KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    New Behavioral Insights Into Home Range Orientation of the House Mouse (Mus musculus)

    Thumbnail
    View/Open
    Alexander_ku_0099D_11575_DATA_1.pdf (5.817Mb)
    Issue Date
    2011-05-06
    Author
    Alexander, Blythe Elizabeth
    Publisher
    University of Kansas
    Format
    154 pages
    Type
    Dissertation
    Degree Level
    Ph.D.
    Discipline
    Ecology & Evolutionary Biology
    Rights
    This item is protected by copyright and unless otherwise specified the copyright of this thesis/dissertation is held by the author.
    Metadata
    Show full item record
    Abstract
    Home-range orientation is a necessity for an animal that maintains an area of daily activity. The ability to navigate efficiently among goals not perceived at the starting point requires the animal to rely on place recognition and vector knowledge. These two components of navigation allow the animal to dynamically update its current position and link that position with the locomotor distance and direction needed to reach a goal. In order to use place knowledge and vector knowledge the animal must learn and remember relevant spatial information obtained from the environment and from internal feedback. The research in this dissertation focuses on behavioral components of topographic orientation, using the house mouse as a model species. Specifically, this research made important discoveries in three main areas: 1) locomotor exploration behavior, 2) the use of learned spatial information for compass orientation, and 3) testable hypotheses based on the controversial cognitive map. In Chapter 1, I used a radial arm maze to find a systematic locomotor component to exploration behavior, which is typically described as random movement. Exploration refers to the learning process that occurs as an animal acquires relevant spatial information for home-range orientation. I predicted that this process must have a systematic component; and the results revealed that in a radial arm maze, mice avoided exploring a place explored one and two visits prior. Therefore, locomotor exploration does have a systematic component. In Chapter 2, I trained mice to navigate to their home within a circular arena, with access to a visual beacon and an enriched visual background. The mice showed that to navigate home, they preferred to rely on the extra-arena (background) cues for compass direction. However, when these extra-arena cues became unreliable, the mice showed flexibility in their preference by ignoring the visual background and instead relying on the visual beacon to locate home. This flexibility in cue use negates a popular theory, called the snapshot theory, which does not allow for such flexibility in navigation. To further study the use of compass cues in mice, in Chapter 3, I utilized a plus-maze to manipulate both allothetic (environmental) and idiothetic (internal) cues. The purpose was to determine which cue type predominated the directional choice of mice at the maze intersection while both leaving and returning home. Previous studies have ignored the potential difference in cue use during the complete roundtrip an animal would make within its home range. The results show that mice relied on different cues for the outward path and the homing path of a familiar complex roundtrip. Finally, I developed two testable hypotheses and a valid experimental design that can be used to test house mice, and other animals, for the so-called cognitive map. An animal that has a cognitive map would be able to compute a novel shortcut to a goal relying exclusively on the flexibility of such a map, and not from the other two options of novel shortcutting: guidance orientation or path integration. Thus by designing my experiments to eliminate the potential for the mice to rely on a guiding cue to direct them home, and by eliminating the ability to compute a shortcut by summing the vectors previously walked, I was able to test mice for a truly novel, map-based shortcut home. These two hypotheses were named viewpoint extrapolation and viewpoint interpolation and require pure visual exploration to acquire the necessary place and vector knowledge. Both experiments showed that mice were not capable of using pure visual exploration and therefore these studies provide no evidence that mice have a cognitive map. Overall, my research provides evidence that mice do have a mental route-based map and to build such a mental map, locomotor exploration is necessary and sufficient for acquiring relevant spatial knowledge to later use to efficiently navigate.
    URI
    http://hdl.handle.net/1808/8036
    Collections
    • Dissertations [4321]
    • Ecology and Evolutionary Biology Dissertations and Theses [351]

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps