KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Trust and Credibility in Online Social Networks

    Thumbnail
    View/Open
    Available after: 2020-08-31 (1.591Mb)
    Issue Date
    2019-08-31
    Author
    Xue, Hao
    Publisher
    University of Kansas
    Format
    150 pages
    Type
    Dissertation
    Degree Level
    Ph.D.
    Discipline
    Electrical Engineering & Computer Science
    Rights
    Copyright held by the author.
    Metadata
    Show full item record
    Abstract
    Increasing portions of people's social and communicative activities now take place in the digital world. The growth and popularity of online social networks (OSNs) have tremendously facilitated online interaction and information exchange. As OSNs enable people to communicate more effectively, a large volume of user-generated content (UGC) is produced daily. As UGC contains valuable information, more people now turn to OSNs for news, opinions, and social networking. Besides users, companies and business owners also benefit from UGC as they utilize OSNs as the platforms for communicating with customers and marketing activities. Hence, UGC has a powerful impact on users' opinions and decisions. However, the openness of OSNs also brings concerns about trust and credibility online. The freedom and ease of publishing information online could lead to UGC with problematic quality. It has been observed that professional spammers are hired to insert deceptive content and promote harmful information in OSNs. It is known as the spamming problem, which jeopardizes the ecosystems of OSNs. The severity of the spamming problem has attracted the attention of researchers and many detection approaches have been proposed. However, most existing approaches are based on behavioral patterns. As spammers evolve to evade being detected by faking normal behaviors, these detection approaches may fail. In this dissertation, we present our work of detecting spammers by extracting behavioral patterns that are difficult to be manipulated in OSNs. We focus on two scenarios, review spamming and social bots. We first identify that the rating deviations and opinion deviations are invariant patterns in review spamming activities since the goal of review spamming is to insert deceptive reviews. We utilize the two kinds of deviations as clues for trust propagation and propose our detection mechanisms. For social bots detection, we identify the behavioral patterns among users in a neighborhood is difficult to be manipulated for a social bot and propose a neighborhood-based detection scheme. Our work shows that the trustworthiness of a user can be reflected in social relations and opinions expressed in the review content. Besides, our proposed features extracted from the neighborhood are useful for social bot detection.
    URI
    http://hdl.handle.net/1808/30235
    Collections
    • Dissertations [4475]
    • Engineering Dissertations and Theses [1055]

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps