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Abstract

Although the general inflence of rock fabric on porosity andJS N S| 6-K)fwithine 6 u
OFNb2ylF(GSa Aa ¢Sttt R2O0Odzy Sy (-EHRaiter quantithtiyeR rektd ¢ LJ2 N
to depositional fabric remains poorly constrained. This projectpirically explores this
uncertainty within oolitic grainstones frora range of geologic ages and diagenetic histories to
understanddepositional sedimenpore relationships, andow they canevolvewith lithification.

Integrating data from point counting, digital image analysis, nuclear magnetic resonance and core
analyss of Holocene, Pleistocene, Pennsylvanian, and Mississippian oolitic grainseveats
guantitative relations amongrock fabri¢ pores, and petrophysical parameters Oolitic
grainstones of similar sedimentology taken from distinct diagenetic scenaisptag a unique
O2YO0AYylFGA2Y 2F LI2NB ail S =kchafdterJ3Nthindehdh scanarib, RA &
grain size, sorting, and typare correlated more closely with pore attributes and k than
cementation and compaction. Collectively, these results are interpreted to suggest that
diagenesis defines the absolute values of pore attributes and petrophysical parameters, but
sedimentology controls the trends or variability within an oolitic succession. The implication of

these findings is that petrophysical variability within oolitic reservoirs closely follows

sedimentologic trends, which may be predictable within a stratigraphic framework.
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Introduction

Many prolific hydrocarbon reservoirs produce from carbonsteata, but @arbonate reservoir
characterization can prove challengidge to complex pore networkdn seeking to understand
the controls on these pore networks, numerous studies have documented variations in porosity
'y R LIS NI &), andl fiow thés retate to carbonate rock fabrickucia 1983, 1995, 1999;
Jennings and Lucia, 20@uz et al., 2006;d0@y 2006) integrating parameters such as patrticle
size (Lucial983; Jennings and Lucia, 2P0idepositional texture (Jones and Xiao, 2008)e®
and other studie®f carbonate porecommonly assume part or all aflogicallinkage:a) rock
fabric defines pore attributes(e.g., poresize distribution); b) pore attributes control
permeability, and c)as a result, rock fabric controls permeabilinps and Sawatsky, 1981; Lucia,
1983, 1995, 1999; Melim et al., 2001; Weger et al., 2009).

As rock fabric is shaped by depositional aspects (e.g., grain size, santhtype and
diagenetic attributes (e.g., cement abundance, compaction porositylloss) lj dzSa G A2y 2 7F
2 NJ y dzNJi dzNB K ¢ . @NSY YLZYNIR  yF SNIR@2SNE]| & -k donfrdlled mdreAaya S Ij dzS y
their sedimentary starting point (i.e., the attributes of sedimentologic components) or by the
changeghey undergq(i.e., diagenetic modifations)? Carbonate rocks can displpyonounced
diagenetic overprinting; thus,he links from depositional attributes to petrophysics have the
potential to be tenuous Perhaps as a result, efforts to systematically and quantitatively link
attributes of depositional fabric (primary sedimentologic components; Choquette and Pray,
1970) to pores, and further, to petrophysical variability, are few.

To explore these challenges, this project quantitatively tests limked hypothesesl)

varieddepositionalfabricscorrelate todistinct pore attributes;and?2) pore attributesandtotal



porosity control permeability. To explore these hypotheses and unravel rock fapaie
attribute links and pore attributek links, thisproject examines oolitic grainstones, class of
deposits present in carbonate accumulations of almost every gexdgg Oolitic deposits also
represent important hydrocarbon reservoirs across the globe, from the U.S. Midcontinent
(Watney and French, 1988; Abegg, 1991) and Gulf Coast {Mel& Friedman, 1992) to the
Middle East (Lindsay et al., 2QUBsrafiliDizaji and RahimpotBonab, 2014; Hollis et al., 2017

and Far East (Ma et al., 201T)his study statistically integrates results from petrographic point
counting, digital image amgsis (DIA), nuclear magnetic resonance (NMR), and core analysis.
Characterizing strata from a range of ages, the ultimate goal is to resolve the degree to which
relationships among sedimentology, pores, and petrophysical responses are maintained in
oolites that have undergone a range of diagenetic histories. The results illustrate how different
depositional properties can influengetrophysical trends and heterogeneitythin comparable
oolitic reservoirs, information pivotal to advancing conceptual ensthnding and quantitative

models of oolitic carbonate reservoirs.

Background

This sudy examinegour groups ofsampleswhich represent distinct diagenetic settings (Figure
1; Table )} but include similar rangef sedimentologic charactdr.e.,granulometry, grain type
proportions) (Figure2). These four sample groupscould be considereddistinct diagenetic
WcenarioQun-lithified sediment, early diagenesandtwo distinct late diagenetic enchembers.
Together, thesegroupsrepresentésnapsota @long potentialdiageneticpathways facilitating

understandingof originalpores anchow they can benodified by diagenesis.Not every possible



diagenetic scenario is includedpwever, and ertainly other diagenetic pathways could be
considered.

The sediment and rock samplé@slude a range of sedimentologistratigraphic,and
diageneticcharacter(Table 1 Figuresl, 2). Holocene sampleare unlithified oolitic sediment
(i.e., the starting point for all oolitic grainstonesdm Schooner CayGreat Bahama Bardnd
Fish CaysCrookedAcklins Platform, Bahamg®8all, 1967;Rankey and Reeder, 2011, 2012
Huber, 2016Rush and Rankey, 201(Table 1; Figure 1A, BPleistocene samples are lithified
stratafrom Long Cay and Crooked Islaf@ipokedAcklins Platform, Bahamashits which have
been exposed tonarine andearlymeteoricdiagenetic alterationgshallow buria[< 10m], low to
moderate cementation16.9%cement by volumetric abundante(Table 1)(A. Goers, 2018,
personal communication).These rocksvere deposited aslominantlyaragonitic sedimentand
their mineralogy has stabilized only partlfementation hasccluded poresncompletely and
dissolution hascreated pores within grains (e.gdissolved ooid laminae) anenlarged pre-
existing pores(Figure 1C, D) These samples displgyore systers that include a mix of
interparticle pores, moldic pores, and microporosifgennsylvanian samplese fromreservoir
intervals Bethany Falls Limeston®issourianLansingkansas City @Gup) in multiple fields in
KansagWatney and French, 1988; French and Watney, 1993; Byrnes et al. (28DR) 1) These
rockslikelyalsowere deposited as aragonitic sedimdptg.,Sandberg, 1983) buafter extensive
dissolution and cementation, now dplay well-developed moldic pore and some relict
interparticle pores.Oomolds are generally large (commohiyndredsof microns) and isolated
they may be crushed or preserveak round to oval shapedigure 1E, F)As Pennsylvanian

samplesrepresenta moldic endmember oolitic reservoir, thegre distinctfrom Mississippian



samples(Abegg, 1991; Parham and Sutterlin, 19@8jch display weltonnected interparticle
pores These samples were taken from the St. Louis B intémyaoductive fields in Sghwest
Kansas (Qi and Carr, 2005) and waeposited aslominantlycalcitic sedimentd.g.,Sandberg,
1983), which isdss susceptible talissolution, preservinggrains andmuch of the primary
interparticle porosity(Figure 1G, H)These rocks are broadly comparable to that of the Holocene
in terms of grain condition and pore typleut have undergone various degreescementation
and compaction.

Thesamplesfrom the Pennsylvanian and Mississippian interfatsis on prouszones
within reservoirsand c not includetight zones. Furthermoresamples from all groups were
selected to avoidracturesand touching vugs (nefabric selectiveinterconnected poresLucia,

1995, which can also impagermeability.

Methods

Sample Collen and Preparation

Holocene sedimentn(=12) samples were collected at the sedimenater interface whereas
Pleistocener{ = 19 rocks weretaken fromoutcrops ashand samplesDownhole cores provided
Mississippiar(n = 1§ and Pennsylvaniann(=17) samples. Oneinch (2.54 cm)diameter plugs
from hand samples or coraacluded ends that providedillets for thin sections Billets were

impregnated with blue epoxy and subsequently cut for standard $kiction preparation.

Characterization of Roclabric



This studyuses the termrock fabric to describe the solid constituents of a sediment or rock
(Choquette and Prgy1970) Genetically, rock fabrincludesboth depositional (sedimentologic)
and diagenetic components. Depositionalfabric refers to the characteristics ofprimary
sedimentologic componentée.g., grain size\whereas characteristics of diagenetic origin are
termed diageneticattributes.

To characterize the rocksugntitative digital petrographwsing JMicroVisiogaptured
grainsizedistribution. Usinghis program100grain-size measurementsere taken at randomly
generated points orthin sectionimages As grainsize measurementgxtracted from thin
sectiors are apparentsizes they require conversion to be compared to sieve distributions of
sediment samples (Flugel, 2010). This study implements the regression ofiddetfta (1991)
to transform thin section distributions tosievesize distributios. The cumulativédrequency
curvesof these distributions facilitate the graphical extractiorgoaiphic mearsizeo grain sizeé ,0
Ay Of dza A @S 3INI LIKA rtinggd(h y @ deRA RS OANXRIR Y Ooa| SoySa
graphic kurtosis ¢ & 1 dzNI(Fl& /ardé Ward, 1957; Flugel, 2010)These quantitative
measurementsvere confirmed qualitativelyagainst comparative graisize and sorting charts.
Grain size data presentdtkrein use Udden size divisions with th€rumbeinphi scale(Udden,
1914; Krumbein, 1939)

Point countingncluded grain typequantification Using a mechanical petrographic stage
programmed for regular grid steppingt least300 observations per thirsectiondifferentiated
ooids, composite grains, peloids, and various skeletal graimsaddition to grain type, point
countingfacilitatedthe quantification ofdiagenetic parametersuch as cement abundance and

intergranular volume(IGV) To characterize compaction, the relative abundance of grains,



interparticle cement, and interpartiel porosity were documented which wasthen used to
OF t Odzf F G S | O2 Y Likt LOnddggaytl, 1897; B&IE 20025 / ht [ €

COPL £ ¢ ((100- P) * IGV / (100 IGV))
COPlestimatesinterparticle porosity loss due to compactioR represents an assumed value of
initial interparticle porosity, herein assumed to B8%. This value is consistent with porosity
data for sedimentologically similaolitic samples in Enos and Sawatsky (1981) #wedNMR
porositydata of Holocene sedimergamplespresented herein.Factures and tylolites are also

documented, but generallgre absent orvery rare

Characterization of Pore Attributes

Pore attributessuch as pore size, shape, spatial distribution, and gneequantified using point
counting, nuclear magnetic resonance (NMR), and digital image analysis @A) counting
differentiated the proportions ofpore types. The dominant pore typefChoquette and Pray,
1970)in these stratancludeinterparticle, intraparticleand moldic.

