Loading...
Anisotropy in Cosmic-Ray Arrical Directions in the Southern Hemisphere Based on Seix Years of Data From the IceCube Detectors
IceCube Collaboration
IceCube Collaboration
Citations
Altmetric:
Abstract
The IceCube Neutrino Observatory accumulated a total of 318 billion cosmic-ray-induced muon events between 2009 May and 2015 May. This data set was used for a detailed analysis of the sidereal anisotropy in the arrival directions of cosmic rays in the TeV to PeV energy range. The observed global sidereal anisotropy features large regions of relative excess and deficit, with amplitudes of the order of 10−3 up to about 100 TeV. A decomposition of the arrival direction distribution into spherical harmonics shows that most of the power is contained in the low-multipole (ℓ ≤ 4) moments. However, higher multipole components are found to be statistically significant down to an angular scale of less than 10°, approaching the angular resolution of the detector. Above 100 TeV, a change in the morphology of the arrival direction distribution is observed, and the anisotropy is characterized by a wide relative deficit whose amplitude increases with primary energy up to at least 5 PeV, the highest energies currently accessible to IceCube. No time dependence of the large- and small-scale structures is observed in the period of six years covered by this analysis. The high-statistics data set reveals more details of the properties of the anisotropy and is potentially able to shed light on the various physical processes that are responsible for the complex angular structure and energy evolution.
Description
Date
2016-08-01
Journal Title
Journal ISSN
Volume Title
Publisher
American Astronomical Society
Collections
Research Projects
Organizational Units
Journal Issue
Keywords
Citation
Aartsen, M. G., Abraham, K., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M., ... & Anton, G. (2016). Anisotropy in cosmic-ray arrival directions in the southern hemisphere based on six years of data from the IceCube detector. The Astrophysical Journal, 826(2), 220.