and RBC-DHA were quantified by gas chromatography in comparison with 

weighed standards.  Genomic DNA was extracted from buccal collection brushes, and 

genotyping performed with TaqMan SNP Genotyping Assays.  The concentration of milk 

DHA was higher among women assigned to the treatment group than those assigned to 

the placebo (P < 0.001).  However, when controlling for RBC-DHA to eliminate the 

influence of DHA supplementation and dietary intake, FADS2 minor allele homozygotes 

had a lower proportion of milk DHA than major-allele carriers (P = 0.033).  These results 
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support the hypothesis that polymorphisms in FADS2 affect DHA in human milk and 

may account for the observed IQ advantage among major-allele carriers. 
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INTRODUCTION 

Docosahexaenoic acid (DHA, 22:6n-3) is an omega-3 polyunsaturated fatty acid 

that accumulates rapidly in the human brain during the last intrauterine trimester and the 

first 2 years of life (92, 112).  Throughout gestation, DHA is provided by placental 

transfer and accumulates in the fetal brain in a manner that is dependent on maternal 

status (31).  After birth, human milk and supplemented formulas serve as the primary 

source of this important fatty acid.  Several observational studies in humans have linked 

breastfeeding to positive developmental outcomes (88-91), and human milk-fed infants 

have a greater proportion erythrocyte- and cortical-DHA relative to those fed with 

unsupplemented formulas (92).  While breastfeeding is often correlated with a more 

favorable socioeconomic environment, a recent randomized, controlled trial found that 

postnatal DHA supplementation lowers infant heart rate and increases sustained attention, 

independent of environmental factors (53).  This suggests a significant relationship exists 

between infant cognition and postnatal, dietary exposure to DHA.   

While DHA can be provided directly by the diet via animal fats, it is also 

synthesized endogenously from its essential dietary precursor, α-linolenic acid (18:3n-3).  

The conversion pathway consists of a succession of desaturations and elongations, and 

two key enzymes, Δ-5 and Δ-6 desaturase (encoded by FADS1 and FADS2, respectively) 

are thought to govern the rate of synthesis (Figure 1.1).  Previous studies have 

demonstrated single nucleotide polymorphisms (SNPs) in FADS1 and 2 influence the 

proportion of blood lipid and human milk DHA (82, 83, 85) and Caspi et al. found that 

human milk feeding confers a 6.4 to 7.0-IQ-point advantage only among children 
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carrying the major allele for a SNP in FADS2 (80).  Interestingly, one study revealed that 

the proportion of DHA in plasma phospholipids increases with dietary intake, irrespective 

of the genotype, while DHA proportions in milk increase only in FADS major-allele 

carriers (83).  While these findings suggest that genetic variation in FADS1 and FADS2 

may affect the incorporation of DHA in human milk, these investigators have not 

controlled for the proportion of DHA in maternal red blood cells (RBCs), a reliable 

indicator of DHA status.  Thus, it is possible that errors in self-reported dietary intake 

influenced the observed gene-diet interaction.   

The objective of the present study was to determine if SNPs in maternal FADS1 

rs174553 and FADS2 rs174575 influence the proportion of human-milk DHA in a group 

of women with variable status, after controlling for the proportion of DHA in maternal 

RBCs.  Although we will effectively eliminate the influence of group assignment in our 

statistical analyses, strength of utilizing the present cohort for this objective is the wide 

range of intake achieved by DHA supplementation and variable compliance among 

subjects.   

    

SUBJECTS AND METHODS 

SUBJECTS 

 The study population consisted of a subset of women enrolled in an NICHD-

funded Phase-III clinical trial (NCT00266825), designed to determine the effects of 

consuming 600 mg/day of DHA throughout gestation on maternal and infant/toddler 

outcomes.  A total of 350 women were enrolled in the trial.  Those who provided both 
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milk at 6 weeks postpartum and a DNA sample were included in the current analysis (n= 

103).  Women were eligible for enrollment if they were English-speaking, between 16 to 

35.99 years of age, and in their 8
th

 to 20
th

 week of gestation.  Subjects were excluded if 

they were expecting multiple infants or had any serious health condition likely to affect 

the growth and development of their fetus or the postnatal growth and development of 

their newborn infants.  This included, but was not limited to, subjects with cancer, lupus, 

hepatitis, HIV/AIDS, and those with pre-pregnancy or gestational diabetes mellitus at 

enrollment.  As morbid obesity and elevated blood pressure present a high risk for co-

morbid conditions independent of and including obstetric complications, women were 

also excluded if they had a baseline BMI ≥ 40 or systolic blood pressure ≥ 140 mm Hg.  

Subject characteristics, including maternal race and education, were obtained via 

questionnaire at enrollment.  The research protocol and informed consent forms adhered 

to the Declaration of Helsinki (including the October 1996 amendment) and were 

approved by the Institutional Review Board/ethics committee at the University of Kansas 

Medical Center (HSC #10186). 

   

SUPPLEMENTATION  

Women assigned to the treatment group received capsules of a marine algae oil 

source of DHA (DHASCO, Martek Biosciences, Columbia, MD) (200 mg DHA/capsule), 

while those in the control group received capsules containing half soybean and half corn 

oil (Martek Biosciences, Columbia, MD).  All subjects were asked to consume three 200 

mg capsules daily throughout gestation.  A monthly supply of capsules was mailed 
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directly to subjects.  A self-addressed, stamped envelope was also provided to return any 

remaining capsules from the previous month.  The University of Kansas Hospital 

Investigational Pharmacy recorded the number of remaining capsules, and the weekly and 

overall capsule intake of each subject was calculated at the end of the treatment phase.  

 

ANALYSIS OF RED BLOOD CELL AND HUMAN MILK DHA  

Women provided blood and milk samples the morning after and approximately 

six weeks following parturition, respectively.  Human milk was collected in a sterile 4-oz 

general purpose specimen container and stored at −80°C until analysis.  Blood samples 

were collected by venipuncture into 2 mL K2EDTA tubes (BD Vacutainer, Franklin 

Lakes, NJ).  Plasma and RBCs were separated by centrifugation (3000×g, 10 minutes; 

4°C), frozen, and stored under nitrogen at −80°C until analysis.  Lipids were isolated 

according to a modification of the Folch protocol (101), and RBC lipids were fractionated 

(102) by thin-layer chromatography.  Milk total lipids and RBC phospholipids were 

transmethylated with boron trifluoride-methanol (103), and the resulting fatty acid methyl 

esters (FAME) were separated using a Varian 3900 gas chromatograph with an SP-2560 

capillary column (100 m, Sigma Aldrich) and a Star 6.41 Chromatography Workstation 

for peak integration and analysis as previously reported (104).  Injector and detector 

temperatures were programmed at 260° C.  The temperature program for the 41-minute 

column run was: 140° C, 5 minutes; 4° C increase/minute to 240° C; 240° C, 11 minutes.  

Individual peaks were identified and quantified by comparison with qualitative standards 

(PUFA No. 1 Marine Source 100 mg; PUFA No. 2 Animal Source 100 mg; Sigma 
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Aldrich) and a weighed standard mixture (Supelco 37 Component FAME mix, Sigma 

Aldrich) was employed to determine a final weight percent of total fatty acids. 

 

GENOTYPING 

 FADS1 rs174553 and FADS2 rs174575 SNPs were selected among those 

previously studied for their relatively common minor allele frequencies (33% and 24%, 

respectively) and observed association with blood lipid and human milk DHA (80, 82-

85).  DNA was collected using buccal collection brushes during the follow-up phase of 

the primary trial.  Genomic DNA was extracted using the Gentra Puregene Buccal Cell 

Kit (QIAGEN, Hilden, Germany), and genotyping was performed with made-to-order 

TaqMan SNP Genotyping Assays (Applied Biosystems, Foster City, CA) using real-time 

polymerase chain reaction.  Five-microliter total reactions were prepared according to 

manufacturer instructions, and individual genotypes were determined with StepOne 

Software (Version 2.0; Applied Biosystems). 

 

STATISTICAL ANALYSIS 

The human milk-feeding and formula-feeding cohorts enrolled in the original trial 

were compared using Student’s t-test.  Student’s t-test was also used to compare the 

proportion of milk DHA between the treatment and placebo groups.  Linear regression 

was used to determine the main effect of FADS minor alleles on milk DHA.  Here, we 

controlled for the proportion of DHA in maternal RBCs to eliminate the effect of group 
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assignment, account for errors in reported intake, and eliminate the influence of variable 

compliance to the supplementation protocol.   

As the percentage of DHA in human milk was positively skewed, a log 

transformation was employed to normalize the distribution before model building.  After 

examining all possible interactions and collapsing binary variables for FADS major 

alleles, a first-order model was selected with the percentage of DHA in maternal RBCs, 

maternal FADS1 SNP rs174553, and maternal FADS2 SNP rs174575 serving as the 

predictor variables.  FADS SNPs were defined by the following binary variables: 1 = 

minor allele homozygote, 0 = major allele carrier.   

Model assumptions were verified using the Kolmogorov-Smimov, Shapiro-Wilk, 

and Breusch-Pagan tests.  The effect of multicollinearity was examined, and the absence 

of outliers and influential observations was confirmed by assessing studentized deleted 

residuals, leverage values, Cook’s distance, DFFITS, and DFBETAS.  All data were 

analyzed with SPSS Statistics 17.0 software (SPSS, Chicago, IL), and P-values ≤ 0.05 

were considered significant. 

    

RESULTS 

 Compared to the formula-feeding cohort, the subset of human milk-feeding 

women (n = 103) included in the current analysis were more likely to be Caucasian (P < 

0.001), had a higher median income by zip code (P < 0.001), were older (P < 0.001), and 

had a greater level of education at the time of enrollment (P < 0.001) (Table 3.1).  No 

differences in maternal RBC-DHA were detected.  Among the subset of women who fed 
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human milk for at least 6 weeks, the observed maternal genotypic and minor allele 

frequencies for each SNP are provided in Table 3.2. 

The concentration of human-milk DHA was higher among women assigned to the 

treatment group than those assigned to the placebo (n = 130; P < 0.001).  The mean (± 

SE) proportion of milk DHA (%) among supplemented and unsupplemented women was 

0.34 (± 0.02) and 0.24 (± 0.02), respectively.  However, when controlling for RBC-DHA 

to eliminate the influence of DHA supplementation and dietary intake, FADS2 minor 

allele homozygotes had a lower proportion of milk DHA than major-allele carriers (P = 

0.033) (Table 3.3).  The mean (± SE) proportion of milk DHA (%) among FADS major 

allele carriers and minor allele homozygotes is displayed in Figure 3.1.  

The selected first-order regression model appeared to be appropriate and fit the 

data well.  Stepwise selection, forward selection, and backward elimination produced the 

same model, each controlling for the proportion of DHA in maternal RBCs (criteria for 

entry: F = 0.15; criteria for removal: F = 0.20).   The normality and constancy of variance 

assumptions were satisfied, and the multicollinearity effect was not serious.  No outlying 

or influential observations were noted. 
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Figure 3.1.  Unadjusted mean (± SE) proportion of breast milk DHA (%) among FADS1 

rs174553 and FADS2 rs174575 major allele carriers and minor allele homozygotes. 
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DISCUSSION 

To our knowledge, this is the first study to determine the main effect of FADS 

minor alleles on human-milk DHA after controlling for the proportion of DHA in 

maternal RBCs.  The results of the present study support the hypothesis that 

polymorphisms in FADS2 affect DHA in human milk and, hence the transfer of that 

DHA to the growing infant.  Moltó-Puigmartí et al. observed that the proportion of DHA 

in plasma phospholipids in pregnant women increases with dietary intake, irrespective of 

the FADS genotype, while DHA proportions in milk increase only in major-allele carriers 

(83).  Here, even after controlling for the proportion of DHA in maternal RBCs (which 

eliminated the effect of potential errors in self-reported dietary intake), a significant diet-

gene interaction remained.  Regardless of DHA status, women carrying two copies of the 

minor allele for FADS2 SNP rs174575 had a lower proportion of milk DHA than major-

allele carriers.  As DHA continues to accumulate in the human brain after birth (92, 112) 

and postnatal supplementation has shown benefits on the Brunet-Lezine Scale (49, 50), 

Bayley Scales (51), and Weschler Primary Preschool Scale of Intelligence (52), this may 

have important implications for early cognitive development.  

