Show simple item record

dc.contributor.authorATLAS Collaboration
dc.date.accessioned2018-11-01T19:30:13Z
dc.date.available2018-11-01T19:30:13Z
dc.date.issued2017-09-02
dc.identifier.citationAaboud, M., Aad, G., Abbott, B. et al. Eur. Phys. J. C (2017) 77: 580. https://doi.org/10.1140/epjc/s10052-017-5081-5en_US
dc.identifier.urihttp://hdl.handle.net/1808/27141
dc.description.abstractThe rejection of forward jets originating from additional proton–proton interactions (pile-up) is crucial for a variety of physics analyses at the LHC, including Standard Model measurements and searches for physics beyond the Standard Model. The identification of such jets is challenging due to the lack of track and vertex information in the pseudorapidity range |η|>2.5. This paper presents a novel strategy for forward pile-up jet tagging that exploits jet shapes and topological jet correlations in pile-up interactions. Measurements of the per-jet tagging efficiency are presented using a data set of 3.2 fb−1 of proton–proton collisions at a centre-of-mass energy of 13 TeV collected with the ATLAS detector. The fraction of pile-up jets rejected in the range 2.5<|η|<4.5 is estimated in simulated events with an average of 22 interactions per bunch-crossing. It increases with jet transverse momentum and, for jets with transverse momentum between 20 and 50 GeV, it ranges between 49% and 67% with an efficiency of 85% for selecting hard-scatter jets. A case study is performed in Higgs boson production via the vector-boson fusion process, showing that these techniques mitigate the background growth due to additional proton–proton interactions, thus enhancing the reach for such signatures.en_US
dc.publisherSpringerOpenen_US
dc.rights© CERN for the benefit of the ATLAS collaboration 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.titleIdentification and rejection of pile-up jets at high pseudorapidity with the ATLAS detectoren_US
dc.typeArticleen_US
kusw.kudepartmentPhysics and Astronomyen_US
dc.identifier.doi10.1140/epjc/s10052-017-5081-5en_US
kusw.oaversionScholarly/refereed, publisher versionen_US
kusw.oapolicyThis item meets KU Open Access policy criteria.en_US
dc.rights.accessrightsopenAccessen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

© CERN for the benefit of the ATLAS collaboration 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Except where otherwise noted, this item's license is described as: © CERN for the benefit of the ATLAS collaboration 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.