NMR provides bulkproperty, threedimensional estimations of posity and poresize
distribution (Coates et al., 199%ong, 2013) During experimentshe NMR machine repeatedly
transmits a magnetic pulse through flusturated sediment or rock sampleéfter each pulse,
a receiver records the decay @sonatinghydrogen ions in the pore fluids the form of an echo
decay(Coates et al., 1999)These echo dags provide a multitude of information about pore
networks Ths studyutilizes T relaxation (transverserelaxationtime) curves, whicldescribe
the time record of the full spectrum of decay signals (Coates et al., 19B3)Jataare common

in both laboratoryand borehole settings (NMR logsJypically T> curves plot relaxation time



againstamplitude, so that he area undethe curveequals the initial amplitude of the echo decay,
thus providing a measure of total porosity (Coates et al., 1998 full spectrum of relaxation
times serves as@udeproxy for a poresize distributionT> time f pore size]Coates et al., 1999;
Vincent, 2011; Song, 2013JheseT: relaxation curves (timeomain) may beused to calculate
pore-size distributions (lengthdomain) quantitatively, by using certain calibrations and
assumptionswhich may or may ot hold for carbonate stratgBrownstein and Tarr, 1979;
Godefroy et al., 2001Vincent et al., 2001 As such, thistady presentsT, relaxation times
instead of poresize distributions. Relaxation times are plottedn a logarithmic scalagainst
porosty units(cf. Westphalet al., 2@5). From thesé€r, distributions,certainpore attributes can
be extracted including modaltime (T> Mode; cf. Doveton and Watney, 20l4meantime
(logarithmiq, curve peakednesd{ Kurtosis), total porosity,and macro/ micro-porosity.

Prior to laboratory NMR analysis, all sediment samples and plugs from core and outcrop
were dried for at least 24 hours at 60°C. Dried samples were weighed, subsegsetutigted
with deionized watemunder vacuum conditions for 10 hours, and then weighed again using a
water displacement method. Bulk volume calculated from these measurenpntsdedinput
for each NMR experimentSamples were wrapped in Teflon tape during experiments to prevent
water loss. NMR experimentaitilized a Magritek 2MHz NMR Rock CoMaalyzer, and all
experiments alined a signato-noiseratio (SNR) oét least100:1.

Digital image analysis (DIfcludes a suite of methods tuantify attributes of pores,
such assize,shape,andspatial distribution(Ehrlich et al., 1984; Fortey, 199%nselmetti et al.,
1998; Russ, 1998 indqvist and Akesson, 2001; Weger et al., 20@9) digitalimages of thi

sections Herein,DIA analysegenerally mimic the methodology outlined Weger (2006)and



includethree broad stepsimage acquisitionpore networksegmentation, and pore geometry
calculations. Two-dimensional hin section images of each sample were acquired unzane
polarized light (PPL)Pore space in these images is distinguisteatily because samples are
saturated with blue epoxy.Throughimage segmentation, a binary image of the pore network
was created by designating all blue pixels as pore andbham pixels as rock matrixAny ar
bubbles weremapped ast LI2 NB¢ Ay (GKS O0AYIFINEB AYlI3ASa

DIA dataused for pore geometry characterizatiomeludetwo broad categories: metrics
GKAOK NBLINBaASY(l GKS 3IS2YSUGNE 2 8nd ingtiRd Whickk dzI £ L
characterize the pore neg 2 NJ ' a I ¢gK2fS oa3ft20lFft LI NFYSGS
ImageJ softwarequantifies the raw measurementf pore area, perimeter, agilengths of
bounding ellipse and the angle between axes. These basic measurements facilitate the
calculation @ local parameters for each pore on eatttin section image anthcludeequivalent
diameter, gamma, aspect ratio, circularity, roundness, and compac{iésger, 2006; se€able
2 for explanationy These local parameters are summarized by statistics (e.g., mean, median,
areaweighted mean) of their frequency distributionsvhich serve as global parameters
Additional global parameters are calculated to further describe the pore network, inclgling:
of pore area, sum of pore perimeterand total perimeter over area (PoAPomSizds a size
parameter(Weger, 2006)that representsthe maximum pore size required to constitute 50% of
the total pore area, or the pore size at the 50% threshold of mwdative area curve, given in
equivalent diameter.Pores smaller than 100 pixels were omitted from data analysis (following

Weger, 2006) to avoid distortion of geometric data by pores whose shapes may not be reliably



characterized.As Holocene sampleseatoose sedimentlisturbed by collection andbsent of
compaction DIA was not applied to these samples.

Beyond pore size and shape, the spatial distribution of pores can be characterized using
lacunarity analysis (Allain and Cloitre, 1991; Plotnick £1883). Lacunarity is a scalependent
measure of spatial heterogeneity, whiakas assessed using the FracLac plugor ImageJ
(Karperian, 2015). Followirglain and Cloitre (1991Plotnick et al. (1993and Rankey (2002,
2016) binary imagegpore vs.non-pore) are scannedsystematicallyat successive scalesing a
gliding box algorithm. In this method, a square box of widskarts in the upper left corner of
the thin section image, and the number of pixelghin that boxwhich represent pre space is
documentedreferred to as the box mass The box then slides one increment to the right, again
documentingS This process is repeated until all areas of the image have been anakxzsuk
mass probability distributiorQ(S,r) is generged:

Q(S.r) = n(S.NN(),
such thatn(S,r)is the number of boxes with sizewhich contain a box mas§ andN(r) is the
total number of boxes (Plotnick et al., 1993). From this distribution, the first and second
moments are calculated, representing the mean (Z1) and standard deviation (Z2), respectively.
Lacunarity () of box size is then calculated using thermula:

L(r) = Z2 (Z1}

Thisentire process andjenerationof a single lacunarity value is replicated foincrementally
larger box sizes, with the largestbsize equal to 45% of the thsection area A single lacunarity
value is the dimensionlesstia of variance to(mean)? for a given box size, but ultimately is

calculated across a range of box sizes.



Thecalculatedacunarityis a function of thredactors. ktst, thetotal porosity present in
a thin section: at a given box sizeamples ohigher porosity will exhibit lower lacunarithan
lower porosity samplesSecond, the box size: as box size increases, lacunarity will also decrease
as the standard deviatiodecreasedNB f I G A @S (12 GKS YSIyo ¢ KANRZ
network: for a given porosity, samples with clumped or isolated pores will exhibit higher
lacunarity (Plotnick et al., 1996; Rankey, 2016). Conversely, rocks with homogenously distributed
pore networks exhibit lowr lacunarity.

Lacunarity dataypicallyare presented by plottingacunarity(in this study, 10/aluesfor
each thinsection imagepngainst box size on agdéog scale, taapture thescale dependencef
the metric In addition, b recognizelacunarity distinctions among sample groups, lacunarity
gl tdzSa i SHOK 62E &A1 S 6SNB | gSNIF ISR F2NI |y
lacunarity distribution for each group.Furthermore, to mitigate the effects of porosity
differences béween samples and sample groups, lacunarity distributions were normalized by
dividing each value by the lacunarity at the smallest box size. Where correlafidimear
regressiosrequired a singular lacunarity value, the value at the smallest boxsigehosen.

Across thesanalysis methos pore attributescanbe categorizedoy what theydescribe
about a pore(Table 3) For example, modal pore size or DomSize characterize giage
GCompactnessor circularity characterize pore shape, and lacuitarassesses thespatial

distribution of pores.

Characterization oPorosity andPermeability

10



Routine core analysiseasuredHelium porosity (%), air permeability (md), and grain density
(g/cn?) for Pleistocene (n = 13), Pennsylvanian (n = 16),Misdissippian (n = 16) rockSome
samples were uifit for analysisdue to laboratory restrictions or sample quality (e.qg., irregular
plugshapeor poor lithification), and thus, do not have-k data.

Theseu -k measurements are supplemented by NMR and 8dfa. NMRT, curves
provide porosity data, and & cutoff (Coates et al., 1999jstinguisies micre and macrorosity
contributions Microporosityhas been defined using any of a variefycriteria(summarized in
Vincent et al., 2011)and many studes have investigated th&> cutoffs that distinguish
microporosityfrom macroporosity(Coates et al., 1999; Marzouqi et al., 2010; Vincent et al.,
2011). This studyimplementeda microporositymacroporosity cutoffof 100 millisecondgcf.
Coates etl., 1999)corresponding roughly ta5 micron pore(Al-Marzougqi et al., 2010 Porosity
derived from NMRis typically 34% porosity less thanthat from Helium analysie®f samples
herein Image analysis also provisl@orosity estimates, butDIA does notreliably resolve
microporosityas defined in this study, becauseoie pores are Hew the resolution of the

thickness of thehin section(32 um).

Results

Sedimentologic and Diagenetic Variability among Sample Groups

Petrographic point countinqguantifies the sedimentologic and diagenetic character of the four
sample groups (Figure 2). Samples are fine to capesred and moderately to very well sorted.
Ooid abundancetypicallyis greater than 50%Pleistocene samples have undergone reldjive

low cementation (reported as the percentage of the intergranular volyi®/] occupied by

11



cement) and compaction (reported as interparticle porosity loss due to compacG@PL
Pennsylvanian samples include thlgreatest cementation but low compactim whereas

Mississippian samples display relatively moderate cementation and high compaction.

Comparison oPores ands -k amongSample Groups

T, distributions of representative samplé®m each samplgroup (Figure3) revealthe general
characteristics of thalistinct poresize distributionsamonggroups For exampleHolocene
sampleqn = 12)exhibit tnimodal distributions witthigh-amplitude peakg> 1 porosityunits) in
the macroporosity domairaferagemodal time = 563 m)sandtotal porosity average43.6%.T>
curves of Pleistocene samplés = 15)are more complexand commonlyinclude bimodal
distributions with lowamplitude T> peaks(~0.5 mrosity units) andmodal T> timesin the macre
porosity domairthat are slightly smallethan Holocene sedimentaverage = 502 ms)Average
total porosity is 34.6%. The peaksin the microporosity domain are pronouncednd
microporositycommonly contribute more than 50% of total porosity.

In contrast,Pennsylvanian samm@dn = 12)exhibit unimodalT, curvesdominated by
macroporosity. Curves includeoderate tohigh amplitudg(> 0.5 porosity unitg)eakswith large
modal relaxation timegaverage= 1.4 s)and an average total porosity of 20.0%: curves of
Mississippian oolitegh = 17)are consistently unimodal with low amplitude pedks0.5 porosity
units)at large relaxation timegverage= 1.1 sand an average total porosity of 14.1%.