Caspi et al. previously demonstrated that the association between breastfeeding 

and IQ is moderated by FADS2 rs174575 (80).  Specifically, the investigators found that 

human milk feeding confers a 6.4 to 7.0-IQ-point advantage only among children 

carrying the major allele (80).  The current results suggest that the observed advantage 

among major-allele carriers is a surrogate for maternal genotype and the resulting 

proportion of human-milk DHA.  Based on the current findings, infants nursing from 
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women carrying two copies of the minor allele would likely consume a lower 

concentration of DHA than those nursing from major-allele carriers.  In light of recent 

studies examining the effects of postnatal DHA supplementation, these children might 

also be expected to perform more poorly on specific (53) and general measures (49-52) of 

cognitive function.   If verified, genotype-specific dietary recommendations to enhance 

growth and cognitive development in at-risk infants may be warranted.  However, in this 

case, at-risk infants would be identified by maternal genotype, and the child, rather than 

the mother, would receive DHA supplementation. 

Overall, the results of the present study demonstrate that FADS2 rs174575 

influences the proportion of human-milk DHA.  Additional observations should be 

collected to validate the predictive ability of this model.  Data splitting for model 

validation would have severely reduced the number of minor allele homozygotes for 

model building and, thus, was not employed.  Future studies should evaluate whether 

maternal FADS2 rs174575 genotype influences cognitive function and development 

among exclusively human milk-fed infants. 
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CHAPTER 4: 

 

FADS2 RS174575 GENOTYPE MODERATES THE ASSOCIATION BETWEEN INFANT 

FEEDING AND A MEASURE OF DEVELOPMENTAL STATUS 
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ABSTRACT 

Human milk compared to infant formula feeding confers an IQ advantage to children 

carrying the major allele for a single nucleotide polymorphism (SNPs) in FADS2.  A 

recent report found that the maternal FADS2 minor allele reduces DHA transfer in 

human milk, suggesting the maternal FADS2 genotype could possibly underlie the 

previous finding.  We tested if toddler performance on the Bayley Scales of Infant 

Development Mental Development Index (BSID MDI) at 18 months was predicted by 

either maternal or child FADS1 rs174553 or FADS2 rs174575 genotype in breastfed and 

formula-fed infants exposed to variable amounts of DHA in utero.  The study population 

consisted of a subset of mother/infant dyads enrolled in an NICHD-funded Phase-III 

RCT.  Women provided blood samples the morning after parturition.  RBC-DHA was 

quantified by gas chromatography.  Genomic DNA was extracted from buccal collection 

brushes and genotyping performed with TaqMan SNP Genotyping Assays.  MDI was 

assessed at 18 months of age.  We found that MDI was not related to maternal FADS1 or 

FADS2 genotypes.  Human milk-fed (but not formula-fed) infants carrying two copies of 

the FADS2 minor allele had a lower MDI at 18 months than major allele carriers (P = 

0.007).  The infant’s FADS2 rs174575 genotype moderates the association between 

breastfeeding human milk feeding and an early measure of global developmental status.  
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INTRODUCTION 

Docosahexaenoic acid (DHA, 22:6n-3) is an omega-3 polyunsaturated fatty acid 

that accumulates rapidly in the human brain during the last intrauterine trimester and the 

first 6-10 months after birth (92, 112).  Prior to birth, DHA is provided by placental 

transfer and accumulates in the fetal brain in a manner that is dependent on maternal 

status (31).  Several observational studies in humans have linked higher intrauterine DHA 

exposure to a number of positive developmental outcomes, such as improved cognitive 

and visual function in children (29, 30, 41), and a recent randomized, controlled trial 

found that postnatal DHA supplementation lowered infant heart rate and increased 

sustained attention at 4, 6, and 9 months of age (53).  

While DHA can be provided directly by the diet via animal fats, including fish, 

fish oils, and specialty egg and dairy products, it is also synthesized endogenously from 

its essential dietary precursor, α-linolenic acid (18:3n-3).  The conversion pathway 

consists of a succession of desaturations and elongations, and two key enzymes, Δ-5 and 

Δ-6 desaturase (encoded by FADS1 and FADS2, respectively) are thought to govern the 

rate of synthesis (Figure 1.1).    

Caspi et al. recently demonstrated that the observed association between 

breastfeeding and IQ is moderated by FADS2 rs174575 genotype (80).  Specifically, they 

found that adults carrying a copy of the major allele have a 6.4 to 7.0-IQ point advantage 

if fed human milk compared to formula in infancy (80).  We and others have observed 

that the proportion of DHA in plasma and red blood cell (RBC) phospholipids increases 

with dietary intake and DHA status, irrespective of the genotype, while the DHA 
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proportion in milk increases only in FADS2 rs174575 major-allele carriers (83).  In light 

of this information, and knowing Caspi et al. did not have data on maternal genotype 

(80), we hypothesized offspring genotype serves as a surrogate for maternal genotype, 

and the influence of FADS2 on cognition is conferred via differences in breast-milk 

DHA.  Previous studies have not concurrently examined the influence of maternal and 

infant FADS genotypes on infant cognition in breastfed and formula-fed cohorts to 

substantiate this hypothesis.  The objective of the present study was to determine if 

toddler performance on the Bayley Scales of Infant Development Mental Development 

Index (BSID MDI) at 18 months was predicted by either maternal or child FADS1 

rs174553 or FADS2 rs174575 genotype in breastfed and formula-fed infants exposed to 

variable amounts of DHA in utero.   

