ATTENTION: The software behind KU ScholarWorks is being upgraded to a new version. Starting July 15th, users will not be able to log in to the system, add items, nor make any changes until the new version is in place at the end of July. Searching for articles and opening files will continue to work while the system is being updated. If you have any questions, please contact Marianne Reed at mreed@ku.edu .

Show simple item record

dc.contributor.advisorSaiedian, Hossein
dc.contributor.authorMorozov, Serhiy
dc.date.accessioned2008-03-01T15:13:52Z
dc.date.available2008-03-01T15:13:52Z
dc.date.issued2007-12-13
dc.date.submitted2007
dc.identifier.otherhttp://dissertations.umi.com/ku:2323
dc.identifier.urihttp://hdl.handle.net/1808/1977
dc.description.abstractHierarchical data structures are an important aspect of many computer science fields including data mining, terrain modeling, and image analysis. A good representation of such data accurately captures the parent-child and ancestor-descendent relationships between nodes. There exist a number of different ways to capture and manage hierarchical data while preserving such relationships. For instance, one may use a custom system designed for a specific kind of hierarchy. Object oriented databases may also be used to model hierarchical data. Relational database systems, on the other hand, add an additional benefit of mature mathematical theory, reliable implementations, superior functionality and scalability. Relational databases were not originally designed with hierarchical data management in mind. As a result, abstract information can not be natively stored in database relations. Database labeling schemes resolve this issue by labeling all nodes in a way that reveals their relationships. Labels usually encode the node's position in a hierarchy as a number or a string that can be stored, indexed, searched, and retrieved from a database. Many different labeling schemes have been developed in the past. All of them may be classified into three broad categories: recursive expansion, materialized path, and nested sets. Each model has its strengths and weaknesses. Each model implementation attempts to reduce the number of weaknesses inherent to the respective model. One of the most prominent implementations of the materialized path model uses the unique characteristics of prime numbers for its labeling purposes. However, the performance and space utilization of this prime number labeling scheme could be significantly improved. This research introduces a new scheme called reusable prime number labeling (rPNL) that reduces the effects of the mentioned weaknesses. The proposed scheme advantage is discussed in detail, proven mathematically, and experimentally confirmed.
dc.format.extent84 pages
dc.language.isoEN
dc.publisherUniversity of Kansas
dc.rightsThis item is protected by copyright and unless otherwise specified the copyright of this thesis/dissertation is held by the author.
dc.subjectComputer science
dc.titlePrime Number-Based Hierarchical Data Labeling Scheme for Relational Databases
dc.typeThesis
dc.contributor.cmtememberAgah, Arvin
dc.contributor.cmtememberSterbenz, James
dc.thesis.degreeDisciplineElectrical Engineering & Computer Science
dc.thesis.degreeLevelM.S.
kusw.oastatusna
kusw.oapolicyThis item does not meet KU Open Access policy criteria.
kusw.bibid6599331
dc.rights.accessrightsopenAccess


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record