Quantitative pae attributes calculated using digitahageanalysis reveal differences in
pore size,roundness and spatial distributionn all three rock groups(Figues 4,5). Poresof

Pleistocenesamplesare moderate in size (average DomSize ={iiland exhibit low roundness

12



(average = 0.53)n contras, Pennsylvaniasamples includedarger (average DomSize = 1g6)
and rounder (average roundness = 0.58) poresid Mississippian samples haviee smalkst
(average DomSize = §dn) pores with relatively low roundnes@verage roundness = 0.53)
(Figured).

Pores & not uniformly distributed. &ne samples (Figure 5A) include small pores that
are evenly distributed, whereas otharscludelargerpores which arenore clumped (Figure 5B).
The metric of lacunarity provides a means to quantify spatial fogfeneity in pores across a
range of scales. Analysis of samples reveals a range of lacuaraatyg individual samplesin
samples withsimilar porosity pore networks which are more evenly distributed exhibit lower
lacunarity(Figure 2-C).

However, not all samples have similar porosity. fact differing total porosity among
sample groupsd.g., Figure 3k just one factor that contributeso each group displaying distinct
average lacunarity distributions (Figure 5D)o mitigate the efécts of differing porosity,
normalized lacunarity distributions were also compared (Figure 9Bata reveal pores of
Pennsylvanian samples display relatively high lacunarity (i.e., isolated oomolds), whereas
Mississippian samples include lowest lacuna(iiy., evenly distributed intergranular pores). In
contrast, Pleistocene samples display relatively low lacunarity at box sizes < 7,800epman
even distribution similar to Mississippian examples), but have relatively high lacunarity at larger
scales (i.e., clumped distribution akin to Pennsylvanian examples).

A plot of porosity versus permeability reveals theich sample groupalls in distinct
regions(Figure6), akin to the data oByrnes et al. (2003which are also plotted Pleistocene

rocks (n = 9) have high porosity (2%.38.3%) and generally high permeability (70 qit2.9 d)

13



but includescatteron u -k plots. Pennsylvaan samples (n = 15) display variable porosity 6.3
30.0%) and generally lolut variablepermeability (0.02; 145 md) Pennsylvaniadatabroadly
represent a extension ofthe Pleistoceneu -k trend (consistent with Cruz et al2006). In
contrast,Misgssippian samples (n = 16) dispkagistinct trend, withlow to moderate porosity
(9.6 ¢ 21.2%) and moderate to high permeability (871134 md) higher than Pennsylvanian

samples of comparable porosity.

Depositional Fabridnfluence on Pore Attributes

The oolitic grainstonegxhibit variability in terms of size, shapedspatial distributionof pores
(Figures 4, 5), distinctions that might be related to sedimentology. For example, within the
simplest case (uncemented Holocene sedimdiig-grainedsamples with low ooid abundance
exhibit modal pore sizesmallerthan coarsegrained samples with higher ooid abundance (Figure
7A-C). A threedimensional scatterplovisually reflects howdifferences ingrain size and ooid
abundanceare accompanied byhanges in modal pore siZEigure D).

These qualitative relationships can be quantified usingdtivariate linear regressioby
modelingthe relationship betweeseveraindependentvariables netrics of depositional fabric)
and a dependent variable (g, one of the variousttributes of pores or porosiy For example,
in these Holocene sediment sampleretrics of depositional fabric(includingof grain size,
sorting, ooid abundanceand skeletal abundandeare correlatedstatistically (R = 0.92) with
modal pore siz€cf. Figure 7D) These parameters also influence the range of pore sizes (
Kurtosis; R= 0.83) and total abundance of maegporosity (R = 0.69). These relations quantify

the qualitative observations that uncemented samplwithlarger grain sizes, better sorting, and
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higher ooid abundance exhibitigher porosity ¢f. Beard and Weyl, 1973)arger pores,and
peaked(i.e., high kurtosispore-size distributions.

In lithified rocks rock fabric isnore complicated becauserepresentsa combination of
both depositional and diagenetic componentBleistocengpore networksrevealthe effects of
early diagenetic alterationsvith poresizedistributionsthat arecomplex and commonly bimodal
(e.g.,Figure3d). Despite these changes in the pesize distribution, the modal mac#qoore size
is influenced by depositional fabric, as is pore complexity (i.e., perimeter over area) (Figure 8A
B). Finegrained, poorly sorted rocks exhibit complex pore networks (high);apleswith
largergrain size andhcreasedsortingincludesimpler pores(low PoA). Multivariate regression
guantifies these relationships and reveals thattributes of Pleistocene depositional fabric
exhibitssigrificant (P < 0.05jjuantitative rehtionships withpore size ifieasured ag>Mode, R
= 0.63 andpore complexity(PoA R = 0.8) (Figure 8, blue bary Toassesghe combined
influence of sedimentology and diagenesis on poregyressions included botdepositional
fabric and diagenetic metricef cement abundance (% of IGV) acmimpaction porosity loss
(COPL Integrating depositional and diagenettributes into the regressionsvith T-Mode,
DomSize, and PdAcrease R valuesto at least 0.8(qFigure 8Borange bark

Pennsylvanian sampleseadominated by oomoldic poresreated by dissolution of ooids
(Figures 13Q. Thus it is nd surprisingthat pore sizegenerally increasewith grain siz€Figure
80). Metrics of cepositional fabric also appear to influentee spatial distribution opores in
Pennsylvanian samplesHgher ooid abundanceas associated witlhigher porosity andower
lacunarity (i.e., a more evenly distributed pore network Multivariate regression reveals

depositional fabric correl&swith pore size, complexity, andcunarity(Figure 8L), eachwith a
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R of at least0.55. Includingcementation and compaction porosity loas inputs in the pore
attribute regression®oostscorrelations only marginallp between 0.58 and 0.78.

Similar to Pennsylvanian samples, pore sizes of Mississippian sayapkrally increase
with larger grain sizeDiffering pore sizes also coincide with changes in grain type: rockawith
higher ooid abundance correspond to larger pores (Figgle Depositional fabric exhibits
significantstatisticalrelationshipswith not onlyporesize, but also pore complexity and lacunarity
(R > 0.54for all) (Figure 8F Appendix 1 Includingdiagenetic factors otementation and

compaction increasethe R of al three correlationsranging from 0.65 to 0.91.

Pore Attibute Controls orns -k

Porosity and permeability data reveal theichsample group displadistinct characteion v -k
plots (Figure6). Poresize distributions one means to characterize pores,e approximated
through NMRT> curves. T, curvesof Pleistocene samplésdicatebimodal distributions revealing
variable butpronounced(commonly > 50% of total) contributions from microporosity(T, <
100ms)(Figure3). ThebimodalPleistocen€l, curvesare distinct from curves dPennsylvanian
and Mississippian samples, which generally dispilaylarunimodal distributions witharge (> 1
s) modal relaxation timeg-{gure3).

Additionally, an explicit comparison dfennsylvanian and Mississipp samplesof
comparabletotal porosity (Figure 9) reveals similarity amonig curvesacross a range of
permeability This observation of similds curves which suggests simil@ore-size distributions,
in samples with distinct permeabilitis surprisng becausepore-size distributiols havebeen

interpreted to control permeabilityd.g.,Lucia, 1983).That rocks withvisuallycomparableT>
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curves (and presumablhpore-size distribution¥ include permeabilities spanningore than
three orders of magnitude suggesdtsat pore attributes other than poreize distributionmpact
permeability(cf. Bliefnick and Kaldi, 1996; Melim et al., 2001; Weger et al., 2009)

To assess thenfluence of pore attributes other than poresize distiution on
permeability analysesalso explicitly related pore geometry and spatial distributiorio
permeability variations Linear regressiosrevealthat pore complexity ighe singleparameter
correlated most closely with k for Pleistocene samplés=0.74), followed byintergranular
porosity(R=0.61) and pore size{R0.57) A 3D scatterplot (FigurE0A) illustrates that samples
with low pore complexity, large pore sizesnd abundant intergranular porositiiave high
permeability A multivariatelinearregression includinghose threepore attributes to estimate
permeabilityindicatesan R of 0.90in Pleistocene rocks

Pennsylvanian samplésclude somewhat different trendslotal porosity (NMRJisplays
the strongestcorrelation with k R = 0.67). Factoringin pore circularity and complexitgs
independent variables im regression with permeabilityieldsan R of 0.84 These results
demonstrate that Pennsylvanian samplesith high porosity, circular pores, and low pore
complexity include high permeability Figure 10B). In Mississippian samples, psity (He)
exhibits the strongest correlatioaf any individual parametewith permeability(R = 0.64), but
pore size and sgtial ditribution are alsocorrelated (R of 0.60 and 0.49, respectively)Rocks
with high porosity and large, evenly distributed porggld high permeabilitregression among
these parameters hal® of 0.88;Figure10C)

Some pre attributes consistently yield a statistically significantrelationship with

permeablity across all samplgroups For exampleabundant macrporosity andcircular (high
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circularity) pores favor elevatedpermeabilityin all groups(Appendix 1) However,the pore
attributes which are most closely correlated with k varies amaggs suggestinghat certain
pore attributes are more important in some sample groups than others. For exapgrkesize
shows no statistichf significantelationship with k in Pennsylvam sample$R = 0.02, P = 0.60)

but it correlates to prmeability of Mississippian sampl@€ = 0.6Q P = 0.0004(Appendix 1)

Sedimentologic Controls ank

Theseresults show theelations between depositional fabric apare attributes, ancamong
pore attributesand porosityand permeability. The question remains:therea direct link from
RS LJ2 &a A (A 2 y-k?fin sAokt, shBlAn§werlagpeans yess metrics of depositional fabric
correlate to permeability in Pleistocene?R0.73), Pennsyanian (R= 0.50), and Mississippian
(R = 0.68) samples (Figure 11Jhe detailsof which parametersare most relevantlo vary
among sample groupsowever For example, in terms of individual parametesin sizeand
ooid abundanceare theparametes of Pleistocenalepositional fabrianostclosely correlated
to permeability coarse grained depositgith high ooid abundance displdnigh permeability
(Figure 11). AlthoughPennsylvanian samplelsplaymore variabilityin permeabilitythan
Pleistocenesamplestheir sedimentologic attributeslso correlatenith permeability. In
contrast toPleistocenesamples sortinghasan impactgreaterthan grain sizen permeability
and weltsorted sampleswith highooid abundanceieldthe highest permeabilityHigure11B).
Interestingly, although they include pore typeistinct from Pennsylvanian samples,
Mississippian sampletocumentsimilar relationshig, withwell-sorted sampleswith highooid

abundancedisplayng high permeabitly (Figure 1C). hcluding the diagenetiattributes of
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cement abundance and compactistrengthens correlationsithin each sample groupnly
marginally, increasing the?Retween 0.12 and.15(Figure 11)

Although the specific metrics of depositioraald diagenetic variability that are most
strongly related to pore attributes and on to permeability are distinct among sample groups
one linkappears consistent. In each, ooid abundance and sorting are related to lacunarity
(Figure 12A) higher ooid albndance and better sorting result in lower lacunarity, or more
evenly distributed pore networks. Such relations are intuitive for samples both with
interparticle pores and moldic pores. These relations can be extended to permeabilitgllas
Aplot of lacunarity, pore compactness, and k illustrates that samples with compact and evenly
distributed pores have high k (Figure 12B). These findings indicate a linkage of depositional
fabric to pore attributes, and pore attributes to permeability acresserl diagenetic

scenarios.

