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Abstract 

Although the general influence of rock fabric on porosity and ǇŜǊƳŜŀōƛƭƛǘȅ όʊ-k) within 

ŎŀǊōƻƴŀǘŜǎ ƛǎ ǿŜƭƭ ŘƻŎǳƳŜƴǘŜŘΣ ƛŦ ŀƴŘ Ƙƻǿ ǇƻǊŜ ŜǾƻƭǳǘƛƻƴ ŀƴŘ ʊ-k scatter quantitatively relate 

to depositional fabric remains poorly constrained.  This project empirically explores this 

uncertainty within oolitic grainstones from a range of geologic ages and diagenetic histories to 

understand depositional sediment-pore relationships, and how they can evolve with lithification.  

Integrating data from point counting, digital image analysis, nuclear magnetic resonance and core 

analysis of Holocene, Pleistocene, Pennsylvanian, and Mississippian oolitic grainstones reveals 

quantitative relations among rock fabric, pores, and petrophysical parameters.  Oolitic 

grainstones of similar sedimentology taken from distinct diagenetic scenarios display a unique 

ŎƻƳōƛƴŀǘƛƻƴ ƻŦ ǇƻǊŜ ǎƛȊŜΣ ǎƘŀǇŜΣ ǎǇŀǘƛŀƭ ŘƛǎǘǊƛōǳǘƛƻƴΣ ŀƴŘ ʊ-k character.  Within each scenario, 

grain size, sorting, and type are correlated more closely with pore attributes and k than 

cementation and compaction.  Collectively, these results are interpreted to suggest that 

diagenesis defines the absolute values of pore attributes and petrophysical parameters, but 

sedimentology controls the trends or variability within an oolitic succession.  The implication of 

these findings is that petrophysical variability within oolitic reservoirs closely follows 

sedimentologic trends, which may be predictable within a stratigraphic framework.  

 

  



iv 
 

Acknowledgments 

This research was funded by Kansas Interdisciplinary Carbonates Consortium at the University of 

Kansas and the Geological Society of America.  Many have contributed to my experience and 

ǇǊƻƎǊŜǎǎƛƻƴ ǘƘǊƻǳƎƘ ǘƘŜ aŀǎǘŜǊΩǎ ǇǊƻƎǊŀƳ ŀǘ ǘƘŜ ¦ƴƛǾŜǊǎƛǘȅ ƻŦ YŀƴǎŀǎΩǎ 5ŜǇŀǊǘƳŜƴǘ ƻŦ DŜƻƭƻƎȅΦ  

First and foremost, I am especially grateful for my advisor Gene Rankey.  I am eternally grateful 

for him believing in me and giving me the opportunity to work under him.  DŜƴŜΩǎ ƛƴǾŜǎǘƳŜƴǘ ƛƴ 

Ƙƛǎ ǎǘǳŘŜƴǘǎΩ ƻǾŜǊŀƭƭ ǎǳŎŎŜǎǎ ƛǎ ǳƴƳŀǘŎƘŜŘΦ  His guidance and patience embodies the exemplary 

advisor.  His technical and non-technical support gave me the opportunity to be successful as a 

geologist and person throughout life.  I also recognize my advisory committee members of Drs. 

Chi Zhang and Lynn Watney.  ChiΩǎ NMR laboratory facilities were crucial to the completion of 

this study, and she provided valuable guidance on petrophysical methodologies and 

interpretation.  [ȅƴƴΩǎ ŜȄǇŜǊƛŜƴŎŜ ŀƴŘ ƪƴƻǿƭŜŘƎŜ ƻŦ Yŀƴǎŀǎ ƎŜƻƭƻƎȅ ǿŀǎ ƛƴǎǘǊǳƳŜƴǘŀƭ ƛƴ ǎƘŀǇƛƴƎ 

this study.    

 I thank Nikki Potter and the Kansas Geological Survey for lending their time and facilities 

during the selection and collection of the core samples in this study.  I also would like to highlight 

the KGS for their exceptional organization and documentation, which provides aspiring scientists 

with the public resources and structure to contribute to the greater geoscience community.  In 

addition, I thank Dr. Jon Smith at the KGS for allowing me to use his petrographic facilities, which 

allowed me to obtain data that was fundamental to this study.  I am also grateful for the fellow 

students in 5ǊΦ wŀƴƪŜȅΩǎ ǊŜǎŜŀǊŎƘ ƎǊƻǳǇΣ ǿƘƻ ǇǊƻǾƛŘŜŘ countless conversations, brainstorms, and 

feedback that helped me progress throughout my time at KU.   



v 
 

 I cannot conclude without thanking my friends and family.  My friends at KU kept me 

positive and productive during these past few years, and I will always think fondly on my time in 

Lawrence.  My family kept me grounded and never allowed me to lose sight of who I am despite 

the anxiety, pressure, and loneliness which can sometimes accompany graduate school.  I am 

extremely grateful for their tremendous love and support from states away.  In no small part are 

they responsible for the man I have grown to be and the work I produce. 

 

  



vi 
 

Table of Contents 

Abstract ............................................................................................................................... iii 

Acknowledgments ................................................................................................................ iv 

List of Figures and Tables ..................................................................................................... viii 

Introduction .......................................................................................................................... 1 

Background ........................................................................................................................... 2 

Methods ............................................................................................................................... 4 

Sample Collection and Preparation ............................................................................................. 4 

Characterization of Rock Fabric .................................................................................................. 4 

Characterization of Pore Attributes ............................................................................................ 6 

Characterization of Porosity and Permeability ......................................................................... 10 

Results ................................................................................................................................ 11 

Sedimentologic and Diagenetic Variability among Sample Groups ......................................... 11 

Comparison of Pores and ʊ-k among Sample Groups ............................................................. 12 

Depositional Fabric: Influence on Pore Attributes .................................................................... 14 

Pore Attribute Controls on ʊ-k ................................................................................................. 16 

Sedimentologic Controls on ʊ-k ............................................................................................... 18 

Discussion ........................................................................................................................... 19 

Implications ........................................................................................................................ 26 



vii 
 

Conclusions ......................................................................................................................... 30 

References Cited ................................................................................................................. 32 

Figures ................................................................................................................................ 42 

Tables ................................................................................................................................. 54 

Appendices ......................................................................................................................... 57 

Appendix 1: Results of Multivariate Linear Regression ............................................................ 57 

Appendix 2: Raw Data from Holocene Samples ........................................................................ 58 

Appendix 3: Raw Data from Pleistocene Samples .................................................................... 64 

Appendix 4: Raw Data from Pennsylvanian Samples ............................................................... 74 

Appendix 5: Raw Data from Mississippian Samples ................................................................. 83 

 

 

  



viii 
 

List of Figures and Tables 

FIGURES  

Figure 1 ς Illustrative thin section photos of sedimentologic and diagenetic variability  

Figure 2 ς Quantitative data on variability of rock fabric among samples 

Figure 3 ς Thin section photos of representative samples and associated NMR T2 curves 

Figure 4 ς Digital image analysis data characterizing pore size and shape 

Figure 5 ς Lacunarity data and illustrative examples   

Figure 6 ς Scatterplot of porosity and permeability data  

Figure 7 ς Photomicrographs and NMR T2 curves of illustrative Holocene sediment  

Figure 8 ς Quantitative relations among rock fabric and pore attributes in lithified sample 

groups 

Figure 9 ς Photomicrographs and NMR T2 curves of samples with permeability varying 3+ orders 

of magnitude 

Figure 10 ς Scatterplots of pore attributes and permeability 

Figure 11 ς Scatterplots and correlation coefficients revealing quantitative relations between 

depositional fabric and permeability 

Figure 12 ς Photomicrographs and scatterplots illustrating relations among depositional fabric, 

ǇƻǊŜǎΣ ŀƴŘ ʊ-k across diagenetic scenarios 

 

TABLES 

Table 1 ς Sedimentologic, stratigraphic, and diagenetic character of sample groups 

Table 2 ς Definitions of pore attributes defined by digital image analysis   



ix 
 

Table 3 ς Data types used throughout the study  

 



1 
 

Introduction 

Many prolific hydrocarbon reservoirs produce from carbonate strata, but carbonate reservoir 

characterization can prove challenging due to complex pore networks.  In seeking to understand 

the controls on these pore networks, numerous studies have documented variations in porosity 

ŀƴŘ ǇŜǊƳŜŀōƛƭƛǘȅ όʊ-k), and how these relate to carbonate rock fabrics (Lucia 1983, 1995, 1999; 

Jennings and Lucia, 2001; Cruz et al., 2006; Lønøy 2006), integrating parameters such as particle 

size (Lucia, 1983; Jennings and Lucia, 2001) or depositional texture (Jones and Xiao, 2006).  These 

and other studies of carbonate pores commonly assume part or all of a logical linkage: a) rock 

fabric defines pore attributes (e.g., pore-size distribution); b) pore attributes control 

permeability; and c) as a result, rock fabric controls permeability (Enos and Sawatsky, 1981; Lucia, 

1983, 1995, 1999; Melim et al., 2001; Weger et al., 2009).   