 

SUBJECTS AND METHODS 

SUBJECTS 

The study population consisted of a subset of mother/infant dyads enrolled in an 

NICHD-funded Phase-III clinical trial (NCT00266825), designed to determine the effects 

of consuming 600 mg/day of DHA throughout gestation on maternal and infant/toddler 

outcomes.  A total of 350 women were enrolled in the trial.  Those who provided a DNA 

sample and whose infants completed the 18-month BSID II MDI assessment were 

included in the current analysis (Figure 2.1).  Women were eligible for enrollment if they 

were English-speaking, between 16 to 35.99 years of age, and in their 8
th

 to 20
th

 week of 



52 

 

gestation.  Subjects were excluded if they were expecting multiple infants or had any 

serious health condition likely to affect the growth and development of their fetus or the 

postnatal growth and development of their newborn infants.  Subject characteristics, 

including maternal race and education, were obtained via questionnaire at enrollment.  

The Peabody Picture Vocabulary Test (PPVT), a measure of receptive vocabulary for 

Standard English and a screening test of verbal ability was also administered.  The 

research protocol and informed consent forms adhered to the Declaration of Helsinki 

(including the October 1996 amendment) and were approved by the Institutional Review 

Board/ethics committee at the University of Kansas Medical Center (HSC #10186). 

 

SUPPLEMENTATION   

Women assigned to the treatment group received capsules of a marine algae oil 

source of DHA (DHASCO, Martek Biosciences, Columbia, MD) (200 mg DHA/capsule), 

while those in the control group received capsules containing half soybean and half corn 

oil (Martek Biosciences, Columbia, MD).  All subjects were asked to consume three 200 

mg capsules daily throughout gestation.  A monthly supply of capsules was mailed 

directly to subjects.  A self-addressed, stamped envelope was also provided to return any 

remaining capsules from the previous month.  The Investigational Pharmacy recorded the 

number of remaining capsules, and the weekly and overall capsule intake of each subject 

was calculated at the end of the treatment phase.  
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ANALYSIS OF RBC AND BREAST MILK DHA  

Women provided blood samples the morning after parturition.  Cord blood was 

obtained at delivery.  Blood samples were collected by venipuncture into 2 mL K2EDTA 

tubes (BD Vacutainer, Franklin Lakes, NJ).  Plasma and RBCs were separated by 

centrifugation (3000×g, 10 minutes; 4°C), frozen, and stored under nitrogen at −80°C 

until analysis.  Lipids were isolated according to a modification of the Folch protocol 

(101) and fractionated (102) by thin-layer chromatography.  RBC phospholipids were 

transmethylated with boron trifluoride-methanol (103), and the resulting fatty acid methyl 

esters (FAME) were separated using a Varian 3900 gas chromatograph with an SP-2560 

capillary column (100 m, Sigma Aldrich) and a Star 6.41 Chromatography Workstation 

for peak integration and analysis as previously reported (104).  Injector and detector 

temperatures were programmed at 260° C.  The temperature program for the 41-minute 

column run was: 140° C, 5 minutes; 4° C increase/minute to 240° C; 240° C, 11 minutes.  

Individual peaks were identified and quantified by comparison with a qualitative standard 

(PUFA No. 1 Marine Source 100 mg; PUFA No. 2 Animal Source 100 mg; Sigma 

Aldrich) and a weighed standard mixture (Supelco 37 Component FAME mix, Sigma 

Aldrich) was employed to determine a final weight percent of total fatty acids. 

 

GENOTYPING 

 FADS1 rs174553 and FADS2 rs174575 SNPs were selected among those 

previously studied for their relatively common minor allele frequencies (33% and 24%, 
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respectively) and observed association with cognition and blood lipid and breast milk 

DHA (80, 82-85).  Maternal and infant DNA was collected using buccal collection 

brushes during the follow-up phase of the primary trial.  Genomic DNA was extracted 

using the Gentra Puregene Buccal Cell Kit (QIAGEN, Hilden, Germany), and genotyping 

was performed with made-to-order TaqMan SNP Genotyping Assays (Applied 

Biosystems, Foster City, CA) using real-time polymerase chain reaction.  Five-microliter 

total reactions were prepared according to manufacturer instructions, and individual 

genotypes were determined with StepOne Software (Version 2.0; Applied Biosystems). 

 

STANDARDIZED ASSESSMENT 

The Bayley Scales of Infant Development (2
nd

 Edition; BSID II) (113) was 

administered at 18 months of age by a psychologist trained to reliability.  This is a 

commonly-used instrument that yields IQ-like scores and assesses a number of aspects of 

mental and motor development in children from birth to 42 months of age.  From this 

assessment, both motor and mental index scores are derived.  For the purpose of this 

study, only the Mental Development Index scores (MDI) were utilized in the analysis.  

MDI shows considerable continuity at 18 months to preschool IQ scores (114), and Birch 

et al. recently observed a 7-point advantage on the BSID among DHA-supplemented 

infants (51).  
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STATISTICAL ANALYSIS 

Subject characteristics were compared between the breast and formula-feeding 

cohorts using Student’s t-tests.  Linear regression was used to determine the main effect 

of maternal and infant FADS minor alleles on 18-month MDI.  The breastfed and 

formula-fed groups were examined separately.  To isolate the influence of FADS 

genotypes on MDI and achieve the object of this study, DHA-group assignment, average 

weekly capsule intake, and maternal education at enrollment were included as predictor 

variables in the selected model.  This effectively eliminated the influence of DHA 

supplementation and socioeconomic status on MDI.  As maternal PPVT scores were not 

collected on all subjects and its inclusion would have resulted in some sample loss, it was 

not used as a measure of socioeconomic status in the present analysis.  For those in the 

placebo group, average weekly capsule intake was assigned a value of zero.   

A first-order model was selected after examining all possible interactions and 

collapsing binary variables for FADS major alleles: 1 = minor allele homozygote, 0 = 

major allele carrier.  (Final predictor variables: DHA-group assignment, average weekly 

capsule intake, maternal education at enrollment, maternal and infant FADS1 rs174553, 

and maternal and infant FADS2 rs174575).  Model assumptions were verified using the 

Kolmogorov-Smirnov, Shapiro-Wilk, and Breusch-Pagan tests.  The effect of 

multicollinearity was examined, and the absence of outliers and influential observations 

was confirmed by assessing studentized deleted residuals, leverage values, Cook’s 

distance, DFFITS, and DFBETAS.    All data were analyzed with SPSS Statistics 17.0 

software (SPSS, Chicago, IL), and P-values ≤ 0.05 were considered significant. 



56 

 

RESULTS 

 Compared to the formula-feeding cohort, the subset of breastfeeding women (n = 

103) included in the current analysis were more likely to be Caucasian (P < 0.001), had a 

higher median income by zip code (P < 0.001), were older (P < 0.001), had a higher 

standardized PPVT score (P < 0.001), and had a greater level of education at the time of 

enrollment (P < 0.001) (Table 4.1).  Their infants also scored higher on the BSID II MDI 

(P < 0.001).   No differences in postpartum or cord blood RBC-DHA were observed.  

Maternal and infant genotypic and minor allele frequencies for each SNP are provided in 

Table 4.2 and Table 4.3, respectively, for breast- and formula-feeding cohorts.  

In the breastfed cohort, BSID II MDI at 18 months was not significantly related to 

maternal FADS1 or 2 genotypes (P = 0.315 and 0.436, respectively) (Table 4.4), but was 

related to the FADS2 genotype of the infant.  Specifically, FADS2 minor allele 

homozygotes had a significantly lower MDI at 18 months than major allele carriers (P = 

0.009; B = -14.6).  Interestingly, in the formula-fed cohort, MDI at 18 months was not 

related to maternal or infant FADS genotypes (Table 4.5).  Mean 18-month MDI among 

breastfed and formula-fed major allele carriers and minor allele homozygotes is displayed 

in Figure 4.1. 

The selected first-order regression model appeared to be appropriate and fit the 

data well.  The normality and constancy of variance assumptions were satisfied, and the 

multicollinearity effect was not serious.  No outlying or influential observations were 

noted. 
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Figure 4.1.  Mean 18-month MDI among breastfed and formula-fed FADS1 

rs174553 and FADS2 rs174575 major allele carriers and minor allele homozygotes.  

BF, breastfed cohort; FF, formula-fed cohort 
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DISCUSSION 

To our knowledge, this is the first study to concurrently examine the influence of 

maternal and infant FADS genotypes on a measure of infant developmental status.  Caspi 

et al. previously found that adults carrying a copy of the major allele have a 6.4 to 7.0-IQ 

point advantage if breastfed in infancy (80), but did not have information on maternal 

genotype.  Based on recent reports indicating that FADS2 minor allele homozygotes have 

a lower proportion of breast-milk DHA (83, 85) regardless of dietary intake or status 

(80), we hypothesized that offspring genotype was serving as a surrogate for maternal 

genotype, and the influence of FADS2 on cognition was conferred via differences in  

breast-milk DHA.  The results of the present study do not support this hypothesis, but 

reinforce the findings of Caspi et al. that the FADS2 genotype of the infant moderates the 

association between breastfeeding and IQ.  In the present study, maternal FADS genotype 

did not influence the 18-month MDI of human-milk fed infants when infant genotype 

was included as a covariate in the model.  Rather, the FADS2 genotype of the infant was 

significantly related to MDI in the breastfeeding cohort, with minor allele homozygotes 

displaying a 14.6-point deficit at 18 months.  Also similar to Caspi et al., who showed 

adults’ IQ was unrelated to genotype in formula-fed infants, we find offspring genotype 

is not related to MDI, an early test of toddler global mental and motor development, in 

the formula-fed cohort.   

A recent report by Sauerwald et al. may shed light on these seemingly ambiguous 

findings (115).  The investigators examined the effects of various levels of DHA intake 

on plasma and erythrocyte fatty acids and endogenous LC-PUFA synthesis in preterm 
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infants using stable isotope technology.  Preterm infants were randomized to preterm 

formulas with gamma-linolenic acid (0.4%) and arachidonic acid (AA, 0.1%) but 

different DHA contents (0.04%, 0.33%, or 0.52%); 24 received human milk (0.51% AA 

and 0.38% DHA, nonrandomized) (115).  They found that LC-PUFA synthesis was lower 

in infants fed human milk than in those fed formulas (115).  This may explain why 

FADS2 only appears to influence BSID II MDI in breastfed infants, and the genotype of 

the infant has a greater influence than maternal genotype on this measure of cognitive 

function.  

Although maternal genotype was not related to 18-month MDI in the present 

study, future studies examining the influence of reduced breast-milk DHA among FADS 

minor allele homozygotes are warranted.  DHA continues to accumulate in the human 

brain after birth (92, 112), and postnatal supplementation has shown benefits on several 

measures of intelligence (49-53).  Our previous findings regarding the influence of 

maternal FADS2 on breast-milk DHA suggest that infants nursing from women carrying 

two copies of the minor allele consume a lower concentration of DHA than those nursing 

from major-allele carriers.  While maternal FADS were not related to 18-month MDI in 

the present study, it is possible that this reduction in breast-milk DHA may influence 

other measures of cognitive development.  Recent studies indicate the BSID II MDI is 

not particularly responsive to LC-PUFA supplementation/status (116-118), and a more 

comprehensive and sensitive approach, in which specific measures of cognitive function 

are assessed, may be more appropriate. 
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A limitation of this study is that it used a sample of convenience from a trial 

powered to examine the influence of prenatal DHA supplementation on birth outcomes.  