Discussion

Oolitic grainstones haveexcellent reservoir potential at the time of deposition; however, as
diagenesis ensues, pore structure and connectivity can vary widely (Hollis et al., 2017). To
address this variability, thistudy examines oolitic samples from multiple geologic ages that
represent a range of diagenetic scenarios (i.e., deposition, early lithification, and two distinct late
diagenetic pathways).In doing so, it tests the hypothesis thabaried depositional fafics
correlate to changes in pore attributegndthose variations in pore attributes control differences

in permeability
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Although the absolute magnitude affluence ofspecificsedimentologic attributes (e.g.,
grain size, sorting, or type) changesarg sample groups, these measures exhibit statistically
significant relationships with the size, shape, spatial distribution, and abundance of pores in all
groups (Figure8). In Holocene examplesdistinctions indepositional fabriccorrespond to
changesin pore-size distributions,revealing that depositional fabrics control initial pore
networks These depositional fabrics and associated pore networks are the framework for
subsequent modification via diagenesis.

In the early stages of diagenesigpsitional fabric retains an imprint on pore attributes,
but the influence of diagenesis is alswvident For exampleT. curvesof Pleistocene samples
include bimodal distributionsyeflecting partial ooiddissolution,but the mode ofmacropore
sizes also correlates to metrics of depositional fabric (R= 0.63). These data quantif/ the
gualitative observation that the sizes and types of grains impacts the size and shape of pores
between those grains (Figure 2).

Pennsylvaniarsamplesexperiencedextensve diagenetic modificationin many cases
resulting inan almost complete inversion of the rock matrix and pore network. dégtositional
fabrics display statistical correlations with pore ajzcomplexity, and lacunarity, probably
becausemanyporessimply are former grains. Perhaps surprisinglypecause they are arguably
the most diagenetically altered sample group, accounting for diagenesisc@nment abundance
and compaction porosity loydoosts R valuesless in Pennsylvanian samples thanother
sample groupsOne possible reason wiiyR A | 3 $af Beaduded herdjas a limited influence
on poreattributesis that the intergranular space in most the Pennsylvanian samplesfiied

almost entirely with cementHigure 2B, average = 93%s such, the sample sa@bes not provide
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much variability differenceswhich could drive gatistical distinctions in pore attributes.
Alternatively the Pennsylvanian sampldserein show relatively limited compaction and only

10.4 %compactionporositylosson averagdFigure 2B). s, it is nd surprising thatompaction

¢ as measured heredoes not have anarkedstatistical influence onnediction of pore attributes

or permeability. Nonetheless, other studies have documented the role of compaatidn
crushed molds in markedly enhancing permeabil#gyg(, Byrnes et al., 2003Poteet, 2007.
Perhaps using different metrics or a broader range of samples would reveal more subtle
associations.

As they are dominated by wedbnnected interparticle pores rather than isolated moldic
pores, Mississippian samples represents a rock type that contrasts markedlyemitisylvanian
oomoldic samples.Similar to Holocene examples, the sizes and shapgsanfs have a direct
impact on the attributes ofntergranularpores Thus,despite considerable compaction and
cementation,metrics of depositional fabridisplay statistically significant correlations to pore
attributes describing poreize, complexityand lacunarity.

These esults are consistent with numerous studies eilicclastic and carbonate
sediment which illustratéhow depositional fabriceancontrol original pore networks (Krumbein
and Monk, 1942; Beard and Weyl, 1973; Enos and Sawatsky, $@8int et al., 1993). For
example, Krumbein and Monk (1942) and Sprunt et al. (1993) demonstrated that permeability of
unconsolidatedsilicclastic sand could be estimated reliably using grain size and sorting. Similarly,
Enos and Sawatsky (1981) demstrated that depositional porosity and permeability of

carbonate sediment varies with Dunham textural classification and -graendistribution.
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Similarly, even with a complete porosity inversion, in which pores become matrix and
grains become pore, sedantary attributes can markedly influence pore attributes at a reservoir
scale. For example, Byrnes et al. (2003) recognized multiple shalapiveyd cycles in a
Pennsylvanian oomoldic reservoir in the Hallrney Field of central Kansas. These cynbthsde
an upward increase in grain size, sorting, and ooid abundance, and are accompanied by an
upward increase in oomold pore size and total porosity. Simikxgmininghe same reservoir
of HallGurney Field as Byrnes et al. (2003), Watney et aDgR@demonstrated grain size
distribution and grain type trends paralleled by changes in pore tyddiey documentedn
upward increase in grain size, sorting, and ooid abundahae corresponetd to increased
abundance of oomoldic pores.Collectively, tle results document that trends between
depositional fabric and pore attributes persevere across a range of diagenetic scenarios, although
their absolute values do vary.

An additional goal of this study is to understanhich pore attributes control
permeability. Porethroat-size distributiondave beertited as grimary controlon permeability
(H. D. Winland, Amoco Production Co., unpublistigtiman, 1992 Sigal, 2002 Typically, pore
throats are characterizedia mercury injectiorcapillary pressure experiments, which can be
expensive and are limited to laboratory measurements of cored samphestforts to conserve
cost and time numerousmethods more readily applied caestimate permeability NMR a
relativelycheap and fastnon-invasivetechnique whichcan be undertaken using downhole logs
in the absence of cotehas been utilized testimate permeability by several modelgnost
notably,a / 2+ GSaé¢ Ay [/ 21 GSa Si& |t &3 evipuspSearanporb we Ay

carbonate pore network$fiasevensuggestedhat poresize distibution controls permeability
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(Lucia, 1983, 1995, 199Gpates et al., 1999ennings and Lucia, 200¥eger et al., 2009Smith
and Hamilton, 201} In this contextthe compari®n of NMRT curvesandu -k data providean
interesting perspectiveFour illustrativel, curves(from samplesof comparable porosity(Figure
9) are nearly identical despite permeabilities that spaimost 4 orders of magnitudeThese
observationssuggests that poraize distributions ar@ot solecontrolson u -k.

These data revedhat pore-sizedistribution alone does not control permeabilityather,
it is but one of several factorthat impact permeability (Figure 10) Among sample groups,
fundamental differences in thgeologicnature of pore networksKigures 1, 4, 5; Table 1)re
reflected in the variability in pore attributes which most directly influence k.

An example of geologic influenceprevided by thePleistocene samplesocksmpacted
only by early diagenesis. As such, plessible effect®f diagenesis are develepd incompletely
and, in some casesynevenly distributed. For example, cementation is uneven between
laminations (Figure 1C) and ooid dissolution is incompletestbhue of ooids, Figure 1D). These
geologic controls are reflected in the hitgtal porosity (average 34.6%), and microporositst
accounts for more than half of total porolume in some samples (FigurE) 3 FollowingKeith
and Pittman (1982)Cantell and Hagerty (1999Byrnes et al. (2003), ar@ruz et al. (20063his
microporosity may be isolated or poorly connected and thus rewegligiblecontribution to
fluid flow. As a resulttotal porosity is not a significant predictor of permeabilitystead, pore
complexity (PoA), pore size (DomSize), and intergranular porosity are the strongest permeability
predictors (Figure 10A).

In contrast, diagenesigs more advancedin Pennsylvanian samples. A considerable

portion of interparticle porosity is occluded by cemeamd many ooids are dissolvedmpletely
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(e.g.,FigurelF), although neitheprocessis universalin all samples (e.gcemnant interparticle
porosity, minorgrain preservationFigurelE). These geologic effects result in pore netwsrk
characterized by (1) a volumetric contnifion from microporosity less thathat in Pleistocene
samples(Figure 3, and (2) large, isolated porespresenting oomoldgFigurelE, 1F, 4, 5).
Because microporosity is not as prevalent, therrelation between total porosity and
permeability is clearer, showing a significarpositive statistical correlatiofR® = 0.67 P =
0.000). Qualitatively,pore size does not appear to dool pore throat size(Figure 1E, 1F)
contrasting withPleistocene and Mississippian samptew/hich larger pores are associated with
larger throats(Figure 1C, 1D, 1G, LHAssuming pore throat sizes contymérmeability it is no
surprise thatpore ske of Pennsylvanian sampledoes not show asignificant statistical
relationship with permeability (R = 0.03 P = 0.58 In contrast, &cunarityhas a significant
correlation with permeability (R = 0.59 P = 0.00R suggestinghat pore spatial distribution
influencegpermeability markedlybut just a bit less thatotal porosityin Pennsylvanian samples
Mississippian samplekave been subjected tadvanceddiagenetic modifications
although the effects are distinctfrom Pennsivanian strata For example,on the whole,
Mississippian samples displgwer dissolution featurege.g., moldic poresand lower cement
abundance, but commonly include weléveloped compaction features (Figures 1G, 1H, 2B).
a result,many Mississippian samplesclude lower porosity and pores which are smalbert
more evenly distributedhan Pennsylvanian examplésigures 4, 5, 6)Despite thesegeologic
distinctions as in Pennsylvanian samplesorpsity of Mississippian samples dis@athe
strongest relationship with permeability (R = 0.64) However, n cotrast to trends of

Pennsylvanian samplgsore size displays significant positive relationship wigiermeability(R
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= 0.6Q P = 0.000¢ Similar to trends in Pleistocene sanwylgualitative observations suggest
that Mississippian samples withrger poresncludelarger pore throatsd.g.,Figures 1G, 1H)

