Loading...
Thumbnail Image
Publication

Evidence for transverse-momentum- and pseudorapidity-dependent event-plane fluctuations in PbPb and pPb collisions

CMS Collaboration
Citations
Altmetric:
Abstract
A systematic study of the factorization of long-range azimuthal two-particle correlations into a product of single-particle anisotropies is presented as a function of pT and η of both particles and as a function of the particle multiplicity in PbPb and pPb collisions. The data were taken with the CMS detector for PbPb collisions at sNN−−−√=2.76 TeV and pPb collisions at sNN−−−√=5.02 TeV, covering a very wide range of multiplicity. Factorization is observed to be broken as a function of both particle pT and η. When measured with particles of different pT, the magnitude of the factorization breakdown for the second Fourier harmonic reaches 20% for very central PbPb collisions but decreases rapidly as the multiplicity decreases. The data are consistent with viscous hydrodynamic predictions, which suggest that the effect of factorization breaking is mainly sensitive to the initial-state conditions rather than to the transport properties (e.g., shear viscosity) of the medium. The factorization breakdown is also computed with particles of different η. The effect is found to be weakest for mid-central PbPb events but becomes larger for more central or peripheral PbPb collisions, and also for very-high-multiplicity pPb collisions. The η-dependent factorization data provide new insights to the longitudinal evolution of the medium formed in heavy ion collisions.
Description
Date
2015-09-22
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Research Projects
Organizational Units
Journal Issue
Keywords
Citation
CMS Collaboration. "Evidence for transverse-momentum- and pseudorapidity-dependent event-plane fluctuations in PbPb and pPb collisions." Physical Review C 92 (2015)
Embedded videos