As rock fabric is shaped by depositional aspects (e.g., grain size, sorting, and type) and 

diagenetic attributes (e.g., cement abundance, compaction porosity loss)Σ ŀ ǉǳŜǎǘƛƻƴ ƻŦ άƴŀǘǳǊŜ 

ƻǊ ƴǳǊǘǳǊŜΚέ ŎƻƳƳƻƴƭȅ ŀǊƛǎŜǎ.  AǊŜ ǇƻǊŜ ƴŜǘǿƻǊƪǎ όŀƴŘΣ ǎǳōǎŜǉǳŜƴǘƭȅΣ ʊ-k) controlled more by 

their sedimentary starting point (i.e., the attributes of sedimentologic components) or by the 

changes they undergo (i.e., diagenetic modifications)?  Carbonate rocks can display pronounced 

diagenetic overprinting; thus, the links from depositional attributes to petrophysics have the 

potential to be tenuous.  Perhaps as a result, efforts to systematically and quantitatively link 

attributes of depositional fabric (primary sedimentologic components; Choquette and Pray, 

1970) to pores, and further, to petrophysical variability, are few. 

To explore these challenges, this project quantitatively tests two linked hypotheses: 1) 

varied depositional fabrics correlate to distinct pore attributes; and 2) pore attributes and total 
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porosity control permeability.  To explore these hypotheses and unravel rock fabric-pore 

attribute links, and pore attribute-k links, this project examines oolitic grainstones, a class of 

deposits present in carbonate accumulations of almost every geologic age.  Oolitic deposits also 

represent important hydrocarbon reservoirs across the globe, from the U.S. Midcontinent 

(Watney and French, 1988; Abegg, 1991) and Gulf Coast (Melas and Friedman, 1992) to the 

Middle East (Lindsay et al., 2006; Esrafili-Dizaji and Rahimpour-Bonab, 2014; Hollis et al., 2017) 

and Far East (Ma et al., 2011).  This study statistically integrates results from petrographic point 

counting, digital image analysis (DIA), nuclear magnetic resonance (NMR), and core analysis.  

Characterizing strata from a range of ages, the ultimate goal is to resolve the degree to which 

relationships among sedimentology, pores, and petrophysical responses are maintained in 

oolites that have undergone a range of diagenetic histories.  The results illustrate how different 

depositional properties can influence petrophysical trends and heterogeneity within comparable 

oolitic reservoirs, information pivotal to advancing conceptual understanding and quantitative 

models of oolitic carbonate reservoirs.   

 

Background 

This study examines four groups of samples which represent distinct diagenetic settings (Figure 

1; Table 1) but include similar ranges of sedimentologic character (i.e., granulometry, grain type 

proportions) (Figure 2).  These four sample groups could be considered distinct diagenetic 

ΨscenariosΩ: un-lithified sediment, early diagenesis, and two distinct late diagenetic end members.  

Together, these groups represent άsnapshotǎέ along potential diagenetic pathways, facilitating 

understanding of original pores and how they can be modified by diagenesis.  Not every possible 
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diagenetic scenario is included, however, and certainly other diagenetic pathways could be 

considered.  

 The sediment and rock samples include a range of sedimentologic, stratigraphic, and 

diagenetic character (Table 1; Figures 1, 2).  Holocene samples are unlithified oolitic sediment 

(i.e., the starting point for all oolitic grainstones) from Schooner Cays, Great Bahama Bank and 

Fish Cays, Crooked-Acklins Platform, Bahamas (Ball, 1967; Rankey and Reeder, 2011, 2012; 

Huber, 2016; Rush and Rankey, 2017) (Table 1; Figure 1A, B).  Pleistocene samples are lithified 

strata from Long Cay and Crooked Island, Crooked-Acklins Platform, Bahamas, units which have 

been exposed to marine and early meteoric diagenetic alterations (shallow burial [< 10m], low to 

moderate cementation [16.9% cement by volumetric abundance]) (Table 1) (A. Goers, 2018, 

personal communication).   These rocks were deposited as dominantly aragonitic sediment, and 

their mineralogy has stabilized only partly.  Cementation has occluded pores incompletely, and 

dissolution has created pores within grains (e.g., dissolved ooid laminae) and enlarged pre-

existing pores (Figure 1C, D).  These samples display pore systems that include a mix of 

interparticle pores, moldic pores, and microporosity.  Pennsylvanian samples are from reservoir 

intervals (Bethany Falls Limestone, Missourian Lansing-Kansas City Group) in multiple fields in 

Kansas (Watney and French, 1988; French and Watney, 1993; Byrnes et al., 2003) (Table 1).  These 

rocks likely also were deposited as aragonitic sediment (e.g., Sandberg, 1983) but, after extensive 

dissolution and cementation, now display well-developed moldic pores and some relict 

interparticle pores.  Oomolds are generally large (commonly hundreds of microns) and isolated; 

they may be crushed or preserved as round to oval shapes (Figure 1E, F).  As Pennsylvanian 

samples represent a moldic end member oolitic reservoir, they are distinct from Mississippian 
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samples (Abegg, 1991; Parham and Sutterlin, 1993) which display well-connected interparticle 

pores.  These samples were taken from the St. Louis B interval in productive fields in Southwest 

Kansas (Qi and Carr, 2005) and were deposited as dominantly calcitic sediment (e.g., Sandberg, 

1983), which is less susceptible to dissolution, preserving grains and much of the primary 

interparticle porosity (Figure 1G, H).  These rocks are broadly comparable to that of the Holocene 

in terms of grain condition and pore type, but have undergone various degrees of cementation 

and compaction. 

The samples from the Pennsylvanian and Mississippian intervals focus on porous zones 

within reservoirs, and do not include tight zones.  Furthermore, samples from all groups were 

selected to avoid fractures and touching vugs (non-fabric selective, interconnected pores; Lucia, 

1995), which can also impact permeability.  

 

Methods 

Sample Collection and Preparation 

Holocene sediment (n = 12) samples were collected at the sediment-water interface, whereas 

Pleistocene (n = 19) rocks were taken from outcrops as hand samples.  Downhole cores provided 

Mississippian (n = 18) and Pennsylvanian (n = 17) samples.  One-inch (2.54 cm) diameter plugs 

from hand samples or cores included ends that provided billets for thin sections.  Billets were 

impregnated with blue epoxy and subsequently cut for standard thin section preparation.  

 

Characterization of Rock Fabric 
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This study uses the term rock fabric to describe the solid constituents of a sediment or rock 

(Choquette and Pray, 1970).  Genetically, rock fabric includes both depositional (sedimentologic) 

and diagenetic components.  Depositional fabric refers to the characteristics of primary 

sedimentologic components (e.g., grain size), whereas characteristics of diagenetic origin are 

termed diagenetic attributes.   

To characterize the rocks, quantitative digital petrography using JMicroVision captured 

grain-size distribution.  Using this program, 100 grain-size measurements were taken at randomly 

generated points on thin section images.  As grain-size measurements extracted from thin 

sections are apparent sizes, they require conversion to be compared to sieve distributions of 

sediment samples (Flugel, 2010).  This study implements the regression model of Merta (1991) 

to transform thin section distributions to sieve-size distributions.  The cumulative frequency 

curves of these distributions facilitate the graphical extraction of graphic mean size όάgrain sizeέύ, 

ƛƴŎƭǳǎƛǾŜ ƎǊŀǇƘƛŎ ǎǘŀƴŘŀǊŘ ŘŜǾƛŀǘƛƻƴ όάsortingέύ, ƛƴŎƭǳǎƛǾŜ ƎǊŀǇƘƛŎ ǎƪŜǿƴŜǎǎ όάǎƪŜǿƴŜǎǎέύΣ ŀƴŘ 

graphic kurtosis όάƪǳǊǘƻǎƛǎέύ (Folk and Ward, 1957; Flugel, 2010).  These quantitative 

measurements were confirmed qualitatively against comparative grain-size and sorting charts.  

Grain size data presented herein use Udden size divisions with the Krumbein phi scale (Udden, 

1914; Krumbein, 1939).  

Point counting included grain type quantification.  Using a mechanical petrographic stage 

programmed for regular grid stepping, at least 300 observations per thin section differentiated 

ooids, composite grains, peloids, and various skeletal grains.  In addition to grain type, point 

counting facilitated the quantification of diagenetic parameters such as cement abundance and 

intergranular volume (IGV).  To characterize compaction, the relative abundance of grains, 
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interparticle cement, and interparticle porosity were documented, which was then used to 

ŎŀƭŎǳƭŀǘŜ ŀ ŎƻƳǇŀŎǘƛƻƴ ƛƴŘŜȄ όά/ht[έ in Lundegaard, 1992; Budd 2002): 

COPL = Pi ς ((100 - Pi) * IGV / (100 ς IGV)) 

COPL estimates interparticle porosity loss due to compaction.  Pi represents an assumed value of 

initial interparticle porosity, herein assumed to be 43%.  This value is consistent with porosity 

data for sedimentologically similar oolitic samples in Enos and Sawatsky (1981) and the NMR 

porosity data of Holocene sediment samples presented herein.  Fractures and stylolites are also 

documented, but generally are absent or very rare. 

 

Characterization of Pore Attributes 

Pore attributes such as pore size, shape, spatial distribution, and type are quantified using point 

counting, nuclear magnetic resonance (NMR), and digital image analysis (DIA).  Point counting 

differentiated the proportions of pore types.  The dominant pore types (Choquette and Pray, 

1970) in these strata include interparticle, intraparticle, and moldic.  