Preceding results areonsistent with hypotheses that varied depositional fabrics
correlate to changes in pore attributesind pore attributes control permeability.If these
concepts are valid, links between depositional fabric and permeability should be evident.
Althoughcorrelations betweerdepositional fabri@andpermeabilityare lower than those linking
pore attributesand k (Figures 10, 1]1)sedimentologic attributes displastatistically significant
correlationswith permeabilityin all three sample group@ppendix 1) Furthermore, resultare
consistent withthe notionsarticulated by Laia (1983, 1995, 1999Jennings and Lucia (2001),
and Jones and Xiao (2008Jhich suggestegarticle (i.e., grain) size is a primary control on
porosity-permeability relationships, and the shape and sorting of those particles is also
important. This general concept that porosity and permeability are a function of deposition is
broadly (albeit implicitly) applied in constructing fackessed geological models that use distinct
U -k distributions for each facies.g.,Cavallo and Smosna947; Palermo et al., 201Rush and
Rankey, 2017

The results hereimuantify how specific parameters of depositional fabric combine to
influencepermeabilityfor different diagenetic scenariodhe correlatiors between depositional
fabric andpermeabilityfor each sample grou@? = 0.73, 0.50, and 0.68 f&igure 10A, 10B, and
10C,respectively)are stronger thanthose between diagenetiattributes (compaction jprosity
loss, % cement) angermeability(Rf = 0.61, 0.31, 0.4Yespectively) Cdlectively, these results

suggestthat, within each sample grouplepositional fabric isa more direct control onpore
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attributes andpermeabilitythan diageneticattributes, at least for those metriceonsidered in
this study(cf. Lucia, 1983Qiao et al, 2016;Hazard et al., 2017)

Thesefindings do not imply that diagenesis has no role heterminingrock fabriek
relationships Diagenesisclearlyimpacted these samples, which includeer-compacted and
highly cemented rocks, as well amldic pores (Figuresl, 2). Rather, he presentday pore
network is a complex function of both the initial sedimentologic character and the changes it
underwent (i.e., natur@ndnurture). For examplesedimentology defines the depositional pore
network, can mfluence subsequent modifications, and as a result, controls ttkaeds or
variability of pores ands -k within a succession (Figures 8, 11, 12). However, as each sample
group (representing distinct diagenetic scenarios) has a unique combination of pereisape,
spatial distribution, abundance, and connectivity, diagenesis may definalibelute value®f
pore attributes and petrophysical parameters (Figures 3, 4, 5;T8)s variability in diagenesis
that effects different absolute values in porositand permeability may also explain why

correlationsg statistically significant within groupslack significant correlations across groups.

Implications

Many studies have illustrated how sediment character varies in Holocene oolitisaiagishoals
(Newell et al., 1960Ball, 1967; Hine 197Harris, 1979Reeder and Rankey, 2011; Sparks and
Rankey, 2013; Rush and Rankey, 201If).these shoalssystematic changes in sediment
granulometry and grain typeccur frombar crestdo bar flarks, and among different geomorphic

bar types (e.g., linear, parabolic, shoulder), which also include distinct internal architecture and

sedimentologic character (Sparks and Rankey, 2013; Rush and Rankey,A03ud¢h, Holocene
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shoals appear to include systematic stratigraphic (vertical and lateral) changes in grain size,
sorting and type; these type of trends can persist as sediment becomes rock (Cantrell and Walker,
1985; Evans et al. 198/indsay et al., 2006jazard et al2017) These types of sedimentological
changes havehe potential to influence: NS & PNGhatwakkin it least two ways

First,sedimentcharacter defines thelepositional pore network, which is the framework
for subsequent modificatiosr This oncept is consistent with data of this study (FiguresBlLA
7),and is well documented iliterature (Krumbein and Monk, 1942; Beard and Weyl, 1973; Enos
and Sawatsky, 1981; Sprunt et al., 1993).

Second,sedimentologic differences can influence diagengtiocessesthat modify
depositional pores.On a shoal scale, for example, Cantrell and Walker (1985) described an
Ordovician oolite from Tennessee in which each shoal subenvironment was associated with
distinct paragenetic sequences. Mobile shoal andltileannel facies experienced extensive
early marine cementation, whereas bankward, stabilized environments underwent limited early
cementation and retained primary porosity into later diagenesis.

Similarly, Keith and Pittman (1982) documented trends with Cretaceous shoal
complex of the Rodessa Limestone in East Texas. This study interpreted a-sidlestatbfacies
on the flanks of the shoal to have been exposed to active circulation of marine waters, facilitating
extensive cementation and porositgduction. In contrast, the ootdch subfacies in the shoal
crest was exposed to stagnant, neaguilibrium pore fluids, and had less cement, thus preserving
porosity.

At a finer scale, Halley and Evans (1983) and Evans and Ginsburg (1987) highlgited f

selective diagenesis in the Pleistocene Miami Limestone. In that unit, depositional fabrics within

27



individual crosed laminae control early cementation and pore development; coagsained
laminae commonly show less abundant cement than fipeined laminae. This dynamic was
interpreted to result from finergrained layers that preferentially held water by capillary forces
and included more possible cement nucleation sites. Their observations are consistent with data
from laminated Pleistoceneasnples in this study, in which laminae with contrasting grain sizes
commonly show differences in cementation, with the firggained lamina including more
abundant cement and lower porosity (e.g., Figure 1C). Quantitatively, grain size in Pleistocene
and Mississippian samples is inversely related to cement abundante (R40 and 0.22,
respectively)} not strong correlations, but they are both statistically significant (P = 0.005 and
0.05, respectively). One possible reason these correlations are roigelr stems from the
YSGNRO&A dzaSR Ay GKS O2NNBflFdAz2yao Ly GKAA& aic
grain size distribution; however, mean grain size does not capture the bimodal distribution of
grain sizes in a laminated sample.giéin size and cement abundance were compared within
individual laminae, correlations would likely would be strongBegardless htese examples at
multiple scales demonstrate how depositional fabric (and hergcé, distribution) influences

early fluid fow and cement nucleation sites, which in turn, can control diagenesis.

As initial sediment character controls depositional pores and influences subsequent
modifications, systematistratigraphic changes in grain size, sorting, and tygpee the ultimate
potential to influence petrophysical properties withgolitic reservoirs €f. Jennings and Lucia,
2001, Rankey et al., 2018

For example, Cantrell and Walker (198®cumented an Ordoviciavoid shoal complex

from Tennessee in whichifterent shoal subenvironmenténclude distinct sedimentologic
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character and display distinct paragenetic sequenceand porosity preservation Rocks
interpreted to representmobile shoal settings includeoarseto very coarsevery well sorted
sediment wih high ooid abundancgpresumably high depositional-k) and experienced
extensive earlynarinecementation In contrast, rocks interpreteto represent aidal channel
faciesare poorly sorted and include diverse grain types. The chatepsits(presumably lower
depositionalu -k) display less early marine cementatiand preserve interparticle porosity
These observations are consistent with results of this studyhat sedimentologically distinct
samples display differences in diagenetic effeptsge attributes, and petrophysical parameters.

In anotherexample, Cavallo and Smosna (19$aonstratedhow porosity trends mimic
depositional patterns within a Mississippian oolitic shoal system of the Appalachian basin.
Environments interpreted as sehl crests are coarse, well sortetdiment with high ooid
abundanceand relatively high porosity. In contrashoal flanksnclude less porousmterbedded
packstoneand grainstone of finer grain size, poorer sorting, and lower ooid abundance, and
channds include wn-porous bioturbated packstone The study documented thatrgin size,
sorting and ooid abundancéncreasetowards the bar centemand upward within the shoal,
parallel to trends irporosity. These conclusions are consistent with observations of this study
which suggest increased grain size, sorting, and ooid abundance results in more favorable
reservoir character

In a third example EsrafiliDizaji and RahimpotBonab (2014)Yocumented detailed
sedimentologic patterns and associated petrophysical responsestirerRermoTriassidalan
and Kangarformationsof Iran (Khuff equivales). These strata include an upward increase in

grain size, sorting, and ooid abundance within several shalpupward oolitic successions.

29



These sedimentologic changes are associated with concomitant upward increases in porosity and
permeability within eaclsuccession These patterns are consistent with resuitithis study, as
samples which show increasedrsng and ooid abundance display favorable pore attributes
(e.g., compact, evenly distributed pores) and et higher permeability ¢f. Figure 12)

Certainly, there are situations in which relatiom&tween depositional fabric and
reservoir charactedo not hold. For example, Wagner and Matthews (1981) interpreted porosity
distribution within the Jurassic Smackover Formation of Arkansas to be unrelated to grain size,
sorting, or type. Instead, the studyvoked a purely diagenetic controbn petrophysical
parameters Sediment which underwent minerstiabilization prior to burial resisted compaction
and preservegorosity. In contrast, sedimenthich had not stabilized mineralogicallyigr to
burial experienced extensive compaction and porosity itwun. In another study of the
Smackover Formation, Heydari (2003) documents an example from southern Mississippi in which
diagenesis has destroyed nearly all porosity, eliminating any potential influence of depositional

fabric on reservoir character.

Gonclusions

This study analyzes oolitic grainstones of four geologic ages which include similar ranges of grain
size, sorting, and type, but represent distinct diagenetic scenarios (e.g., deposition, early
diagenesis, distinct late diagenetic pathways)eskhdiagenetic distinctions result in each group
including a uniqgue combination of pore size, shape, spatial distribution, and connectivity. Within
each scenario, metrics of depositional fabric correlate more closely to changes in pore attributes

and perneability than do diagenetic attributes. Collectively, these results are interpreted to
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suggest that sedimentology controls the trends or variability within a succession, but diagenesis
may define the absolute values of pore attributes and petrophysicamaters. The implication

of these findings is that petrophysical trends within oolitic reservoirs are driven largely by
differences established at the time of deposition, which may be predictable within a stratigraphic

framework.
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Figure 1: Th|n section photomlcrographs |Ilustrat|ng sedimentologic and diagenetic variability
within and among sample groups. A) Fine, moderately sorted sand, Holocene. B) Medium, well
sorted sand, Holocene. C) Pleistocene sample showing parts of &niline lower, fingrained

part includes more abundant cement; in contrast, the upper part is coarser and less well
cemented. D) Medium sarsized, welsorted Pleistocene sediment displaying partly dissolved
ooids, associated moldic pores, and patchyneat. E) Medium sandized, very welsorted
Pennsylvanian sample including oomoldic pores, occluded oomolds, recrystallized ooids, and
some preserved interparticle pores. F) Medium saimkd, moderately sorted Pennsylvanian
sediment with diverse graitypes. G) Medium sansized, welsorted Mississippian sediment
with patchy cement and compaction indicators such as sutured grain contacts and reduced
intergranular volume. H) Medium samsized, welsorted Mississippian sediment with thin
isopachous ament rims and few compaction features.
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Figure 2: Quantitative metrics describing sedimentologic character and diagenetic attributes of
the four sample groups. On plots, whiskers represent minimum and maximum, and boxes
represent 29, 50", and 7% percentiles. A) Granulometry data, illustrating that samples are fine

