Loading...
Thumbnail Image
Publication

Ordered Spaces all of whose Continuous Images are Normal

Fleissner, William G.
Levy, Ronnie
Citations
Altmetric:
Abstract
Some spaces, such as compact Hausdorff spaces, have the property that every regular continuous image is normal. In this paper, we look at such spaces. In particular, it is shown that if a normal space has finite Stone-Cech remainder, then every continuous image is normal. A consequence is that every continuous image of a Dedekind complete linearly ordered topological space of uncountable cofinality and coinitiality is normal. The normality of continuous images of other ordered spaces is also discussed.
Description
This is the published version, also available here: http://dx.doi.org/10.1090/S0002-9939-1989-0973846-4. First published in Proc. AMS. in 1989, published by the American Mathematical Society.
Date
1989-01-01
Journal Title
Journal ISSN
Volume Title
Publisher
American Mathematical Society
Research Projects
Organizational Units
Journal Issue
Keywords
Citation
Fleissner, William G. & Levy, Ronnie. "Ordered Spaces all of whose Continuous Images are Normal." Proc. AMS. (1989) 105, 1. 231-235. http://dx.doi.org/10.1090/S0002-9939-1989-0973846-4.
Embedded videos