In addition, the breast and formula-fed cohorts were defined according to the provision of 

a milk sample at 6 weeks postpartum; we did not account for overall length of 

breastfeeding.  However, we still observed significant differences between the two 

cohorts that are consistent with previous research.  Finally, additional observations 

should be collected to validate the predictive ability of the model used in this study.  Data 

splitting for model validation would have severely reduced the number of minor allele 

homozygotes for model building and, thus, was not employed. 

Overall, the results of the present study demonstrate that the FADS2 rs174575 

genotype of the infant moderates the association between breastfeeding and MDI.  Future 

studies should evaluate whether maternal genotype influences other, more specific 

measures of early cognitive development. 
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SUMMARY OF FINDINGS 

This series of studies aimed to (1) elucidate the effect of DHA supplementation 

and FADS1 rs174553 and FADS2 rs174575 genotypes on red blood cell (RBC) ARA and 

DHA in a cohort of pregnant women, (2) determine if SNPs in maternal FADS1 and 

FADS2 influence the proportion of breast-milk DHA after controlling for the proportion 

of DHA in maternal RBCs, and (3) determine if toddler performance on the Bayley 

Scales of Infant Development Mental Development Index (BSID MDI) at 18 months is 

predicted by either maternal or child genotype in breastfed and formula-fed infants. 

Overall, our results suggest DHA supplementation compensates for the lower 

proportion of RBC-DHA observed among FADS1 minor-allele homozygotes, but 

exaggerates the reduction in RBC-ARA among FADS1 and FADS2 minor-allele carriers.  

They also demonstrate that FADS2 influences the proportion of breast-milk DHA, but 

suggest the FADS2 genotype of the infant is more predictive than maternal genotype of 

cognitive outcomes.  Finally, our results support the hypothesis that the FADS2 genotype 

of the infant moderates the association between breastfeeding and MDI.   

 

DOCOSAHEXAENOIC ACID (DHA) SUPPLEMENTATION DIFFERENTIALLY MODULATES 

ARACHIDONIC ACID AND DHA STATUS ACROSS FADS GENOTYPES IN PREGNANCY 

To our knowledge, this study in pregnant women was the first to examine the 

interaction between FADS genotypes and DHA supplementation.  We found that DHA 

supplementation increases RBC-DHA to similar proportions, regardless of FADS1 
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rs174553 genotype and amplifies the supplementation-associated reduction in RBC-ARA 

among FADS minor-allele carriers.  We also demonstrated that FADS major allele 

homozygotes do not experience a reduction in RBC-ARA with DHA supplementation. 

 

FADS2 GENE VARIANT INFLUENCES THE PROPORTION OF DOCOSAHEXAENOIC ACID 

(DHA) IN HUMAN MILK 

This study determined the main effect of FADS minor alleles on human-milk 

DHA after controlling for the proportion of DHA in maternal RBCs.  This eliminated the 

effect of errors in self-reported dietary intake and variable adherence to the 

supplementation protocol.  Regardless of DHA status, women carrying two copies of the 

minor allele for FADS2 had a lower proportion of milk DHA than major-allele carriers.  

These results support the hypothesis that polymorphisms in FADS2 limit DHA in human 

milk and, hence the transfer of that DHA to the growing infant.     

 

FADS2 RS174575 GENOTYPE MODERATES THE ASSOCIATION BETWEEN INFANT 

FEEDING AND A MEASURE OF DEVELOPMENTAL STATUS 

To our knowledge, this is the first study to concurrently examine the influence of 

maternal and infant FADS genotypes on a measure of infant developmental status.  The 

results of this study reinforce the findings of Caspi et al. that the FADS2 genotype of the 

infant moderates the association between breastfeeding and IQ.  Maternal FADS 

genotype did not influence the 18-month MDI of human-milk fed infants when infant 



69 

 

genotype was included as a covariate in the model.  Rather, the FADS2 genotype of the 

infant was significantly related to MDI in the breastfeeding cohort, with minor allele 

homozygotes displaying a 14.6-point deficit at 18 months.  Also similar to Caspi et al., 

who showed adults’ IQ was unrelated to genotype in formula-fed infants, we found that 

offspring genotype is not related to MDI, an early test of toddler global mental and motor 

development, in the formula-fed cohort.    

 

CLINICAL IMPLICATIONS 

The results of the present analyses have important implications for the design of 

future studies intended to assess the influence of DHA supplementation on maternal and 

infant outcomes.  A number of studies have observed a reduction in the concentration of 

plasma and erythrocyte ARA with DHA supplementation (105-108).  Interestingly, we 

found that FADS minor alleles exaggerated the observed supplementation-associated 

reduction in RBC-ARA in a dose-response manner, whereas RBC-ARA was not reduced 

among FADS major allele homozygotes.   

It is possible that DHA supplementation decreases the expression of the Δ-5 and 

Δ-6 desaturase, further reducing ARA synthesis in minor allele carriers.  This hypothesis 

is supported by a recent animal study designed to examine the effect of dietary -

linolenic acid on FADS expression (109), and another in preterm infants utilizing stable 

isotope technology (110).  In the latter, infants fed 0.97 and 0.64% n-6 and n-3 LC-

PUFAs by weight (111) showed a dramatic reduction in endogenous LC-PUFA synthesis 
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by 7 months of age compared to infants fed a formula devoid of long-chain poly 

unsaturated fatty acids (110).  It seems likely that substrate availability plays an important 

role in the regulation of FADS gene expression.  Our findings suggest that those more 

susceptible to reduced enzymatic function (FADS minor allele carriers) are more affected 

by supplementation than major allele homozygotes. 

   As the effects of reduced RBC-ARA on the growing fetus and child are not 

fully understood, it is possible that an optimal level of DHA supplementation exists, 

beyond which less advantageous outcomes are observed.  ARA is considered important 

for fetal and infant growth and development (58, 59), and it is currently added to US 

infant formulas with DHA.  When given in combination with DHA supplementation, 

there is limited evidence for a beneficial effect of ARA on brain development and 

function (51).  However, low ARA status may be involved in the development of 

neuromental disorders such as schizophrenia (65). 

    Moltó-Puigmartí et al. observed that the proportion of DHA in plasma 

phospholipids in pregnant women increases with dietary intake, irrespective of the FADS 

genotype, while DHA proportions in milk increase only in major-allele carriers (83).  

Here, even after controlling for the proportion of DHA in maternal red blood cells, a 

significant diet-gene interaction remained.  Regardless of DHA status, women carrying 

two copies of the minor allele for FADS2 SNP rs174575 had a lower proportion of milk 

DHA than major-allele carriers.  Thus, infants nursing from women carrying two copies 

of the minor allele consume a lower concentration of DHA than those nursing from 

major-allele carriers.  As DHA continues to accumulate in the human brain after birth 
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(92, 112) and postnatal supplementation has shown benefits on the Brunet-Lezine Scale 

(49, 50), Bayley Scales (51), and Weschler Primary Preschool Scale of Intelligence (52), 

this may have important implications for early cognitive development. 

Caspi et al. previously found that adults carrying a copy of the major allele have a 

6.4 to 7.0-IQ point advantage if breastfed in infancy (80), but did not have information on 

maternal genotype.  Based on our previous findings and recent reports indicating that 

FADS2 minor allele homozygotes have a lower proportion of breast-milk DHA (83, 85) 

regardless of dietary intake or status (80), we hypothesized that offspring genotype was 

serving as a surrogate for maternal genotype, and the influence of FADS2 on cognition 

was conferred via differences in breast-milk DHA.  Although the results of our final 

analysis do not support this hypothesis, but reinforce the findings of Caspi et al., it is 

possible that the observed reduction in breast-milk DHA may influence other, more 

specific measures of cognitive development.  If verified, genotype-specific dietary 

recommendations to enhance growth and cognitive development in at-risk infants may be 

warranted.  However, in this case, at-risk infants would be identified by maternal 

genotype, and the child, rather than the mother, would receive DHA supplementation. 

 

LIMITATIONS 

The present studies used a sample of convenience from a trial powered to 

examine the influence of prenatal DHA supplementation on birth outcomes.  Few women 
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had two copies of the minor allele for the genes examined.  Although we found highly 

significant differences, small sample sizes may be misleading.   

In addition, the breast and formula-fed cohorts were defined according to the 

provision of a milk sample at 6 weeks postpartum; we did not account for overall length 

of breastfeeding.  However, we still observed significant differences between the two 

cohorts that are consistent with previous research. 

Finally, data splitting for model validation would have severely reduced the 

number of minor allele homozygotes for model building and, thus, was not employed.  

Additional observations should be collected to validate the predictive ability of the 

models used in this study.   

   

FUTURE DIRECTIONS 

Although maternal genotype was not related to 18-month MDI in the present 

analyses, future studies examining the influence of reduced breast-milk DHA among 

FADS minor allele homozygotes are warranted.  DHA continues to accumulate in the 

human brain after birth (92, 112), and postnatal supplementation has shown benefits on 

several measures of intelligence (49-53).  Recent studies indicate the BSID II MDI is not 

particularly responsive to long-chain polyunsaturated fatty acid (LC-PUFA) 

supplementation/status (116-118), and a more comprehensive and sensitive approach, in 

which specific measures of cognitive function are assessed, may be more appropriate. 
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Future studies should also determine whether the observed reduction in ARA 

status that accompanies DHA supplementation in minor-allele carriers adversely affects 

developmental outcomes in infants.  As the ideal level of DHA intake is likely to be 

genotype-specific, studies should also include various FADS genotypes as covariates of 

projected outcomes. 

 

CONCLUSIONS 

Together, the results of the present analyses suggest that DHA supplementation 

compensates for the lower proportion RBC-DHA observed among FADS1 minor-allele 

homozygotes, but exaggerates the supplementation-associated reduction in RBC-ARA 

among FADS minor-allele carriers.  They support the hypothesis that polymorphisms in 

FADS2 limit DHA in breast milk and confirm the previous observation that the FADS2 

rs174575 genotype of the infant moderates the association between breastfeeding and an 

early measure of infant developmental status. 
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APPENDIX A: 

 

PROCEDURE FOR THE COLLECTION OF BUCCAL CELLS 
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1. To collect cells, place the buccal collection brush into the child’s mouth and 

scrape the cheek pouch (the space between the gums and inner cheek) or 

underneath the tongue 10 times. 

Important Notes: 

To avoid issues of contamination, wait at least 1 hour after the child last 

consumed milk or food to collect the buccal cells, and allow the child to 

drink water before collection. 

Avoid rubbing the collection brush directly on the child’s teeth to 

minimize the amount of bacteria transferred. 

Never allow the collection brush to contact any other surface, including 

gloved hands. 

  

2. Once collected, cut the end of the brush into an autoclaved 1.5 mL 

microcentrifuge tube.  

Important Notes: 

To avoid contamination, always use a new pair of autoclaved scissors for 

each subject.  Do not remove the scissors from the jar until the sample has 

been collected.  Do not allow the blade or the tip of the scissors to touch 

any surface other than the collection brush.  
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Do not place hands inside jar containing autoclaved microcentrifuge tubes.  

Rather, remove the foil covering the jar and shake a tube onto the inside 

surface of the foil.  (Avoid touching the foil to prevent contamination.)  

Then drop the tube onto a clean surface.  Do not place any unused tubes 

back in the jar.  Close the lid of the microcentrifuge tube immediately and 

do not open until sample has been collected.  (DNA present in the air can 

easily contaminate samples.)  Never touch the inside of the 

microcentrifuge tube, including the inside surface of the lid.    