to coarse grained and moderately to very wa&drted. Ooid abundance typically is greater than
50%. B) Cementation is reported as the percentage of the intergranular volume (IGV)swvhich
occupied by cement, whereas compaction is reported as interparticle porosity loss due to
compaction (COPL; calculated as in Lundegaard, 1992). Note that Pleistocene samples have
suffered relatively little cementation and compaction. Pennsylvaniansrac&lude highest
cement abundance but low compaction, whereas Mississippian samples display moderate
cement abundance and high compaction.
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Figure 3: Thin section photomicrographs@fand associated NMR relaxation curves (E) of
representative, senentologically similar samples (wslbrted, medium sand) of each age (e.qg.,
diagenetic scenarios). For eaBiturve (Part E), relaxation tinfa proxy for pore si2ds plotted
against porosity units so thdahe area under the curve corresponds to tbfaorosity (%). A)
Unconsolidated Holocene oolitic sand with interparticle porosity. This sample displays-a high
amplitude, unimodal peak in the macroporosity domain (> 100 ms) (see Part E). B) Pleistocene
grainstone. Note cementation of interpartig@res and partial dissolution of grains (bluish tint).
Resultant poresize distribution is more complex, exhibiting a bimodal distribution with a
moderate amplitude macroporosity mode and clear contributions of microporosity (Part E). C)
Pennsylvanian ginstone. Grains are dissolved and original interparticle pores are largely
occluded with cement, leaving large isolated oomolds within a cement maksigurve (Part E)
is dominantly unimodal with high amplitude mode at relaxation times greater th&0 18s. D)
Mississippian grainstone. Note preserved ooids and interparticle pores; correspondingve
(part EXdisplays low amplitude modes at relaxation times greater than 1000 ms.
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Figure 4: Digital image analysis (DIA) data illustrating difte®in pore size (DomSize) and shape
(Roundness) of all three lithified sample groups. On plots, whiskers represent minimum and
maximum, whereas boxes represent2%0", and 7% percentiles. Data show that Pleistocene
pores are of moderate size amoundness, Pennsylvanian rocks display large, rounder pores, and
Mississippian samples contain relatively small and less round pores.
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Figure 5: Plot illustrating distinct patterns of pore configuration among samples and sample
groups. AB) Binary irages (red = pore) of two Pennsylvanian oomoldic samples with similar
porosity (~10%, from DIA), each representing an area ~1.5 cm in width. Sample in part A includes
relatively small, evenly distributed pores, whereas sample in part B includes relaliweiged,
isolated pores. C) Lacunarity distributions from samples A and B. Note that sample B displays
higher lacunarity at each box size, a result of the gappier pore network. Lacunarity values used
for linear regressions were taken at the smallest Isize. D) Average lacunarity from each
sample group at each box size. E) Lacunarity distributions which have been normalized to
account for varying porosity among samples, and subsequently averaged for each sample group
at each box size. Data reveal psrof Pennsylvanian samples display relatively high lacunarity
(i.e., isolated oomolds), whereas Mississippian samples include lowest lacunarity (i.e., evenly
distributed intergranular pores). These distinctions have implications on permeability, apya gap
pore network (e.g., Pennsylvanian) yields lower k than an evenly distributed pore network (e.g.,
Mississippian) given similar porosity. Pleistocene samples display similar lacunarity to
Mississippian examples at box sizes < 7|009(i.e., evenly distbuted pores), but are more like
Pennsylvanian examples at larger scales (i.e., gappy pore network). These results are interpreted
to reflect the influence of a bimodal (micrand macre) pore network. At small scales, pores

are widely distributed witin grains (e.g., intragranular micropores) and between them (e.qg.,
intercrystalline micropores and intergranular macropores). However, as the scale of observation
is increased, increasing portions of the total porosity are recognized as clumps of intdegra
macropores.
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Figure 6: Porosity and permeability scatterplot, with data colored by geologic age. Samples
collected as part of this study are noted by square markers, whereas unpublished data points
from the Kansas Geological Survey (KGSyvesalatabase are marked with lighter circles. Of

the samples of this study, Pleistocene samples (n = 9) generally exhibit the highest porosity and
permeability. Pennsylvanian samples (n = 15) display variable porosity and relatively low
permeability. In contrast, Mississippian samples (n = 16) display lower porosity but a higher
permeability for a given porosity than Pennsylvanian samples, and plot on-defieléd trend.
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Figure 7: Relations among depositional fabric and NI¥Burvesfor Holocene sediment. A)
Photomicrograph of fingrained, moderately sorted oolitic and peloidal sediment. B)
Photmicrograph of medium, wedlorted oolitic sediment. O} curves of sediment illustratein
part A (gold) and B (blue) illustratingistinct porosity, mode times, and mode porosity

contributions. D) 3D scatterplot revealing relationship among grain size, ooid abundance, and
modal pore size.
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Figure 8: Comparison of depositional and diagenetic attributes with pore attribute variability for
the three groups. Each bar in the bar graphs (parts B, D, and F) represeritsaineRof the
correlation between rock fabric metrics (independent variable) and a single pore attribute
(dependent variable); the pore attributes vary among groups, andnated below. In this
analysis, rock fabric is split into metrics of depositional (grain size, sorting, ooid abundance,
skeletal abundance) and diagenetic (cement abundance, compaction porosity loss) character.
Regression strength fRusing solely depdsonal fabric metrics is illustrated by the blue bars,
whereas Rvalues using depositional fabric and diagenetic attributes is noted by the orange bars.
A) 3D scatterplot, illustrating how grain size and sorting are inversely related to pore complexity
(PoA) in Pleistocene samples. B) Correlations between metrics of Pleistocene rock fabric and
modal pore sizelp) and pore complexity. C) Crgdst illustrating positive relationship between

grain size and DomSize (plotted on log scale), Pennsylvamigies. D) ®alues of correlations
between rock fabric and pore size (captured as log(DomSize)), pore complexity, and lacunarity,
Pennsylvanian samples. E) 3D scatterplot illustrating relations among grain size, ooid content,
and pore size (DomSizé)jssissippian samples. P)dRcorrelations among rock fabric and pore

size (DomSize), pore complexity, and lacunarity, Mississippian samples. Collectively, these data
reveal that varied depositional fabrics are associated with changes in pore atsibute
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Flgure 9 Relatlons between NMR curves and petrographlc character. All samples have
comparable porosity (:20%). (A) NMHR> curves of illustrative samples from Pennsylvanian
Lansingkansas City Group and Mississippian St. Louis Formation oolitic str&dalhi section
photomicrographs of the samples from part A, of Pennsylvanian (B,C) and Mississippian (D,E) age.

These dta show that samples of very distinct pore types and connectivity can have similar NMR
character.
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Figure 10: Thredimensional scatterplots illustrating some relations among pore attributes (x, y,
and z axes) and permeability (color scale) for eachsaniple group. A) In Pleistocene samples,
pore complexity, pore size, and intergranular porosity are most closely related to permeability.
Multiple linear regression between these three pore attributes and permeability exhibits an R
of 0.90. B) In th&’ennsylvanian subset, NMR porosity, pore circularity, and pore complexity
estimate permeability most closely. Multiple linear regression reveals af ®84. C) Helium
porosity, pore size, and lacunarity (at min. box size) are most closely relatedrteability in
Mississippian samples; multiple linear regression yieldSaf®88. Collectively, these relations
suggest that the pore attributes most closely related to permeability varies among groups.
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Estimators for k Prediction R2 Estimators for k Prediction R? Estimators for k Prediction R?
Grain Size 0.49 Sorting 0.32 Ooid Abundance 0.33
+ Ooid Abundance 0.59 + Ooid Abundance 0.43 + Skeletal Abundance 0.57
+ Sorting 0.68 + Skeletal Abundance 0.48 + Sorting 0.68
+ Skeletal Abundance 0.73 + Grain Size 0.50 + Grain Size 0.68
+ % Cement + COPL 0.86 + % Cement + COPL 0.62 + % Cement + COPL 0.83

Figure 11: Three dimensional scatterplotsdamultivariate linear regression correlations
illustrating relations among rock fabric metrics (independent variables) and permeability
(dependent variable) among sample groups. In the tables below each plot, the metric of
depositional fabric most closelyorrelated to permeability is listed in the top row, along with
correlation coefficient between that variable and permeability. The metrics of depositional fabric
(determined by stepwise regression of all possible combinations) most influential on
permeath f A 0@ LINBSRAOUGUAZ2Y FNB AyOf dzZRSR
in successive rows. A) Grain size, sorting, and ooid abundance exhibit a positive correlation with
permeability in Pleistocene samples. B) Sorting and ooid aimg®ddisplay a positive correlation

with permeability of Pennsylvanian samples. C) Sorting and ooid abundance include a positive
correlation with permeability in Mississippian samples. These data reveal that varied
depositional fabrics are associated lwiistinct permeability, though the sedimentologic metrics
most closely related to permeability changes among groups.
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Figure 12: lllustrative thin section photomicrographsfpand three dimensional scatterplots (D

E) illustrating relations among degitional fabric, pores, and -k across the sample sets (age
indicated by color). A) Moderately sorted Pennsylvanian sample with moderate ooid abundance
includes isolated pores and low permeability (k = 0.72 mD). B}3Medd Pennsylvanian rock
with relatively high ooid abundance contains less isolated pores and moderate permeability (k =
145 mD). C) Wedlorted Pleistocene sample with highest ooid abundance includes evenly
distributed pores and exhibits highest permeability of all three samples (12.0D3D crossplot
suggesting that wetborted sediment with high ooid abundance (%) exhibits low lacunarity (i.e.,
evenly distributed pore networks). E) 3D crossplot showing that sediment with low lacunarity and
compact pores have high permeability. Téessults illustrate varied depositional fabrics are
associated with distinct pore attributes, which are in turn related to changes in permeability.