NMR provides bulk-property, three-dimensional estimations of porosity and pore-size 

distribution (Coates et al., 1999; Song, 2013).  During experiments, the NMR machine repeatedly 

transmits a magnetic pulse through fluid-saturated sediment or rock samples.  After each pulse, 

a receiver records the decay of resonating hydrogen ions in the pore fluids in the form of an echo 

decay (Coates et al., 1999).  These echo decays provide a multitude of information about pore 

networks.  This study utilizes T2 relaxation (transverse-relaxation-time) curves, which describe 

the time record of the full spectrum of decay signals (Coates et al., 1999).   T2 data are common 

in both laboratory and borehole settings (NMR logs).  Typically, T2 curves plot relaxation time 



7 
 

against amplitude, so that the area under the curve equals the initial amplitude of the echo decay, 

thus providing a measure of total porosity (Coates et al., 1999).  The full spectrum of relaxation 

times serves as a crude proxy for a pore-size distribution (T2 time Ғ pore size) (Coates et al., 1999; 

Vincent, 2011; Song, 2013).  These T2 relaxation curves (time domain) may be used to calculate 

pore-size distributions (length domain) quantitatively, by using certain calibrations and 

assumptions which may or may not hold for carbonate strata (Brownstein and Tarr, 1979; 

Godefroy et al., 2001; Vincent et al., 2011).  As such, this study presents T2 relaxation times 

instead of pore-size distributions.  Relaxation times are plotted on a logarithmic scale against 

porosity units (cf. Westphal et al., 2005).  From these T2 distributions, certain pore attributes can 

be extracted, including modal time (T2 Mode; cf. Doveton and Watney, 2014), mean time 

(logarithmic), curve peakedness (T2 Kurtosis), total porosity, and macro-/micro-porosity.   

Prior to laboratory NMR analysis, all sediment samples and plugs from core and outcrop 

were dried for at least 24 hours at 60°C.  Dried samples were weighed, subsequently saturated 

with deionized water under vacuum conditions for 10 hours, and then weighed again using a 

water displacement method.  Bulk volume calculated from these measurements provided input 

for each NMR experiment.  Samples were wrapped in Teflon tape during experiments to prevent 

water loss.  NMR experiments utilized a Magritek 2MHz NMR Rock Core Analyzer, and all 

experiments attained a signal-to-noise ratio (SNR) of at least 100:1.  

Digital image analysis (DIA) includes a suite of methods to quantify attributes of pores, 

such as size, shape, and spatial distribution (Ehrlich et al., 1984; Fortey, 1995; Anselmetti et al., 

1998; Russ, 1998; Lindqvist and Akesson, 2001; Weger et al., 2009) from digital images of thin 

sections.  Herein, DIA analyses generally mimic the methodology outlined in Weger (2006), and 
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include three broad steps: image acquisition, pore network segmentation, and pore geometry 

calculations.  Two-dimensional thin section images of each sample were acquired under plane-

polarized light (PPL).  Pore space in these images is distinguished readily because samples are 

saturated with blue epoxy.  Through image segmentation, a binary image of the pore network 

was created by designating all blue pixels as pore and non-blue pixels as rock matrix.  Any air 

bubbles were mapped as άǇƻǊŜέ ƛƴ ǘƘŜ ōƛƴŀǊȅ ƛƳŀƎŜǎ.  

DIA data used for pore geometry characterizations include two broad categories: metrics 

ǿƘƛŎƘ ǊŜǇǊŜǎŜƴǘ ǘƘŜ ƎŜƻƳŜǘǊȅ ƻŦ ƛƴŘƛǾƛŘǳŀƭ ǇƻǊŜǎ όάƭƻŎŀƭ ǇŀǊŀƳŜǘŜǊǎέ) and metrics which 

characterize the pore neǘǿƻǊƪ ŀǎ ŀ ǿƘƻƭŜ όάƎƭƻōŀƭ ǇŀǊŀƳŜǘŜǊǎέύ όwǳǎǎΣ мффуΤ ²ŜƎŜǊΣ нллсύΦ  

ImageJ software quantifies the raw measurements of pore area, perimeter, axis lengths of 

bounding ellipse, and the angle between axes.  These basic measurements facilitate the 

calculation of local parameters for each pore on each thin section image and include equivalent 

diameter, gamma, aspect ratio, circularity, roundness, and compactness (Weger, 2006; see Table 

2 for explanations).  These local parameters are summarized by statistics (e.g., mean, median, 

area-weighted mean) of their frequency distributions, which serve as global parameters.  

Additional global parameters are calculated to further describe the pore network, including: sum 

of pore area, sum of pore perimeters, and total perimeter over area (PoA).  DomSize is a size 

parameter (Weger, 2006) that represents the maximum pore size required to constitute 50% of 

the total pore area, or the pore size at the 50% threshold of a cumulative area curve, given in 

equivalent diameter.  Pores smaller than 100 pixels were omitted from data analysis (following 

Weger, 2006) to avoid distortion of geometric data by pores whose shapes may not be reliably 
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characterized.  As Holocene samples are loose sediment disturbed by collection and absent of 

compaction, DIA was not applied to these samples. 

Beyond pore size and shape, the spatial distribution of pores can be characterized using 

lacunarity analysis (Allain and Cloitre, 1991; Plotnick et al., 1993).  Lacunarity is a scale-dependent 

measure of spatial heterogeneity, which was assessed using the FracLac plug-in for ImageJ 

(Karperian, 2015).  Following Allain and Cloitre (1991), Plotnick et al. (1993), and Rankey (2002, 

2016), binary images (pore vs. non-pore) are scanned systematically at successive scales using a 

gliding box algorithm.  In this method, a square box of width r starts in the upper left corner of 

the thin section image, and the number of pixels within that box which represent pore space is 

documented, referred to as the box mass S.  The box then slides one increment to the right, again 

documenting S.  This process is repeated until all areas of the image have been analyzed.  A box 

mass probability distribution, Q(S,r), is generated: 

Q(S,r) = n(S,r) /  N(r), 

such that n(S,r) is the number of boxes with size r which contain a box mass S, and N(r) is the 

total number of boxes (Plotnick et al., 1993).  From this distribution, the first and second 

moments are calculated, representing the mean (Z1) and standard deviation (Z2), respectively.  

Lacunarity (L) of box size r is then calculated using the formula: 

L(r) = Z2 / (Z1)2 

This entire process and generation of a single lacunarity value is replicated for 9 incrementally 

larger box sizes, with the largest box size equal to 45% of the thin section area.  A single lacunarity 

value is the dimensionless ratio of variance to (mean)2 for a given box size, but ultimately is 

calculated across a range of box sizes.    
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The calculated lacunarity is a function of three factors.  First, the total porosity present in 

a thin section: at a given box size, samples of higher porosity will exhibit lower lacunarity than 

lower porosity samples.  Second, the box size: as box size increases, lacunarity will also decrease 

as the standard deviation decreases ǊŜƭŀǘƛǾŜ ǘƻ ǘƘŜ ƳŜŀƴΦ  ¢ƘƛǊŘΣ ǘƘŜ άƎŀǇǇƛƴŜǎǎέ ƻŦ ǘƘŜ ǇƻǊŜ 

network: for a given porosity, samples with clumped or isolated pores will exhibit higher 

lacunarity (Plotnick et al., 1996; Rankey, 2016).  Conversely, rocks with homogenously distributed 

pore networks exhibit lower lacunarity. 

Lacunarity data typically are presented by plotting lacunarity (in this study, 10 values for 

each thin section image) against box size on a log-log scale, to capture the scale dependence of 

the metric.  In addition, to recognize lacunarity distinctions among sample groups, lacunarity 

ǾŀƭǳŜǎ ŀǘ ŜŀŎƘ ōƻȄ ǎƛȊŜ ǿŜǊŜ ŀǾŜǊŀƎŜŘ ŦƻǊ ŀƴ ŜƴǘƛǊŜ ǎŀƳǇƭŜ ƎǊƻǳǇΣ ǇǊƻǾƛŘƛƴƎ ŀ άŎƘŀǊŀŎǘŜǊƛǎǘƛŎέ 

lacunarity distribution for each group.  Furthermore, to mitigate the effects of porosity 

differences between samples and sample groups, lacunarity distributions were normalized by 

dividing each value by the lacunarity at the smallest box size.  Where correlations of linear 

regressions required a singular lacunarity value, the value at the smallest box size was chosen.    

Across these analysis methods, pore attributes can be categorized by what they describe 

about a pore (Table 3).  For example, modal pore size or DomSize characterize pore size.  

Compactness or circularity characterize pore shape, and lacunarity assesses the spatial 

distribution of pores. 

 

Characterization of Porosity and Permeability  
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Routine core analysis measured Helium porosity (%), air permeability (md), and grain density 

(g/cm3) for Pleistocene (n = 13), Pennsylvanian (n = 16), and Mississippian (n = 16) rocks.  Some 

samples were unfit for analysis due to laboratory restrictions or sample quality (e.g., irregular 

plug shape or poor lithification), and thus, do not have ʊ-k data.  

These ʊ-k measurements are supplemented by NMR and DIA data.  NMR T2 curves 

provide porosity data, and a T2 cutoff (Coates et al., 1999) distinguishes micro- and macroporosity 

contributions.  Microporosity has been defined using any of a variety of criteria (summarized in 

Vincent et al., 2011), and many studies have investigated the T2 cutoffs that distinguish 

microporosity from macroporosity (Coates et al., 1999; Al-Marzouqi et al., 2010; Vincent et al., 

2011).  This study implemented a microporosity-macroporosity cutoff of 100 milliseconds (cf. 

Coates et al., 1999), corresponding roughly to a 5 micron pore (Al-Marzouqi et al., 2010).  Porosity 

derived from NMR is typically 3-4% porosity less than that from Helium analysis of samples 

herein.  Image analysis also provides porosity estimates, but DIA does not reliably resolve 

microporosity as defined in this study, because those pores are below the resolution of the 

thickness of the thin section (32 µm).  

 

Results  

Sedimentologic and Diagenetic Variability among Sample Groups 

Petrographic point counting quantifies the sedimentologic and diagenetic character of the four 

sample groups (Figure 2).  Samples are fine to coarse grained and moderately to very well sorted.  

Ooid abundance typically is greater than 50%.  Pleistocene samples have undergone relatively 

low cementation (reported as the percentage of the intergranular volume [IGV] occupied by 
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cement) and compaction (reported as interparticle porosity loss due to compaction, COPL).  

Pennsylvanian samples include the greatest cementation but low compaction, whereas 

Mississippian samples display relatively moderate cementation and high compaction.  

 

Comparison of Pores and ʊ-k among Sample Groups 

T2 distributions of representative samples from each sample group (Figure 3) reveal the general 

characteristics of the distinct pore-size distributions among groups.  For example, Holocene 

samples (n = 12) exhibit unimodal distributions with high-amplitude peaks (> 1 porosity units) in 

the macroporosity domain (average modal time = 563 ms), and total porosity averages 43.6%.  T2 

curves of Pleistocene samples (n = 15) are more complex, and commonly include bimodal 

distributions with low-amplitude T2 peaks (~0.5 porosity units) and modal T2 times in the macro-

porosity domain that are slightly smaller than Holocene sediment (average = 502 ms).  Average 

total porosity is 34.6%.  The peaks in the microporosity domain are pronounced, and 

microporosity commonly contributes more than 50% of total porosity.   

In contrast, Pennsylvanian samples (n = 12) exhibit unimodal T2 curves dominated by 

macroporosity.  Curves include moderate to high amplitude (> 0.5 porosity units) peaks with large 

modal relaxation times (average = 1.4 s), and an average total porosity of 20.0%.  T2 curves of 

Mississippian oolites (n = 17) are consistently unimodal with low amplitude peaks (< 0.5 porosity 

units) at large relaxation times (average = 1.1 s) and an average total porosity of 14.1%. 

 Quantitative pore attributes calculated using digital image analysis reveal differences in 

pore size, roundness, and spatial distribution in all three rock groups (Figures 4, 5).  Pores of 

Pleistocene samples are moderate in size (average DomSize = 131 µm) and exhibit low roundness 
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(average = 0.53).  In contrast, Pennsylvanian samples included larger (average DomSize = 189 µm) 

and rounder (average roundness = 0.58) pores, and Mississippian samples have the smallest 

(average DomSize = 84 µm) pores with relatively low roundness (average roundness = 0.53) 

(Figure 4). 

 Pores are not uniformly distributed.  Some samples (Figure 5A) include small pores that 

are evenly distributed, whereas others include larger pores which are more clumped (Figure 5B).   

The metric of lacunarity provides a means to quantify spatial heterogeneity in pores across a 

range of scales.  Analysis of samples reveals a range of lacunarity among individual samples.  In 

samples with similar porosity, pore networks which are more evenly distributed exhibit lower 

lacunarity (Figure 5A-C).   

However, not all samples have similar porosity.  In fact, differing total porosity among 

sample groups (e.g., Figure 3) is just one factor that contributes to each group displaying distinct 

average lacunarity distributions (Figure 5D).  To mitigate the effects of differing porosity, 

normalized lacunarity distributions were also compared (Figure 5E).  Data reveal pores of 

Pennsylvanian samples display relatively high lacunarity (i.e., isolated oomolds), whereas 

Mississippian samples include lowest lacunarity (i.e., evenly distributed intergranular pores).  In 

contrast, Pleistocene samples display relatively low lacunarity at box sizes < 7,000 µm2 (i.e., an 

even distribution similar to Mississippian examples), but have relatively high lacunarity at larger 

scales (i.e., clumped distribution akin to Pennsylvanian examples).   

 A plot of porosity versus permeability reveals that each sample group falls in distinct 

regions (Figure 6), akin to the data of Byrnes et al. (2003), which are also plotted.  Pleistocene 

rocks (n = 9) have high porosity (25.2 ς 38.3%) and generally high permeability (70 md ς 12.9 d) 
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but include scatter on ʊ-k plots.  Pennsylvanian samples (n = 15) display variable porosity (6.3 ς 

30.0%) and generally low but variable permeability (0.02 ς 145 md).  Pennsylvanian data broadly 

represent an extension of the Pleistocene ʊ-k trend (consistent with Cruz et al., 2006).  In 

contrast, Mississippian samples (n = 16) display a distinct trend, with low to moderate porosity 

(9.6 ς 21.2%) and moderate to high permeability (37 ς 1134 md), higher than Pennsylvanian 

samples of comparable porosity.  

 

Depositional Fabric: Influence on Pore Attributes 

The oolitic grainstones exhibit variability in terms of size, shape, and spatial distribution of pores 

(Figures 4, 5), distinctions that might be related to sedimentology.  For example, within the 

simplest case (uncemented Holocene sediment), fine-grained samples with low ooid abundance 

exhibit modal pore sizes smaller than coarse-grained samples with higher ooid abundance (Figure 

7A-C).  A three-dimensional scatterplot visually reflects how differences in grain size and ooid 

abundance are accompanied by changes in modal pore size (Figure 7D).  

These qualitative relationships can be quantified using multivariate linear regression by 

modeling the relationship between several independent variables (metrics of depositional fabric) 

and a dependent variable (e.g., one of the various attributes of pores or porosity).  For example, 

in these Holocene sediment samples, metrics of depositional fabric (including of grain size, 

sorting, ooid abundance and skeletal abundance) are correlated statistically (R2 = 0.92) with 

modal pore size (cf. Figure 7D).  These parameters also influence the range of pore sizes (T2 

Kurtosis; R2 = 0.83) and total abundance of macro-porosity (R2 = 0.69).  These relations quantify 

the qualitative observations that uncemented samples with larger grain sizes, better sorting, and 
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higher ooid abundance exhibit higher porosity (cf. Beard and Weyl, 1973), larger pores, and 

peaked (i.e., high kurtosis) pore-size distributions.  

 In lithified rocks, rock fabric is more complicated because it represents a combination of 

both depositional and diagenetic components.  Pleistocene pore networks reveal the effects of 

early diagenetic alterations, with pore-size distributions that are complex and commonly bimodal 

(e.g., Figure 3).  Despite these changes in the pore-size distribution, the modal macro-pore size 

is influenced by depositional fabric, as is pore complexity (i.e., perimeter over area) (Figure 8A-

B).  Fine-grained, poorly sorted rocks exhibit complex pore networks (high PoA); samples with 

larger grain size and increased sorting include simpler pores (low PoA).  Multivariate regression 

quantifies these relationships and reveals that attributes of Pleistocene depositional fabric 

exhibits significant (P < 0.05) quantitative relationships with pore size (measured as T2Mode, R2 

= 0.63) and pore complexity (PoA, R2 = 0.81) (Figure 8B, blue bars).  To assess the combined 

influence of sedimentology and diagenesis on pores, regressions included both depositional 

fabric and diagenetic metrics of cement abundance (% of IGV) and compaction porosity loss 

(COPL).  Integrating depositional and diagenetic attributes into the regressions with T2Mode, 

DomSize, and PoA increases R2 values to at least 0.80 (Figure 8B, orange bars).  

 Pennsylvanian samples are dominated by oomoldic pores, created by dissolution of ooids 

(Figures 1, 3C).  Thus, it is not surprising that pore size generally increases with grain size (Figure 

8C).  Metrics of depositional fabric also appear to influence the spatial distribution of pores in 

Pennsylvanian samples.  Higher ooid abundance is associated with higher porosity and lower 

lacunarity (i.e., a more evenly distributed pore network).  Multivariate regression reveals 

depositional fabric correlates with pore size, complexity, and lacunarity (Figure 8D), each with a 
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R2 of at least 0.55.  Including cementation and compaction porosity loss as inputs in the pore 

attribute regressions boosts correlations only marginally to between 0.58 and 0.78.    

 Similar to Pennsylvanian samples, pore sizes of Mississippian samples generally increase 

with larger grain size.  Differing pore sizes also coincide with changes in grain type: rocks with a 

higher ooid abundance correspond to larger pores (Figure 8E).  Depositional fabric exhibits 

significant statistical relationships with not only pore size, but also pore complexity and lacunarity 

(R2 > 0.54 for all) (Figure 8F; Appendix 1).  Including diagenetic factors of cementation and 

compaction increases the R2 of all three correlations, ranging from 0.65 to 0.91.  

 

Pore Attribute Controls on ʊ-k  

Porosity and permeability data reveal that each sample group displays distinct character on ʊ-k 

plots (Figure 6).  Pore-size distributions, one means to characterize pores, are approximated 

through NMR T2 curves.  T2 curves of Pleistocene samples indicate bimodal distributions revealing 

variable but pronounced (commonly > 50% of total ʊ) contributions from microporosity (T2 < 

100ms) (Figure 3).  The bimodal Pleistocene T2 curves are distinct from curves of Pennsylvanian 

and Mississippian samples, which generally display similar unimodal distributions with large (> 1 

s) modal relaxation times (Figure 3).   

Additionally, an explicit comparison of Pennsylvanian and Mississippian samples of 

comparable total porosity (Figure 9) reveals similarity among T2 curves across a range of 

permeability.  This observation of similar T2 curves, which suggests similar pore-size distributions, 

in samples with distinct permeability is surprising because pore-size distributions have been 

interpreted to control permeability (e.g., Lucia, 1983).  That rocks with visually comparable T2 
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curves (and presumably, pore-size distributions) include permeabilities spanning more than 

three orders of magnitude suggests that pore attributes other than pore-size distribution impact 

permeability (cf. Bliefnick and Kaldi, 1996; Melim et al., 2001; Weger et al., 2009).   

