Differential Interactions of the Catalytic Subunits of Adenylyl Cyclase with Forskolin Analogs
dc.contributor.author | Pinto, Cibele | |
dc.contributor.author | Hubner, Melanie | |
dc.contributor.author | Gille, Andreas | |
dc.contributor.author | Richter, Mark | |
dc.contributor.author | Mou, Tung-Chung | |
dc.contributor.author | Sprang, Stephen R. | |
dc.contributor.author | Seifert, Roland | |
dc.date.accessioned | 2017-01-27T20:04:42Z | |
dc.date.available | 2017-01-27T20:04:42Z | |
dc.date.issued | 2009-04-02 | |
dc.identifier.citation | Pinto, Cibele, Melanie Hübner, Andreas Gille, Mark Richter, Tung-Chung Mou, Stephen R. Sprang, and Roland Seifert. "Differential Interactions of the Catalytic Subunits of Adenylyl Cyclase with Forskolin Analogs." Biochemical Pharmacology 78.1 (2009): 62-69. | en_US |
dc.identifier.uri | http://hdl.handle.net/1808/22681 | |
dc.description.abstract | The diterpene forskolin (FS) binds to, and activates, mammalian membranous adenylyl cyclase (AC) isoforms I–VIII. Diterpenes without C1-OH group do not activate ACs. The C1-OH group forms a hydrogen bond with the backbone oxygen of Val506 of the C1 catalytic subunit of AC (isoform V numbering). To better understand the mechanism of AC activation we examined the interactions of FS and eight FS analogs with purified catalytic AC subunits C1 (AC V) and C2 (AC II) by fluorescence spectroscopy, using 2′,3′-O-(N-methylanthraniloyl)-guanosine 5′-triphosphate (MANT-GTP) as fluorescent reporter probe, and by enzymatic activity. FS analogs induced C1/C2 assembly as assessed by fluorescence resonance energy transfer from Trp1020 of C2 to MANT-GTP and by increased direct MANT-GTP fluorescence in the order of efficacy FS ~ 7-deacetyl-FS ~ 6-acetyl-7-deacetyl-FS ~ 9-deoxy-FS > 7-deacetyl-7-(N-methylpiperazino-γ-butyryloxy)-FS > 1-deoxy-FS ~ 1,9-dideoxy-FS ~ 7-deacetyl-1-deoxy-FS ~ 7-deacetyl-1,9-dideoxy-FS. In contrast, FS analogs activated catalysis in the order of efficacy FS > 7-deacety-FS ~ 6-acetyl-7-deacetyl-FS ~ 9-deoxy-FS > 7-deacetyl-7-(N-methylpiperazino-γ-butyryloxy)-FS ≫ 1-deoxy-FS, 1,9-dideoxy-FS, 7-deacetyl-1-deoxy-FS and 7-deacetyl-1,9-dideoxy-FS (all ineffective). 1-Deoxy-FS analogs inhibited FS-stimulated catalysis by an apparently non-competitive mechanism. Our data suggest a two-step mechanism of AC activation by diterpenes. In the first step, diterpenes, regardless of their substitution pattern, promote C1/C2 assembly. In the second and yet poorly understood step, diterpenes that form a hydrogen bond between C1-OH and Val506 promote a conformational switch that results in activation of catalysis. The apparent non-competitive interaction of FS with 1-deoxy-FS analogs is explained by impaired ligand exchange due to strong hydrophobic interactions with C1/C2. | en_US |
dc.publisher | Elsevier | en_US |
dc.rights | This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License 3.0 (CC BY-NC-ND 3.0 US), which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/ | |
dc.title | Differential Interactions of the Catalytic Subunits of Adenylyl Cyclase with Forskolin Analogs | en_US |
dc.type | Article | en_US |
kusw.kuauthor | Richter, Mark | |
kusw.kudepartment | Molecular Biosciences | en_US |
kusw.oanotes | Per SHERPA/RoMEO 1/27/2017: Author's Pre-print: green tick author can archive pre-print (ie pre-refereeing) Author's Post-print: green tick author can archive post-print (ie final draft post-refereeing) Publisher's Version/PDF: cross author cannot archive publisher's version/PDF General Conditions: Authors pre-print on any website, including arXiv and RePEC Author's post-print on author's personal website immediately Author's post-print on open access repository after an embargo period of between 12 months and 48 months Permitted deposit due to Funding Body, Institutional and Governmental policy or mandate, may be required to comply with embargo periods of 12 months to 48 months Author's post-print may be used to update arXiv and RepEC Publisher's version/PDF cannot be used Must link to publisher version with DOI Author's post-print must be released with a Creative Commons Attribution Non-Commercial No Derivatives License | en_US |
dc.identifier.doi | 10.1016/j.bcp.2009.03.023 | en_US |
kusw.oaversion | Scholarly/refereed, author accepted manuscript | en_US |
kusw.oapolicy | This item meets KU Open Access policy criteria. | en_US |
dc.rights.accessrights | openAccess |
Files in this item
This item appears in the following Collection(s)
Except where otherwise noted, this item's license is described as: This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License 3.0 (CC BY-NC-ND 3.0 US), which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.