Collectively, these relations suggest that depositional fabric influences pore networks and
petrophysical prameters across diagenetic scenarios.
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Tables

Sample Group

Holocene

Pleistocene

Pennsylvanian

Mississippian

Area or Stratigraphic
Unit

Fish Cays, Crooked-
Acklins Platform,
Bahamas; Schooner
Cays, Great Bahama
Bank, Bahamas

Crooked Island and
Long Cay, Crooked-
Acklins Platform,
Bahamas

Lansing-Kansas City
Grp. from Ames, Bell,
Hall-Gurney, Silica, and
Victory Fields (Kansas)

St. Louis B from Big
Bow and Sand Arroyo
Creek Fields (Kansas)

Depositional
Environment

Ooid shoal complex

Shoreface

Mobile ooid shoal

Mobile ooid shoal

Dominant Pore Type

Interparticle

Interparticle and
intragranular
microporosity; minor
moldic

Oomoldic; minor
interparticle

Interparticle

References

Ball, 1967; Rankey and
Reeder, 2010, 2011,
2012; Rush and Rankey,
2017

Goers and Rankey, 2018,
Personal
Communication

Watney and French,
1988; French and
Watney, 1993; Byrnes et
al., 2003

Abegg, 1991; Parham
and Sutterlin, 1993; Qi
and Carr, 2005

Table 1: Sedimentologic, stratigraphic, and diagenetic character of sample sets. Each group
represents ooid grainstone of a distinct diagenetic scenario, ranging frehthifred sediment
(Holocene) to arly diagenesis (Pleistocene) to contrasting late diagenetic-neechbers
(Pennsylvanian, Mississippian).
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Local Parameter Definition Description

Aspect Ratio (AR) Major Ratio of axis lengths of the bounding ellipse of a pore; distinguishes
Minor elongate features from star or circle shapes, but fails to distinguish
stars from circles (dimensionless)
Circularity 4mA Inverse of Gamma squared; sensitive to edginess or smoothness of
P2 boundaries; scale-dependent (dimensionless)
Compactness 4 Ratio of area and length of the major ellipse axis, not sensitive to
A|l——— edginess (dimensionless)
n(Major)?
Equivalent 4 Diameter of a circle with the same area as the pore; used to compare
Diameter 2 1= pore sizes regardless of pore shape (um)
T
Gamma (y) P Ratio of pore perimeter to pore area (“unroundness”); distinguishes
2\TA elongate or star shapes from circles, but fails to distinguish elongate
shapes from stars (dimensionless)
Roundness 4A Scale-independent ratio of area and Feret’s Diameter; robust measure
% FD sensitive to elongate features (dimensionless)
Global Parameter Definition Description
Total Pore Area Z p Sum of area of all pores (um?)
Total Pore p Sum of the perimeters of all pores (um)
Perimeter Z
PoA (Perimeter »P Describes complexity of the pore network’s boundary; especially
over Area) E_A sensitive to edginess; normalized for porosity variations (1/pm)
DomsSize 50t Percentile Max pore size needed to occupy half of the pore space; given in

equivalent diameter (Weger, 2006) (Lm)

Table 2: Local and global DIA parameters characterizing pore size and shape, based on Russ
(1998) and Weger (2006). Local parameters are caknilitipm the raw data produced by

ImageJ, indicated by A (pore area), P (pore perimeter), Major (major axis of bounding ellipse),
aAy2NJ OYAY2N) FEAE 2F o02dzyRAy3 StfALASOUE yR C
two points along pore boundary).In addition to these four global parameters, the mean and

median of each local parameter were calculated, as well as thevaegghted average of gamma.
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Rock Fabric Depositional Fabric
Grain Size
Sorting
Skewness
Kurtosis
Ooid Content (%)
Skeletal Content (%)

Composite Grain Content (%)

Mud Content (%)

Pore Attributes size Shape
DomSize PoA
T, Mode Circularity

T, Log Mean  Compactness
T, Kurtosis Gamma (y)
Aspect Ratio (AR)

Roundness

D-k Porosity
He Porosity (%)
DIA Porosity (%)
NMR Porosity (%)

NMR Macroporosity (%)
NMR Microporosity (%)

Diagenetic Factors
Cement Abundance
Compaction (D Loss)

Fracture Presence (Y/N)

Spatial Distribution  Type

Lacunarity Intergranular Porosity

Moldic Porosity

Permeability

Air k (md)

Table 3: Data types used throughout this study. Rock fabric includes depositional and d@ageneti
components and is characterized using digital petrography and point counting. Pore attributes
are derived from NMR, DIA, and point counting, and quantify pore size, shape, spatial
distribution, and type. These measures of rock and pore character arpared to porosity and

permeability data from routine core analysis, DIA, and NMR.
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Appendices
Appendix 1Results of Mltivariate Linear Regression

Pleistocene Pennsylvanian Mississippian

Parameter of Depositional Fabric R?with @ R2with k Parameter of Depositional Fabric RZwith @ R2with k Parameter of Depositional Fabric R2 with @ R2 with k
Grain Size 0.31 0.49 Grain Size 0.17 0.01 Grain Size 0.12 0.01
Sorting 0.01 0.08 Sorting 0.62 0.32 Sorting 0.35 0.22
Ooid Abundance (%) 0.15 0.03 Qoid Abundance (%) 0.63 0.27 Ooid Abundance (%) 0.19 0.33
Skeletal Abundance (%) 0.28 0.05 Skeletal Abundance (%) 0.26 0.00 Skeletal Abundance (%) 0.09 0.03
% Cement of IGV 0.04 0.61 % Cement of IGV 0.11 0.24 % Cement of IGV 0.10 0.30
COPL 0.03 0.00 COPL 0.42 0.14 COPL 0.04 0.00
Pore Attribute R2 with k Pore Attribute Rzwithk  Pore Attribute R2 with k
DomSize 0.38 DomSize 0.02 DomSize 0.60
PoA 0.82 PoA 0.12 PoA 0.22
Gamma 0.18 Gamma 0.02 Gamma 0.33
AR 0.03 AR 0.01 AR 0.03
Circularity 0.31 Circularity 0.53 Circularity 0.30
Roundness 0.01 Roundness 0.00 Roundness 0.04
Compactness 0.58 Compactness 0.32 Compactness 0.30
Lacunarity - m 0.00 Lacunarity - m 0.59 Lacunarity - m 0.39
Lacunarity - Min Box Size 0.02 Lacunarity - Min Box Size 0.50 Lacunarity - Min Box Size 0.49
He Porosity 0.00 He Porosity 0.33 He Porosity 0.64
NMR Porosity 0.00 NMR Porosity 0.67 NMR Porosity 0.50
NMR Macroporosity 0.44 NMR Macroporosity 0.64 NMR Macroporosity 0.46
T, Mode 0.43 T, Mode 0.03 T, Mode 0.38
Intergranular Porosity 0.59 Intergranular Parosity 0.26 Intergranular Porosity 0.08

Strength of correlations between individual metrics describing rocks and pores uxkh
Statistically significant correlations X®.05) are indicated in bold.
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Appendix 2Raw [xta from Holocen&mples

*Thin section photomicrographs are roughly 3.5 mm in width

BA1A-6

k;rain Size (phi) 1.760)
Sorting (o) 0.684)
Ooid Abundance (%) 39.645)
Bkeletal Abundance (%) 27.219|
Intergranular Volume (%) 44.667
Cement Abundance (% of IGV) 0.000
COPL
DomSize (um)
POA (1/um)
Circularity (mean)

d (mean)
KCompactness (med)
Lacunarity (Min Box Size)
Normalized Lacunarity (Max Box Size)
Porosity (%, NMR) 43.128]
IT.LogMean (ms)
[T,Mode Macro (ms) 349.294
Wir k (md)
Porosity (%, He)
krain Size (phi) 2.413
Sorting (o) 0.673|
Ooid Abundance (%) 29.586
Skeletal Abundance (%) 21.893|

g lar Volume (%) 43.625)
Cement Abundance (% of IGV) 0.000]
ICOPL
DomSize (um)
POA (1/um)
Circularity (mean)

d (mean)
Compactness (med)
Lacunarity (Min Box Size)

ized Lacunarity (Max Box Size)

Porosity (%, NMR) 38.281
T,LogMean (ms)
T,Mode Macro (ms) 349.294|
Wir k (md)

Porosity (%, He)

Porosity (%)
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BA2-15

LSrain Size (phi) 2.203]
Sorting (o) 0.545|
Ooid Abundance (%) 39.475|
Skeletal Abundance (%) 29.604
ntergranular Volume (%) 49.164)
Cement Abundance (% of IGV) 0.000)
COPL
DomSize (um)
POA (1/um)
Circularity (mean)

d (mean)
Compactness (med)
Lacunarity (Min Box Size)

lized Lacunarity (Max Box Size)

Porosity (%, NMR) 43.634
T,LogMean (ms)
T,Mode Macro (ms) 392.141
Wir k (md)
Porosity (%, He)
LSrain Size (phi) 2.140]
BSorting (o) 0.590)
Ooid Abundance (%) 37.158]
Skeletal Abundance (%) 32.608

g lar Volume (%) 37.201
Cement Abundance (% of IGV) 0.000]
COPL
DomSize (um)
PoA (1/pum)
Circularity (mean)
Roundness (mean)
Compactness (med)
Lacunarity (Min Box Size)

lized Lacunarity (Max Box Size)

Porosity (%, NMR) 46.607
T,LogMean (ms)
T,Mode Macro (ms) 329.659
Wir k (md)

Porosity (%, He)

Porosity (%)

e
n

Porosity (%)

o
n

01

10 . 1oo 1000 10000
T, Relaxation Time (ms)
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BA3-10

Lsrain Size (phi) 2.293]
Sorting (o) 0.480]
Ooid Abundance (%) 31.677|
keletal Abundance (%) 42.235
granular Volume (%) 44.863
Cement Abundance (% of IGV) 0.000)
ICOPL
DomSize (um)
PoA (1/pum)
Circularity (mean)
Roundness (mean)
Compactness (med)
Lacunarity (Min Box Size)
l lized Lacunarity (Max Box Size)
Porosity (%, NMR) 44.219|
T,LogMean (ms)
[T,Mode Macro (ms) 311.129|
Air k (md)
Porosity (%, He)
LSrain Size (phi) 1.433|
BSorting (o) 0.634
Ooid Abundance (%) 59,333
keletal Abundance (%) 25.489)
g Volume (%) 48.288
Cement Abundance (% of IGV) 0.000]
COPL
DomSize (um)
POA (1/um)
Circularity (mean
Roundness (mean)
Compactness (med)
Lacunarity (Min Box Size)
lized Lacunarity (Max Box Size)
Porosity (%, NMR) 40.802|
T,LogMean (ms)
T,Mode Macro (ms) 370.098
ir k (md)

Porosity (%, He)

=
[

Porosity (%)
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n
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BA3-29

Lsrain Size (phi) 0.630|
Sorting (o) 0.490
Ooid Abundance (%) 72.132
keletal Abundance (%) 24.192]
granular Volume (%) 57.093|
Cement Abundance (% of IGV) 0.000|
ICOPL
DomSize (um)
PoA (1/pum)
Circularity (mean)
Roundness (mean)
Compactness (med)
Lacunarity (Min Box Size)
l lized Lacunarity (Max Box Size)
Porosity (%, NMR) 50.589
T,LogMean (ms)
[T,Mode Macro (ms) 1483.650|
Wir k (md)
Porosity (%, He)
LSrain Size (phi) 2.040)
Sorting (o) 0.534
Ooid Abundance (%) 11.290]
keletal Abundance (%) 44.624
g lar Volume (%) 40.068
Cement Abundance (% of IGV) 0.000]
COPL
DomSize (um)
PoA (1/um)
Circularity (mean
Roundness (mean)
Compactness (med)
Lacunarity (Min Box Size)
lized Lacunarity (Max Box Size)
Porosity (%, NMR) 46.368]
T,LogMean (ms)
T,Mode Macro (ms) 232.976
ir k (md)
Porosity (%, He)

Porosity (%)

o
wn
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T T T 1
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X3-21

LErain Size (phi) 1.600)

Sorting (o) 0.613]

[Ooid Abundance (%) 66.488)

Bkeletal Abundance (%) 6.486)
granular Volume (%) 38.127,

Cement Abundance (% of IGV) 0.000)

COPL

DomSize (um)

PoA (1/pum)

Circularity (mean)

Roundness (mean)

ICompactness (med

Lacunarity (Min Box Size)

l lized Lacunarity (Max Box Size)

Porosity (%, NMR) 41.529]

IT.LogMean (ms)

[T,Mode Macro (ms) 741.010)

Air k (md)

Porosity (%, He)

Lirain Size (phi) 1.413]

BSorting (o) 0.492]

Ooid Abundance (%) 75.656,

Pkeletal Abund (%) 12.501]
granular Volume (%) 49.159

Cement Abund: (% of IGV) 0.000)

COPL

DomSize (um)

PoA (1/um)

Circularity (mean

Roundness (mean)

Compactness (med)

Lacunarity (Min Box Size)

l lized Lacunarity (Max Box Size)

Porosity (%, NMR) 42.929]

T,LogMean (ms)

[T,Mode Macro (ms) 785.145

Air k (md)

Porosity (%, He)

Porosity (%)

o
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Porosity (%)
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01
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T, Relaxation Time (ms)
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X3-28

Lsrain Size (phi)

1.360)

Sorting (o)

0.429]

Ooid Abundance (%)

72.042

Skeletal Abundance (%)

8.065)

g lar Volume (%)

37.374)

KCement Abundance (% of IGV)

0.000]
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DomSize (um)

PoA (1/pm)

Circularity (mean)

Roundness (mean)

Compactness (med)

Lacunarity (Min Box Size)

d Lacunarity (Max Box Size)
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41.338
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Appendix 3: Raw Data from Pleistocene Samples

*Thin section photomicrographs are roughly 3.5 mm in width

KP2-10

Grain Size (phi) 1.967,
[Sorting (o) 0.716
I0oid Abundance (%) 70.588
[Skeletal Abundance (%) 12.300)
Intergranular Volume (%) 37.999
ICement Abundance (% of IGV) 64.036
ICOPL 6.691
DomSize (um) 73.728
PoA (1/pum) 0.175
Circularity (mean) 0.244
Roundness (mean) 0.561
ICompactness (med) 19.234
lLacunarity (Min Box Size) 0.772
INormalized Lacunarity (Max Box Size) -0.748
Porosity (%, NMR) 33.690
[T,LogMean (ms) 62.498
IT,Mode Macro (ms) 548.885
Air k (md) 2090.000]
Porosity (%, He) 35.039
[Grain Size (phi) 1.080)
[Sorting (o) 0.401
|0oid Abundance (%) 84.996
[Skeletal Abundance (%) 10.010
Intergranular Volume (%) 36.667
ICement Abundance (% of IGV) 28.181
ICOPL 9.138
DomSize (um) 370.815
POA (1/pm) 0.062
[Circularity (mean) 0.174]
Roundness (mean) 0.511
ICompactness (med) 29.113
lLacunarity (Min Box Size) 0.639
INormalized Lacunarity (Max Box Size) -0.588
Porosity (%, NMR)

IT,LogMean (ms)

[T,Mode Macro (ms)

Air k (md) 31400.000
Porosity (%, He) 27.774)

Porosity (%)

o
)

o
o

o
>

Macro
Micro

T

10 100
T, Relaxation Time (ms)

1000

10000

64



KP2-185

Grain Size (phi) 2.333
Sorting (o) 0.525|
Ooid Abundance (%) 70.855|
Skeletal Abundance (%) 15.075
Intergranular Volume (%) 33.667|
ICement Abundance (% of IGV) 41.584
ICOPL 12.356
IDomSize (um) 121.067]
PoA (1/um) 0.148
Circularity (mean) 0.174
Roundness (mean) 0.544
ICompactness (med) 25.713]
lLacunarity (Min Box Size) 0.548|
INormalized Lacunarity (Max Box Size) -0.534]
Porosity (%, NMR)
T,LogMean (ms)
[T,Mode Macro (ms)
Air k (md) 2830.000)
Porosity (%, He) 37.721]
IGrain Size (phi) 2.540
Sorting (o) 0.538]
|0oid Abundance (%) 70.527
Skeletal Abundance (%) 13.587
Intergranular Volume (%) 33.666
ICement Abundance (% of IGV) 42.574]
ICOPL 12.357,
DomSize (um) 112.146
PoA (1/um) 0.176
[Circularity (mean) 0.171
Roundness (mean) 0.552
ICompactness (med) 21.200
lLacunarity (Min Box Size) 0.371
INormalized Lacunarity (Max Box Size) -0.367
Porosity (%, NMR) 27.980)
[T,LogMean (ms) 69.069
IT,Mode Macro (ms) 548.885
Air k (md) 609.000)
Porosity (%, He) 42.682]

Porosity (%)
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LCH9-138

Grain Size (phi) 2.193)
[Sorting (o) 0.431
I0oid Abundance (%) 76.056
[Skeletal Abundance (%) 13.614
Intergranular Volume (%) 28.666
ICement Abundance (% of IGV) 43.023]
ICOPL 18.540
DomSize (um) 129.228]
PoA (1/pm) 0.132]
Circularity (mean) 0.202
Roundness (mean) 0.535
ICompactness (med) 20.282
lLacunarity (Min Box Size) 0.457
INormalized Lacunarity (Max Box Size) -0.454
Porosity (%, NMR) 32.910
[T,LogMean (ms) 144.306
IT,Mode Macro (ms) 548.885
Air k (md) 7430.000
Porosity (%, He) 38.724
IGrain Size (phi) 2.410]
[Sorting (o) 0.413
|0oid Abundance (%)

[Skeletal Abundance (%)

Intergranular Volume (%)

ICement Abundance (% of IGV)

ICOPL

DomSize (um) 102.013
PoA (1/um) 0.159
Circularity (mean) 0.192
Roundness (mean) 0.552

ICompactness (med) 13.438]
lLacunarity (Min Box Size) 0.524
INormalized Lacunarity (Max Box Size) -0.516
Porosity (%, NMR) 34.050}

[T,LogMean (ms) 70.858

IT,Mode Macro (ms) 548.885

Air k (md)

Porosity (%, He) 34.050
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SAT2-408

IGrain Size (phi)

1.950]

[Sorting (o) 0.510]

I0oid Abundance (%)

Bkeletal Abundance (%)

Intergranular Volume (%)

ICement Abundance (% of IGV)

ICOPL

DomSize (um) 102.831

PoA (1/um) 0.175

[Circularity (mean) 0.195

Roundness (mean) 0.542

ICompactness (med) 16.401

Lacunarity (Min Box Size) 0.496]

[Normalized Lacunarity (Max Box Size) -0.492

Porosity (%, NMR) 36.110)

IT,LogMean (ms) 28.164

IT,Mode Macro (ms)

Air k (md)

Porosity (%, He) 36.110
(Grain Size (phi) 2.157|
[Sorting (o) 0.417
I0oid Abundance (%) 91.305
ISkeletal Abundance (%) 4.445)
Intergranular Volume (%) 39.000]
ICement Abundance (% of IGV) 70.000;
ICOPL 5.725
DomSize (um) 127.119
PoA (1/um) 0.204]
(Circularity (mean) 0.108
Roundness (mean) 0.515
ICompactness (med) 10.438|
lLacunarity (Min Box Size) 0.580]
[Normalized Lacunarity (Max Box Size) -0.574
Porosity (%, NMR) 30.520
IT,LogMean (ms) 72.965
IT,Mode Macro (ms) 767.230)
lAir k (md) 70.700|
Porosity (%, He) 34.013
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SAT3-293

(Grain Size (phi) 2.210
[Sorting (o) 0.497]
|0oid Abundance (%) 91.219|
[Skeletal Abundance (%) 4.523
Intergranular Volume (%) 31.666
ICement Abundance (% of IGV) 54.737|
ICOPL 14.940
IDomSize (um) 117.851
POA (1/um) 0.151]
[Circularity (mean) 0.162
Roundness (mean) 0.545)
|Compactness (med) 14.479
lLacunarity (Min Box Size) 0.840]
INormalized Lacunarity (Max Box Size) -0.779|
Porosity (%, NMR)
[T,LogMean (ms)
[T,Mode Macro (ms)
lAir k (md) 843,000
Porosity (%, He) 47.142)
Grain Size (phi) 2.363
[Sorting (o) 0.705
|0oid Abundance (%) 78.161
[Skeletal Abundance (%) 5.202
Intergranular Volume (%) 41.806
ICement Abundance (% of IGV) 53.600]
ICOPL 6.897,
DomSize (um) 158.735
PoA (1/um) 0.208]
Circularity (mean) 0.102
Roundness (mean) 0.548
ICompactness (med) 12.113)
lLacunarity (Min Box Size) 0.631
[Normalized Lacunarity (Max Box Size) -0.627
Porosity (%, NMR) 41.690)
[T,LogMean (ms) 95.277
IT,Mode Macro (ms) 490.907
IAir k (md)
Porosity (%, He) 41.690
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SAT4-334

Grain Size (phi) 2.387|
[Sorting (o) 0.326
IOoid Abundance (%) 81.193
[Skeletal Abundance (%) 7.422]
Intergranular Volume (%) 33.667,
ICement Abund. (% of IGV) 29.703
ICOPL 13.667
[DomSize (um) 200.004
POA (1/um) 0.136
(Circularity (mean) 0.122
Roundness (mean) 0.534]
ICompactness (med) 16.218|
Lacunarity (Min Box Size) 0.499
[Normalized Lacunarity (Max Box Size) -0.492
Porosity (%, NMR) 35.330|
IT,LogMean (ms) 56.480
IT,Mode Macro (ms) 332.135)
Air k (md) 2540.000]
Porosity (%, He) 39.765
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