To assess the influence of pore attributes other than pore-size distribution on 

permeability, analyses also explicitly related pore geometry and spatial distribution to 

permeability variations.  Linear regressions reveal that pore complexity is the single parameter 

correlated most closely with k for Pleistocene samples (R2 = 0.74), followed by intergranular 

porosity (R2 = 0.61) and pore size (R2 = 0.57).  A 3D scatterplot (Figure 10A) illustrates that samples 

with low pore complexity, large pore sizes, and abundant intergranular porosity have high 

permeability.  A multivariate linear regression including those three pore attributes to estimate 

permeability indicates an R2 of 0.90 in Pleistocene rocks.   

Pennsylvanian samples include somewhat different trends.  Total porosity (NMR) displays 

the strongest correlation with k (R2 = 0.67).  Factoring in pore circularity and complexity as 

independent variables in a regression with permeability yields an R2 of 0.84.  These results 

demonstrate that Pennsylvanian samples with high porosity, circular pores, and low pore 

complexity include high permeability (Figure 10B).  In Mississippian samples, porosity (He) 

exhibits the strongest correlation of any individual parameter with permeability (R2 = 0.64), but 

pore size and spatial distribution are also correlated (R2 of 0.60 and 0.49, respectively).  Rocks 

with high porosity and large, evenly distributed pores yield high permeability (regression among 

these parameters has R2 of 0.88; Figure 10C).  

 Some pore attributes consistently yield a statistically significant relationship with 

permeability across all sample groups.  For example, abundant macroporosity and circular (high 
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circularity) pores favor elevated permeability in all groups (Appendix 1).  However, the pore 

attributes which are most closely correlated with k varies among ages, suggesting that certain 

pore attributes are more important in some sample groups than others.  For example, pore size 

shows no statistically significant relationship with k in Pennsylvanian samples (R2 = 0.02, P = 0.60), 

but it correlates to permeability of Mississippian samples (R2 = 0.60, P = 0.0004) (Appendix 1). 

 

Sedimentologic Controls on ʊ-k 

These results show the relations between depositional fabric and pore attributes, and among 

pore attributes and porosity and permeability.  The question remains: is there a direct link from 

ŘŜǇƻǎƛǘƛƻƴŀƭ ŦŀōǊƛŎ ǘƻ ʊ-k?  In short, the answer appears yes, as metrics of depositional fabric 

correlate to permeability in Pleistocene (R2 = 0.73), Pennsylvanian (R2 = 0.50), and Mississippian 

(R2 = 0.68) samples (Figure 11).  The details of which parameters are most relevant do vary 

among sample groups, however.  For example, in terms of individual parameters, grain size and 

ooid abundance are the parameters of Pleistocene depositional fabric most closely correlated 

to permeability: coarse grained deposits with high ooid abundance display high permeability 

(Figure 11A).  Although Pennsylvanian samples display more variability in permeability than 

Pleistocene samples, their sedimentologic attributes also correlate with permeability.  In 

contrast to Pleistocene samples, sorting has an impact greater than grain size on permeability, 

and well-sorted samples with high ooid abundance yield the highest permeability (Figure 11B).  

Interestingly, although they include pore types distinct from Pennsylvanian samples, 

Mississippian samples document similar relationships, with well-sorted samples with high ooid 

abundance displaying high permeability (Figure 11C).  Including the diagenetic attributes of 
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cement abundance and compaction strengthens correlations within each sample group only 

marginally, increasing the R2 between 0.12 and 0.15 (Figure 11).   

Although the specific metrics of depositional and diagenetic variability that are most 

strongly related to pore attributes and on to permeability are distinct among sample groups, 

one link appears consistent.  In each, ooid abundance and sorting are related to lacunarity 

(Figure 12A) - higher ooid abundance and better sorting result in lower lacunarity, or more 

evenly distributed pore networks.  Such relations are intuitive for samples both with 

interparticle pores and moldic pores.  These relations can be extended to permeability, as well.  

A plot of lacunarity, pore compactness, and k illustrates that samples with compact and evenly 

distributed pores have high k (Figure 12B).  These findings indicate a linkage of depositional 

fabric to pore attributes, and pore attributes to permeability across several diagenetic 

scenarios. 

 

Discussion 

Oolitic grainstones have excellent reservoir potential at the time of deposition; however, as 

diagenesis ensues, pore structure and connectivity can vary widely (Hollis et al., 2017).  To 

address this variability, this study examines oolitic samples from multiple geologic ages that 

represent a range of diagenetic scenarios (i.e., deposition, early lithification, and two distinct late 

diagenetic pathways).  In doing so, it tests the hypothesis that varied depositional fabrics 

correlate to changes in pore attributes, and those variations in pore attributes control differences 

in permeability.    
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Although the absolute magnitude of influence of specific sedimentologic attributes (e.g., 

grain size, sorting, or type) changes among sample groups, these measures exhibit statistically 

significant relationships with the size, shape, spatial distribution, and abundance of pores in all 

groups (Figure 8).  In Holocene examples, distinctions in depositional fabric correspond to 

changes in pore-size distributions, revealing that depositional fabrics control initial pore 

networks.  These depositional fabrics and associated pore networks are the framework for 

subsequent modification via diagenesis.  

In the early stages of diagenesis, depositional fabric retains an imprint on pore attributes, 

but the influence of diagenesis is also evident.  For example, T2 curves of Pleistocene samples 

include bimodal distributions, reflecting partial ooid dissolution, but the mode of macro-pore 

sizes also correlates to metrics of depositional fabric (R2 = 0.63).  These data quantify the 

qualitative observation that the sizes and types of grains impacts the size and shape of pores 

between those grains (Figure 2).  

Pennsylvanian samples experienced extensive diagenetic modification, in many cases 

resulting in an almost complete inversion of the rock matrix and pore network.  Yet, depositional 

fabrics display statistical correlations with pore size, complexity, and lacunarity, probably 

because many pores simply are former grains.  Perhaps surprisingly, because they are arguably 

the most diagenetically altered sample group, accounting for diagenesis (e.g., cement abundance 

and compaction porosity loss) boosts R2 values less in Pennsylvanian samples than in other 

sample groups.  One possible reason why άŘƛŀƎŜƴŜǎƛǎέ (as measured here) has a limited influence 

on pore attributes is that the intergranular space in most of the Pennsylvanian samples is filled 

almost entirely with cement (Figure 2B, average = 93%).  As such, the sample set does not provide 
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much variability, differences which could drive statistical distinctions in pore attributes.  

Alternatively, the Pennsylvanian samples herein show relatively limited compaction, and only 

10.4 % compaction porosity loss on average (Figure 2B).  Thus, it is not surprising that compaction 

ς as measured here ς does not have a marked statistical influence on prediction of pore attributes 

or permeability.  Nonetheless, other studies have documented the role of compaction and 

crushed molds in markedly enhancing permeability (e.g., Byrnes et al., 2003; Poteet, 2007).  

Perhaps using different metrics or a broader range of samples would reveal more subtle 

associations.  

As they are dominated by well-connected interparticle pores rather than isolated moldic 

pores, Mississippian samples represents a rock type that contrasts markedly with Pennsylvanian 

oomoldic samples.  Similar to Holocene examples, the sizes and shapes of grains have a direct 

impact on the attributes of intergranular pores.  Thus, despite considerable compaction and 

cementation, metrics of depositional fabric display statistically significant correlations to pore 

attributes describing pore size, complexity, and lacunarity. 

These results are consistent with numerous studies on siliciclastic and carbonate 

sediment which illustrate how depositional fabrics can control original pore networks (Krumbein 

and Monk, 1942; Beard and Weyl, 1973; Enos and Sawatsky, 1981; Sprunt et al., 1993).  For 

example, Krumbein and Monk (1942) and Sprunt et al. (1993) demonstrated that permeability of 

unconsolidated siliciclastic sand could be estimated reliably using grain size and sorting.  Similarly, 

Enos and Sawatsky (1981) demonstrated that depositional porosity and permeability of 

carbonate sediment varies with Dunham textural classification and grain-size distribution. 
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Similarly, even with a complete porosity inversion, in which pores become matrix and 

grains become pore, sedimentary attributes can markedly influence pore attributes at a reservoir 

scale.  For example, Byrnes et al. (2003) recognized multiple shallowing-upward cycles in a 

Pennsylvanian oomoldic reservoir in the Hall-Gurney Field of central Kansas.  These cycles include 

an upward increase in grain size, sorting, and ooid abundance, and are accompanied by an 

upward increase in oomold pore size and total porosity.  Similarly, examining the same reservoir 

of Hall-Gurney Field as Byrnes et al. (2003), Watney et al. (2006) demonstrated grain size 

distribution and grain type trends paralleled by changes in pore type.   They documented an 

upward increase in grain size, sorting, and ooid abundance that corresponded to increased 

abundance of oomoldic pores.  Collectively, the results document that trends between 

depositional fabric and pore attributes persevere across a range of diagenetic scenarios, although 

their absolute values do vary.   

