Correlating physicochemical and biological properties to define critical quality attributes of a recombinant AAV vaccine candidate (Dataset)
Kumar, Prashant ; Wang, Michael ; Kumru, Ozan S. ; Hickey, John M. ; Sanmiguel, Julio ; Zabaleta, Nerea ; Vandenberghe, Luk H. ; Joshi, Sangeeta B. ; Volkin, David B.
Kumar, Prashant
Wang, Michael
Kumru, Ozan S.
Hickey, John M.
Sanmiguel, Julio
Zabaleta, Nerea
Vandenberghe, Luk H.
Joshi, Sangeeta B.
Volkin, David B.
Citations
Altmetric:
Abstract
Recombinant adeno-associated viruses (rAAVs) are a preferred vector system in clinical gene transfer. A fundamental challenge to formulate and deliver rAAVs as stable and efficacious vaccines is to elucidate interrelationships between the vector’s physicochemical properties and biological potency. To this end, we evaluated an rAAV-based COVID-19 vaccine candidate which encodes the Spike antigen (AC3) and is produced by a commercially viable process. First, state-of-the-art analytical techniques were employed to determine key structural attributes of AC3 including primary and higher-order structures, particle size, empty/full capsid ratios, aggregates and multi-step thermal degradation pathway analysis. Next, several quantitative potency measures for AC3 were implemented and data were correlated with the physicochemical analyses on thermal-stressed and control samples. Results demonstrate links between decreasing AC3 physical stability profiles, in vitro transduction efficiency in a cell-based assay, and importantly, in vivo immunogenicity in a mouse model. These findings are discussed in the general context of future development of rAAV-based vaccines candidates as well as specifically for the rAAV vaccine application under study.
Description
Date
2023-06-05
Journal Title
Journal ISSN
Volume Title
Publisher
Cell Press
Collections
Research Projects
Organizational Units
Journal Issue
Keywords
Adeno-associated virus, Analytical characterization, Transduction efficiency, Immunogenicity, Formulation, Stability, Vaccine