Abstract
Methionine sulfoxide reductase A knockout (MsrA−/−) mice, which serve as a potential model for neurodegeneration, suffer from increased oxidative stress and have previously been found to have chronically elevated brain dopamine content levels relative to control mice. Additionally, these high levels parallel increased presynaptic dopamine release. In this work, fast-scan cyclic voltammetry at carbon-fiber microelectrodes was used to quantify striatal reserve pool dopamine in knockout mice and wild-type control mice. Reserve pool dopamine efflux, induced by amphetamine, was measured in brain slices from knockout and wild type mice in the presence of α-methyl-p-tyrosine, a dopamine synthesis inhibitor. Additionally, the stimulated release of reserve pool dopamine, mobilized by cocaine, was measured. Both efflux and stimulated release measurements were enhanced in slices from knockout mice, suggesting that these mice have greater reserve pool dopamine stores than wild-type and that these stores are effectively mobilized. Moreover, dopamine transporter labeling data indicate that the difference in measured dopamine efflux was likely not caused by altered dopamine transporter protein expression. Additionally, slices from MsrA−/− and wild-type mice were equally responsive to increasing extracellular calcium concentrations, suggesting that potential differences in either calcium entry or intracellular calcium handling are not responsible for increased reserve pool dopamine release. Collectively, these results demonstrate that MsrA−/− knockout mice maintain a larger dopamine reserve pool than wild-type control mice, and that this pool is readily mobilized.
Citation
Ortiz, A. N., Oien, D. B., Moskovitz, J., & Johnson, M. A. (2011). QUANTIFICATION OF RESERVE POOL DOPAMINE IN METHIONINE SULFOXIDE REDUCTASE A NULL MICE. Neuroscience, 177, 223–229. http://doi.org/10.1016/j.neuroscience.2011.01.001