An additional goal of this study is to understand which pore attributes control 

permeability.  Pore-throat-size distributions have been cited as a primary control on permeability 

(H. D. Winland, Amoco Production Co., unpublished; Pittman, 1992; Sigal, 2002).  Typically, pore 

throats are characterized via mercury injection-capillary pressure experiments, which can be 

expensive and are limited to laboratory measurements of cored samples.  In efforts to conserve 

cost and time, numerous methods more readily applied can estimate permeability. NMR, a 

relatively cheap and fast, non-invasive technique which can be undertaken using downhole logs 

in the absence of core, has been utilized to estimate permeability by several models (most 

notably, ά/ƻŀǘŜǎέ ƛƴ /ƻŀǘŜǎ Ŝǘ ŀƭΦΣ мфффΤ ά{5wέ ƛƴ YŜƴȅƻƴ Ŝǘ ŀƭΦΣ мффуύΦ  tǊevious research on 

carbonate pore networks has even suggested that pore-size distribution controls permeability 
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(Lucia, 1983, 1995, 1999; Coates et al., 1999; Jennings and Lucia, 2001; Weger et al., 2009; Smith 

and Hamilton, 2014).  In this context, the comparison of NMR T2 curves and ʊ-k data provides an 

interesting perspective.  Four illustrative T2 curves (from samples of comparable porosity) (Figure 

9) are nearly identical despite permeabilities that span almost 4 orders of magnitude.  These 

observations suggests that pore-size distributions are not sole controls on ʊ-k.   

These data reveal that pore-size distribution alone does not control permeability; rather, 

it is but one of several factors that impact permeability (Figure 10).  Among sample groups, 

fundamental differences in the geologic nature of pore networks (Figures 1, 4, 5; Table 1) are 

reflected in the variability in pore attributes which most directly influence k.  

An example of geologic influences is provided by the Pleistocene samples, rocks impacted 

only by early diagenesis.  As such, the possible effects of diagenesis are developed incompletely 

and, in some cases, unevenly distributed.  For example, cementation is uneven between 

laminations (Figure 1C) and ooid dissolution is incomplete (bluish hue of ooids, Figure 1D).  These 

geologic controls are reflected in the high total porosity (average 34.6%), and microporosity that 

accounts for more than half of total pore volume in some samples (Figure 3E).  Following Keith 

and Pittman (1982), Cantrell and Hagerty (1999), Byrnes et al. (2003), and Cruz et al. (2006), this 

microporosity may be isolated or poorly connected and thus have a negligible contribution to 

fluid flow.  As a result, total porosity is not a significant predictor of permeability.  Instead, pore 

complexity (PoA), pore size (DomSize), and intergranular porosity are the strongest permeability 

predictors (Figure 10A).  

In contrast, diagenesis is more advanced in Pennsylvanian samples.  A considerable 

portion of interparticle porosity is occluded by cement, and many ooids are dissolved completely 
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(e.g., Figure 1F), although neither process is universal in all samples (e.g., remnant interparticle 

porosity, minor grain preservation, Figure 1E).  These geologic effects result in pore networks 

characterized by (1) a volumetric contribution from microporosity less than that in Pleistocene 

samples (Figure 3), and (2) large, isolated pores representing oomolds (Figure 1E, 1F, 4, 5).  

Because microporosity is not as prevalent, the correlation between total porosity and 

permeability is clearer, showing a significant, positive statistical correlation (R2 = 0.67; P = 

0.0001).  Qualitatively, pore size does not appear to control pore throat size (Figure 1E, 1F), 

contrasting with Pleistocene and Mississippian samples in which larger pores are associated with 

larger throats (Figure 1C, 1D, 1G, 1H).  Assuming pore throat sizes control permeability, it is no 

surprise that pore size of Pennsylvanian samples does not show a significant statistical 

relationship with permeability (R2 = 0.03, P = 0.58).  In contrast, lacunarity has a significant 

correlation with permeability (R2 = 0.59, P = 0.002), suggesting that pore spatial distribution 

influences permeability markedly, but just a bit less than total porosity in Pennsylvanian samples. 

Mississippian samples have been subjected to advanced diagenetic modifications, 

although the effects are distinct from Pennsylvanian strata.  For example, on the whole, 

Mississippian samples display fewer dissolution features (e.g., moldic pores) and lower cement 

abundance, but commonly include well-developed compaction features (Figures 1G, 1H, 2B).  As 

a result, many Mississippian samples include lower porosity and pores which are smaller but 

more evenly distributed than Pennsylvanian examples (Figures 4, 5, 6).  Despite these geologic 

distinctions, as in Pennsylvanian samples, porosity of Mississippian samples displays the 

strongest relationship with permeability (R2 = 0.64).  However, in contrast to trends of 

Pennsylvanian samples, pore size displays a significant positive relationship with permeability (R2 
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= 0.60, P = 0.0004).  Similar to trends in Pleistocene samples, qualitative observations suggest 

that Mississippian samples with larger pores include larger pore throats (e.g., Figures 1G, 1H).   

Preceding results are consistent with hypotheses that varied depositional fabrics 

correlate to changes in pore attributes, and pore attributes control permeability.  If these 

concepts are valid, links between depositional fabric and permeability should be evident.  

Although correlations between depositional fabric and permeability are lower than those linking 

pore attributes and k (Figures 10, 11), sedimentologic attributes display statistically significant 

correlations with permeability in all three sample groups (Appendix 1).  Furthermore, results are 

consistent with the notions articulated by Lucia (1983, 1995, 1999), Jennings and Lucia (2001), 

and Jones and Xiao (2006), which suggested particle (i.e., grain) size is a primary control on 

porosity-permeability relationships, and the shape and sorting of those particles is also 

important.  This general concept that porosity and permeability are a function of deposition is 

broadly (albeit implicitly) applied in constructing facies-based geological models that use distinct 

ʊ-k distributions for each facies (e.g., Cavallo and Smosna, 1997; Palermo et al., 2012; Rush and 

Rankey, 2017).   

The results herein quantify how specific parameters of depositional fabric combine to 

influence permeability for different diagenetic scenarios.  The correlations between depositional 

fabric and permeability for each sample group (R2 = 0.73, 0.50, and 0.68 for Figure 10A, 10B, and 

10C, respectively) are stronger than those between diagenetic attributes (compaction porosity 

loss, % cement) and permeability (R2 = 0.61, 0.31, 0.41, respectively).  Collectively, these results 

suggest that, within each sample group, depositional fabric is a more direct control on pore 
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attributes and permeability than diagenetic attributes, at least for those metrics considered in 

this study (cf.  Lucia, 1983; Qiao et al., 2016; Hazard et al., 2017).    

These findings do not imply that diagenesis has no role in determining rock fabric-k 

relationships.  Diagenesis clearly impacted these samples, which include over-compacted and 

highly cemented rocks, as well as moldic pores (Figures 1, 2).  Rather, the present-day pore 

network is a complex function of both the initial sedimentologic character and the changes it 

underwent (i.e., nature and nurture).  For example, sedimentology defines the depositional pore 

network, can influence subsequent modifications, and as a result, controls the trends or 

variability of pores and ʊ-k within a succession (Figures 8, 11, 12).  However, as each sample 

group (representing distinct diagenetic scenarios) has a unique combination of pore size, shape, 

spatial distribution, abundance, and connectivity, diagenesis may define the absolute values of 

pore attributes and petrophysical parameters (Figures 3, 4, 5, 6).  This variability in diagenesis 

that effects different absolute values in porosity and permeability may also explain why 

correlations ς statistically significant within groups ς lack significant correlations across groups.  

 

Implications 

Many studies have illustrated how sediment character varies in Holocene oolitic tidal sand shoals 

(Newell et al., 1960; Ball, 1967; Hine 1977; Harris, 1979; Reeder and Rankey, 2011; Sparks and 

Rankey, 2013; Rush and Rankey, 2017).  In these shoals, systematic changes in sediment 

granulometry and grain type occur from bar crests to bar flanks, and among different geomorphic 

bar types (e.g., linear, parabolic, shoulder), which also include distinct internal architecture and 

sedimentologic character (Sparks and Rankey, 2013; Rush and Rankey, 2017).   As such, Holocene 
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shoals appear to include systematic stratigraphic (vertical and lateral) changes in grain size, 

sorting and type; these type of trends can persist as sediment becomes rock (Cantrell and Walker, 

1985; Evans et al. 1987; Lindsay et al., 2006; Hazard et al., 2017).  These types of sedimentological 

changes have the potential to influence ŀ ǊŜǎŜǊǾƻƛǊΩǎ pore network in at least two ways.  

First, sediment character defines the depositional pore network, which is the framework 

for subsequent modifications.   This concept is consistent with data of this study (Figures 1A-B, 

7), and is well documented in literature (Krumbein and Monk, 1942; Beard and Weyl, 1973; Enos 

and Sawatsky, 1981; Sprunt et al., 1993). 

Second, sedimentologic differences can influence diagenetic processes that modify 

depositional pores.  On a shoal scale, for example, Cantrell and Walker (1985) described an 

Ordovician oolite from Tennessee in which each shoal subenvironment was associated with 

distinct paragenetic sequences.  Mobile shoal and tidal channel facies experienced extensive 

early marine cementation, whereas bankward, stabilized environments underwent limited early 

cementation and retained primary porosity into later diagenesis.   

Similarly, Keith and Pittman (1982) documented trends within a Cretaceous shoal 

complex of the Rodessa Limestone in East Texas.  This study interpreted a skeletal-rich subfacies 

on the flanks of the shoal to have been exposed to active circulation of marine waters, facilitating 

extensive cementation and porosity reduction.  In contrast, the ooid-rich subfacies in the shoal 

crest was exposed to stagnant, near-equilibrium pore fluids, and had less cement, thus preserving 

porosity.  

