KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Engineering
    • Electrical Engineering and Computer Science Scholarly Works
    • View Item
    •   KU ScholarWorks
    • Engineering
    • Electrical Engineering and Computer Science Scholarly Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Machine Learning for Aerospace Applications using the Blackbird Dataset

    Thumbnail
    View/Open
    McNamee_eecs_masters.pdf (10.41Mb)
    Issue Date
    2021-07-09
    Author
    McNamee, Patrick
    Type
    Project
    Degree Level
    M.S.
    Discipline
    Computer Science
    Rights
    Copyright 2021 Patrick McNamee
    Metadata
    Show full item record
    Abstract
    There is currently much interest in using machine learning (ML) models for vision-based object detection and navigation tasks in autonomous vehicles. For unmanned aerial vehicles (UAVs), and particularly small multi-rotor vehicles such as quadcopters, these models are trained on either unpublished data or within simulated environments, which leads to two issues: the inability to reliably reproduce results, and behavioral discrepancies on physical deployments resulting from unmodeled dynamics in the simulation environment. To overcome these issues, this project uses the Blackbird Dataset to explore integration of ML models for UAV. The Blackbird Dataset is overviewed to illustrate features and issues before investigating possible ML applications. Unsupervised learning models are used to determine flight-test partitions for training supervised deep neural network (DNN) models for nonlinear dynamic inversion. The DNN models are used to determine appropriate model choices over several network parameters including network layer depth, activation functions, epochs for training, and neural network regularization.
    Description
    This project was submitted to the graduate degree program in Department of Electrical Engineering and Computer Science and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Masters of Science in Computer Science.
    URI
    http://hdl.handle.net/1808/31723
    Collections
    • Electrical Engineering and Computer Science Scholarly Works [301]

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps