Show simple item record

dc.contributor.authorWilson, Sara E.
dc.contributor.authorAlkalay, Ron
dc.contributor.authorMyers, Elizabeth
dc.date.accessioned2014-01-21T22:03:51Z
dc.date.available2014-01-21T22:03:51Z
dc.date.issued2013-12
dc.identifier.citationS. Wilson, R. N. Alkalay, and B. R. Myers, "Effect of the Degenerative State of the Intervertebral Disc on the Impact Characteristics of Human Spine Segments," Frontiers in Bioengineering and Biotechnology, vol. 1, 2013-December-16 2013.
dc.identifier.urihttp://hdl.handle.net/1808/12826
dc.description.abstractModels of the dynamic response of the lumbar spine have been used to examine vertebral fractures (VFx) during falls and whole body vibration transmission in the occupational setting. Although understanding the viscoelastic stiffness or damping characteristics of the lumbar spine are necessary for modeling the dynamics of the spine, little is known about the effect of intervertebral disk degeneration on these characteristics at high loading rates. We hypothesize that disk degeneration significantly affects the viscoelastic response of spinal segments to high loading rate. We additionally hypothesize the lumbar spine stiffness and damping characteristics are a function of the degree of preload. A custom, pendulum impact tester was used to impact 19 L1–L3 human spine segments with an end mass of 20.9 kg under increasing preloads with the resulting force response measured. A Kelvin–Voigt model, fitted to the frequency and decay response of the post-impact oscillations was used to compute stiffness and damping constants. The spine segments exhibited a second-order, under-damped response with stiffness and damping values of 17.9–754.5 kN/m and 133.6–905.3 Ns/m respectively. Regression models demonstrated that stiffness, but not damping, significantly correlated with preload (p < 0.001). Degenerative disk disease, reflected as reduction in magnetic resonance T2 relaxation time, was weakly correlated with change in stiffness at low preloads. This study highlights the need to incorporate the observed non-linear increase in stiffness of the spine under high loading rates in dynamic models of spine investigating the effects of a fall on VFx and those investigating the response of the spine to vibration.
dc.language.isoen_US
dc.publisherFrontiers
dc.relation.isversionofhttp://www.frontiersin.org/Journal/10.3389/fbioe.2013.00016/abstract
dc.subjectBiomechanics
dc.subjectSpine
dc.titleEffect of the degenerative state of the intervertebral disk on the impact characteristics of human spine segments
dc.typeArticle
kusw.kuauthorWilson, Sara
kusw.kudepartmentMechanical Engineering
kusw.oastatusfullparticipation
dc.identifier.doi10.3389/fbioe.2013.00016
kusw.oaversionScholarly/refereed, publisher version
kusw.oapolicyThis item meets KU Open Access policy criteria.
dc.rights.accessrightsopenAccess


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record