At a finer scale, Halley and Evans (1983) and Evans and Ginsburg (1987) highlighted fabric-

selective diagenesis in the Pleistocene Miami Limestone.  In that unit, depositional fabrics within 
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individual cross-bed laminae control early cementation and pore development; coarser-grained 

laminae commonly show less abundant cement than finer-grained laminae.  This dynamic was 

interpreted to result from finer-grained layers that preferentially held water by capillary forces 

and included more possible cement nucleation sites.  Their observations are consistent with data 

from laminated Pleistocene samples in this study, in which laminae with contrasting grain sizes 

commonly show differences in cementation, with the finer-grained lamina including more 

abundant cement and lower porosity (e.g., Figure 1C).  Quantitatively, grain size in Pleistocene 

and Mississippian samples is inversely related to cement abundance (R2 = 0.40 and 0.22, 

respectively) - not strong correlations, but they are both statistically significant (P = 0.005 and 

0.05, respectively).  One possible reason these correlations are not stronger stems from the 

ƳŜǘǊƛŎǎ ǳǎŜŘ ƛƴ ǘƘŜ ŎƻǊǊŜƭŀǘƛƻƴǎΦ  Lƴ ǘƘƛǎ ǎǘǳŘȅΣ ƎǊŀƛƴ ǎƛȊŜ ƛǎ ǊŜǇǊŜǎŜƴǘŜŘ ōȅ ǘƘŜ ƳŜŀƴ ƻŦ ŀ ǎŀƳǇƭŜΩǎ 

grain size distribution; however, mean grain size does not capture the bimodal distribution of 

grain sizes in a laminated sample.  If grain size and cement abundance were compared within 

individual laminae, correlations would likely would be stronger.  Regardless, these examples at 

multiple scales demonstrate how depositional fabric (and hence, ʊ-k distribution) influences 

early fluid flow and cement nucleation sites, which in turn, can control diagenesis.   

As initial sediment character controls depositional pores and influences subsequent 

modifications, systematic stratigraphic changes in grain size, sorting, and type have the ultimate 

potential to influence petrophysical properties within oolitic reservoirs (cf. Jennings and Lucia, 

2001; Rankey et al., 2018). 

For example, Cantrell and Walker (1985) documented an Ordovician ooid shoal complex 

from Tennessee in which different shoal subenvironments include distinct sedimentologic 
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character and display distinct paragenetic sequences and porosity preservation.  Rocks 

interpreted to represent mobile shoal settings include coarse to very coarse, very well sorted 

sediment with high ooid abundance (presumably high depositional ʊ-k) and experienced 

extensive early marine cementation.  In contrast, rocks interpreted to represent a tidal channel 

facies are poorly sorted and include diverse grain types.  The channel deposits (presumably lower 

depositional ʊ-k) display less early marine cementation and preserve interparticle porosity.  

These observations are consistent with results of this study, in that sedimentologically distinct 

samples display differences in diagenetic effects, pore attributes, and petrophysical parameters.  

In another example, Cavallo and Smosna (1997) demonstrated how porosity trends mimic 

depositional patterns within a Mississippian oolitic shoal system of the Appalachian basin.  

Environments interpreted as shoal crests are coarse, well sorted sediment with high ooid 

abundance and relatively high porosity.  In contrast, shoal flanks include less porous interbedded 

packstone and grainstone of finer grain size, poorer sorting, and lower ooid abundance, and 

channels include non-porous bioturbated packstone.  The study documented that grain size, 

sorting, and ooid abundance increase towards the bar center and upward within the shoal, 

parallel to trends in porosity.  These conclusions are consistent with observations of this study 

which suggest increased grain size, sorting, and ooid abundance results in more favorable 

reservoir character.   

In a third example, Esrafili-Dizaji and Rahimpour-Bonab (2014) documented detailed 

sedimentologic patterns and associated petrophysical responses from the Permo-Triassic Dalan 

and Kangan formations of Iran (Khuff equivalents).  These strata include an upward increase in 

grain size, sorting, and ooid abundance within several shallowing-upward oolitic successions.  
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These sedimentologic changes are associated with concomitant upward increases in porosity and 

permeability within each succession.  These patterns are consistent with results of this study, as 

samples which show increased sorting and ooid abundance display favorable pore attributes 

(e.g., compact, evenly distributed pores) and resultant higher permeability (cf. Figure 12).  

Certainly, there are situations in which relations between depositional fabric and 

reservoir character do not hold.  For example, Wagner and Matthews (1981) interpreted porosity 

distribution within the Jurassic Smackover Formation of Arkansas to be unrelated to grain size, 

sorting, or type.  Instead, the study invoked a purely diagenetic control on petrophysical 

parameters.  Sediment which underwent mineral stabilization prior to burial resisted compaction 

and preserved porosity.  In contrast, sediment which had not stabilized mineralogically prior to 

burial experienced extensive compaction and porosity reduction.  In another study of the 

Smackover Formation, Heydari (2003) documents an example from southern Mississippi in which 

diagenesis has destroyed nearly all porosity, eliminating any potential influence of depositional 

fabric on reservoir character.  

 

Conclusions 

This study analyzes oolitic grainstones of four geologic ages which include similar ranges of grain 

size, sorting, and type, but represent distinct diagenetic scenarios (e.g., deposition, early 

diagenesis, distinct late diagenetic pathways).  These diagenetic distinctions result in each group 

including a unique combination of pore size, shape, spatial distribution, and connectivity.  Within 

each scenario, metrics of depositional fabric correlate more closely to changes in pore attributes 

and permeability than do diagenetic attributes.  Collectively, these results are interpreted to 
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suggest that sedimentology controls the trends or variability within a succession, but diagenesis 

may define the absolute values of pore attributes and petrophysical parameters.  The implication 

of these findings is that petrophysical trends within oolitic reservoirs are driven largely by 

differences established at the time of deposition, which may be predictable within a stratigraphic 