 

3. Label the outside of the tube with a permanent marker (include the date of 

collection) and store at room temperature (15 – 25°C). 
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APPENDIX B: 

 

DNA PURIFICATION FROM A BUCCAL BRUSH 

(ADAPTED FROM THE GENTRA PUREGENE HANDBOOK) 
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1. To collect buccal cells, scrape the inside of the mouth 10 times with a Buccal 

Collection Brush. 

For best results, wait at least 1 hour after eating or drinking to collect buccal cells.   

2. Remove the collection brush from its handle using sterile scissors, and place the 

detached head into a sterile 1.5 mL microcentrifuge tube. 

DNA may be purified immediately or samples may be stored on the collection 

brush for up to 1 month at room temperature (15 – 25°C). 

3. Dispense 300 µL Cell Lysis Solution into the microcentrifuge tube.  

Samples are stable in Cell Lysis Solution for at least 2 years at room temperature. 

If 300 µL of Cell Lysis Solution is not sufficient to cover the head, the protocol 

must be scaled up to use a larger volume.  Contact QIAGEN Technical Services 

for more information.  

4. Add 1.5 µL Puregene Proteinase K (cat. no. 158918), mix by inverting 25 times, 

and incubate at 55°C for at least 1 hour (up to overnight for maximum yield) to 

complete cell lysis. 

5. Remove the collection brush head from the Cell Lysis Solution with sterile 

forceps, scraping it on the sides of the tube to recover as much liquid as possible. 
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6. If RNA-free DNA is required, add 1.5 µL RNase A Solution and mix by inverting 

25 times.  Incubate for 15 minutes at 37°C.  Incubate for 1 minute on ice to 

quickly cool the sample. 

Samples can be incubated at 37°C for up to 1 hour. 

7. Add 100 µL Protein Precipitation Solution and vortex vigorously for 20 seconds 

at high speed. 

8. Incubate for 5 minutes on ice. 

9. Centrifuge for 3 minutes at 13,000 – 16,000 x g. 

The precipitated proteins should form a tight pellet.   

If the protein pellet is not tight, incubate on ice for 5 minutes and repeat 

centrifugation. 

10. Pipet 300 µL isopropanol and 0.5 µL Glycogen Solution (cat. no. 158930) into a 

clean 1.5 mL microcentrifuge tube, and add the supernatant from the previous 

step by pipetting carefully. 

Be sure the protein pellet is not dislodged while pipetting.  

11. Mix by inverting gently 50 times. 

12. Centrifuge for 5 minutes at 13,000 – 16,000 x g. 

13. Carefully discard the supernatant.  
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14. Remove any remaining solution with a pipette, taking care that the pellet remains 

in the tube. 

15. Add 300 µL of 70% ethanol and invert several times to wash the DNA pellet. 

16. Centrifuge for 1 minute at 13,000 – 16,000 x g. 

17. Carefully discard the supernatant.  Remove any remaining solution with a pipette, 

taking care that the pellet remains in the tube.  Allow to air dry for up to 15 

minutes. 

The pellet might be loose and easily dislodged. 

18. Add 25 µL DNA Hydration Solution and vortex for 5 seconds at medium speed to 

mix. 

19. Incubate at 65°C for 1 hour to dissolve DNA. 

20. Incubate at room temperature overnight with gentle shaking.  Ensure tube cap is 

tightly closed to avoid leakage.  Samples can then be centrifuged briefly and 

transferred to a storage tube. 
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APPENDIX C: 

 

PREPARATION OF REACTION MIX AND PLATE USING WET DNA DELIVERY METHOD  

ADAPTED FROM THE TAQMAN® GENOTYPING MASTER MIX PROTOCOL 
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1. Calculate the number of reactions to be performed for each assay, including extra 

reactions (approximately one extra reaction for every 10 required reactions) to 

provide excess volume for the loss that occurs during reagent transfers.  Include at 

least two no template controls (NTCs) and (if needed) at least one genomic DNA 

control of known genotype on each plate to ensure accurate genotype calling. 

2. Calculate the volume of each reaction mix component needed for each assay by 

multiplying the appropriate volume from the table below by the number of 

reactions determined in step 1. 

Reaction Components 
Volume/Well  

(5 µL volume reaction) 

TaqMan
®
 SNP Genotyping Assay Mix (20X) 0.25 µL 

TaqMan
® 

Genotyping Master Mix (2X) 2.50 µL 

 

3. Gently swirl the bottle of 2X TaqMan® Genotyping Master Mix to mix. 

4. Vortex and centrifuge the 20X genotyping assay mix briefly. 

5. Pipette the required volumes of 2X TaqMan® Genotyping Master Mix and 20X 

genotyping assay mix into a sterile 1.5 mL microcentrifuge tube.  (Perform steps 

5, 8, 9, 10, and 11 in a dead-air hood.  Pipette all solutions with low-retention, 

aerosol-resistant pipette tips, and wipe down all pipettes with RNase Away® 

before use.)  

6. Cap the tube and vortex briefly to mix the solutions.   
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7. Briefly centrifuge the tube to spin down the contents and eliminate air bubbles 

from the solution. 

8. Pipette 2.75 µL of the reaction mix into each well of the reaction plate. 

9. Inspect each well for volume uniformity, noting which wells do not contain the 

proper volume. 

10. Pipette 2.25 µL of one control or diluted DNA sample into each well of the plate. 

11. Cover the plate with MicroAmp® Optical Adhesive Film, and smooth firmly with 

a MicroAmp® Adhesive Film Applicator to prevent evaporation of the plate 

contents. 

12. Briefly centrifuge the plate to spin down the contents and eliminate air bubbles 

from the solutions. 
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APPENDIX D: 

 

PCR PROTOCOL FOR FADS SNP RS174575 AND RS174553 GENOTYPING  
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