framework. 
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Figures 

 
Figure 1: Thin section photomicrographs illustrating sedimentologic and diagenetic variability 
within and among sample groups.  A) Fine, moderately sorted sand, Holocene.  B) Medium, well-
sorted sand, Holocene. C) Pleistocene sample showing parts of laminae.  The lower, fine-grained 
part includes more abundant cement; in contrast, the upper part is coarser and less well 
cemented.  D) Medium sand-sized, well-sorted Pleistocene sediment displaying partly dissolved 
ooids, associated moldic pores, and patchy cement.  E) Medium sand-sized, very well-sorted 
Pennsylvanian sample including oomoldic pores, occluded oomolds, recrystallized ooids, and 
some preserved interparticle pores.  F) Medium sand-sized, moderately sorted Pennsylvanian 
sediment with diverse grain types.  G) Medium sand-sized, well-sorted Mississippian sediment 
with patchy cement and compaction indicators such as sutured grain contacts and reduced 
intergranular volume.  H) Medium sand-sized, well-sorted Mississippian sediment with thin 
isopachous cement rims and few compaction features.   
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Figure 2: Quantitative metrics describing sedimentologic character and diagenetic attributes of 
the four sample groups.  On plots, whiskers represent minimum and maximum, and boxes 
represent 25th, 50th, and 75th percentiles.  A) Granulometry data, illustrating that samples are fine 
to coarse grained and moderately to very well-sorted.  Ooid abundance typically is greater than 
50%.  B) Cementation is reported as the percentage of the intergranular volume (IGV) which is 
occupied by cement, whereas compaction is reported as interparticle porosity loss due to 
compaction (COPL; calculated as in Lundegaard, 1992).  Note that Pleistocene samples have 
suffered relatively little cementation and compaction.  Pennsylvanian rocks include highest 
cement abundance but low compaction, whereas Mississippian samples display moderate 
cement abundance and high compaction. 
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Figure 3: Thin section photomicrographs (A-D) and associated NMR T2 relaxation curves (E) of 
representative, sedimentologically similar samples (well-sorted, medium sand) of each age (e.g., 
diagenetic scenarios).  For each T2 curve (Part E), relaxation time (a proxy for pore size) is plotted 
against porosity units so that the area under the curve corresponds to total porosity (%).  A) 
Unconsolidated Holocene oolitic sand with interparticle porosity.  This sample displays a high-
amplitude, unimodal peak in the macroporosity domain (> 100 ms) (see Part E).  B) Pleistocene 
grainstone.  Note cementation of interparticle pores and partial dissolution of grains (bluish tint).  
Resultant pore-size distribution is more complex, exhibiting a bimodal distribution with a 
moderate amplitude macroporosity mode and clear contributions of microporosity (Part E).  C) 
Pennsylvanian grainstone.  Grains are dissolved and original interparticle pores are largely 
occluded with cement, leaving large isolated oomolds within a cement matrix.  T2 curve (Part E) 
is dominantly unimodal with high amplitude mode at relaxation times greater than 1000 ms.  D) 
Mississippian grainstone. Note preserved ooids and interparticle pores; corresponding T2 curve 
(part E) displays low amplitude modes at relaxation times greater than 1000 ms.      
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Figure 4: Digital image analysis (DIA) data illustrating differences in pore size (DomSize) and shape 
(Roundness) of all three lithified sample groups.  On plots, whiskers represent minimum and 
maximum, whereas boxes represent 25th, 50th, and 75th percentiles.  Data show that Pleistocene 
pores are of moderate size and roundness, Pennsylvanian rocks display large, rounder pores, and 
Mississippian samples contain relatively small and less round pores. 
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Figure 5: Plot illustrating distinct patterns of pore configuration among samples and sample 
groups.  A-B) Binary images (red = pore) of two Pennsylvanian oomoldic samples with similar 
porosity (~10%, from DIA), each representing an area ~1.5 cm in width.  Sample in part A includes 
relatively small, evenly distributed pores, whereas sample in part B includes relatively clumped, 
isolated pores.  C) Lacunarity distributions from samples A and B.  Note that sample B displays 
higher lacunarity at each box size, a result of the gappier pore network.  Lacunarity values used 
for linear regressions were taken at the smallest box size.  D) Average lacunarity from each 
sample group at each box size.  E) Lacunarity distributions which have been normalized to 
account for varying porosity among samples, and subsequently averaged for each sample group 
at each box size.  Data reveal pores of Pennsylvanian samples display relatively high lacunarity 
(i.e., isolated oomolds), whereas Mississippian samples include lowest lacunarity (i.e., evenly 
distributed intergranular pores).  These distinctions have implications on permeability, as a gappy 
pore network (e.g., Pennsylvanian) yields lower k than an evenly distributed pore network (e.g., 
Mississippian) given similar porosity.  Pleistocene samples display similar lacunarity to 
Mississippian examples at box sizes < 7,000 µm2 (i.e., evenly distributed pores), but are more like 
Pennsylvanian examples at larger scales (i.e., gappy pore network).  These results are interpreted 
to reflect the influence of a bimodal (micro- and macro-) pore network.  At small scales, pores 
are widely distributed within grains (e.g., intragranular micropores) and between them (e.g., 
intercrystalline micropores and intergranular macropores).  However, as the scale of observation 
is increased, increasing portions of the total porosity are recognized as clumps of intergranular 
macropores.     
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Figure 6: Porosity and permeability scatterplot, with data colored by geologic age. Samples 
collected as part of this study are noted by square markers, whereas unpublished data points 
from the Kansas Geological Survey (KGS) reservoir database are marked with lighter circles.  Of 
the samples of this study, Pleistocene samples (n = 9) generally exhibit the highest porosity and 
permeability.  Pennsylvanian samples (n = 15) display variable porosity and relatively low 
permeability.  In contrast, Mississippian samples (n = 16) display lower porosity but a higher 
permeability for a given porosity than Pennsylvanian samples, and plot on a well-defined trend.    
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Figure 7: Relations among depositional fabric and NMR T2 curves for Holocene sediment.  A) 
Photomicrograph of fine-grained, moderately sorted oolitic and peloidal sediment.  B) 
Photmicrograph of medium, well-sorted oolitic sediment.  C) T2 curves of sediment illustrated in 
part A (gold) and B (blue) illustrating distinct porosity, mode times, and mode porosity 
contributions.  D) 3D scatterplot revealing relationship among grain size, ooid abundance, and 
modal pore size.  
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Figure 8: Comparison of depositional and diagenetic attributes with pore attribute variability for 
the three groups.  Each bar in the bar graphs (parts B, D, and F) represents an R2 value of the 
correlation between rock fabric metrics (independent variable) and a single pore attribute 
(dependent variable); the pore attributes vary among groups, and are noted below.  In this 
analysis, rock fabric is split into metrics of depositional (grain size, sorting, ooid abundance, 
skeletal abundance) and diagenetic (cement abundance, compaction porosity loss) character.  
Regression strength (R2) using solely depositional fabric metrics is illustrated by the blue bars, 
whereas R2 values using depositional fabric and diagenetic attributes is noted by the orange bars.  
A) 3D scatterplot, illustrating how grain size and sorting are inversely related to pore complexity 
(PoA) in Pleistocene samples.  B) Correlations between metrics of Pleistocene rock fabric and 
modal pore size (T2) and pore complexity.  C) Cross-plot illustrating positive relationship between 
grain size and DomSize (plotted on log scale), Pennsylvanian samples.  D)  R2 values of correlations 
between rock fabric and pore size (captured as log(DomSize)), pore complexity, and lacunarity, 
Pennsylvanian samples.  E) 3D scatterplot illustrating relations among grain size, ooid content, 
and pore size (DomSize), Mississippian samples.  F) R2 of correlations among rock fabric and pore 
size (DomSize), pore complexity, and lacunarity, Mississippian samples.  Collectively, these data 
reveal that varied depositional fabrics are associated with changes in pore attributes.   
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Figure 9: Relations between NMR curves and petrographic character.  All samples have 
comparable porosity (18-20%).  (A) NMR T2 curves of illustrative samples from Pennsylvanian 
Lansing-Kansas City Group and Mississippian St. Louis Formation oolitic strata.  B-E) Thin section 
photomicrographs of the samples from part A, of Pennsylvanian (B,C) and Mississippian (D,E) age.  
These data show that samples of very distinct pore types and connectivity can have similar NMR 
character.   
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Figure 10: Three-dimensional scatterplots illustrating some relations among pore attributes (x, y, 
and z axes) and permeability (color scale) for each rock sample group.  A) In Pleistocene samples, 
pore complexity, pore size, and intergranular porosity are most closely related to permeability.  
Multiple linear regression between these three pore attributes and permeability exhibits an R2 
of 0.90.  B) In the Pennsylvanian subset, NMR porosity, pore circularity, and pore complexity 
estimate permeability most closely.  Multiple linear regression reveals an R2 of 0.84.  C) Helium 
porosity, pore size, and lacunarity (at min. box size) are most closely related to permeability in 
Mississippian samples; multiple linear regression yields an R2 of 0.88.  Collectively, these relations 
suggest that the pore attributes most closely related to permeability varies among groups.   
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Figure 11: Three dimensional scatterplots and multivariate linear regression correlations 
illustrating relations among rock fabric metrics (independent variables) and permeability 
(dependent variable) among sample groups. In the tables below each plot, the metric of 
depositional fabric most closely correlated to permeability is listed in the top row, along with 
correlation coefficient between that variable and permeability.  The metrics of depositional fabric 
(determined by stepwise regression of all possible combinations) most influential on 
permeabƛƭƛǘȅ ǇǊŜŘƛŎǘƛƻƴ ŀǊŜ ƛƴŎƭǳŘŜŘ ǎǳŎŎŜǎǎƛǾŜƭȅ ƛƴ ǘƘŜ ǊŜƎǊŜǎǎƛƻƴΣ ŀǎ ƴƻǘŜŘ ōȅ ǘƘŜ άҌ ώǾŀǊƛŀōƭŜϐέ 
in successive rows.  A) Grain size, sorting, and ooid abundance exhibit a positive correlation with 
permeability in Pleistocene samples.  B) Sorting and ooid abundance display a positive correlation 
with permeability of Pennsylvanian samples.  C) Sorting and ooid abundance include a positive 
correlation with permeability in Mississippian samples.  These data reveal that varied 
depositional fabrics are associated with distinct permeability, though the sedimentologic metrics 
most closely related to permeability changes among groups.   
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Figure 12: Illustrative thin section photomicrographs (A-C) and three dimensional scatterplots (D-
E) illustrating relations among depositional fabric, pores, and ʊ-k across the sample sets (age 
indicated by color).  A) Moderately sorted Pennsylvanian sample with moderate ooid abundance 
includes isolated pores and low permeability (k = 0.72 mD). B) Well-sorted Pennsylvanian rock 
with relatively high ooid abundance contains less isolated pores and moderate permeability (k = 
145 mD).  C) Well-sorted Pleistocene sample with highest ooid abundance includes evenly 
distributed pores and exhibits highest permeability of all three samples (12.4 D).  D) 3D crossplot 
suggesting that well-sorted sediment with high ooid abundance (%) exhibits low lacunarity (i.e., 
evenly distributed pore networks). E) 3D crossplot showing that sediment with low lacunarity and 
compact pores have high permeability.  These results illustrate varied depositional fabrics are 
associated with distinct pore attributes, which are in turn related to changes in permeability. 
Collectively, these relations suggest that depositional fabric influences pore networks and 
petrophysical parameters across diagenetic scenarios.  
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Tables 

 
Table 1: Sedimentologic, stratigraphic, and diagenetic character of sample sets.  Each group 
represents ooid grainstone of a distinct diagenetic scenario, ranging from un-lithified sediment 
(Holocene) to early diagenesis (Pleistocene) to contrasting late diagenetic end-members 
(Pennsylvanian, Mississippian).  
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Table 2: Local and global DIA parameters characterizing pore size and shape, based on Russ 
(1998) and Weger (2006).  Local parameters are calculated from the raw data produced by 
ImageJ, indicated by A (pore area), P (pore perimeter), Major (major axis of bounding ellipse), 
aƛƴƻǊ όƳƛƴƻǊ ŀȄƛǎ ƻŦ ōƻǳƴŘƛƴƎ ŜƭƭƛǇǎŜύΣ ŀƴŘ C5 όCŜǊŜǘΩǎ 5ƛŀƳŜǘŜǊΥ ƭƻƴƎŜǎǘ ŘƛǎǘŀƴŎŜ ōŜǘǿŜŜƴ ŀƴȅ 
two points along pore boundary).   In addition to these four global parameters, the mean and 
median of each local parameter were calculated, as well as the area-weighted average of gamma.   
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Table 3: Data types used throughout this study.  Rock fabric includes depositional and diagenetic 
components and is characterized using digital petrography and point counting.  Pore attributes 
are derived from NMR, DIA, and point counting, and quantify pore size, shape, spatial 
distribution, and type.  These measures of rock and pore character are compared to porosity and 
permeability data from routine core analysis, DIA, and NMR.   
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Appendices 
Appendix 1: Results of Multivariate Linear Regression 

 
Strength of correlations between individual metrics describing rocks and pores with ʊ-k.  
Statistically significant correlations (P Җ 0.05) are indicated in bold.  
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Appendix 2: Raw Data from Holocene Samples 

*Thin section photomicrographs are roughly 3.5 mm in width 
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Appendix 3: Raw Data from Pleistocene Samples 

*Thin section photomicrographs are roughly 3.5 mm in width 
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