Loading...
Pharmacokinetics, Trypanosoma brucei gambiense Efficacy, and Time of Drug Action of DB829, a Preclinical Candidate for Treatment of Second-Stage Human African Trypanosomiasis
Wenzler, Tanja ; Yang, Sihyung ; Braissant, Olivier ; Boykin, David W. ; Brun, Reto ; Wang, Michael Zhuo
Wenzler, Tanja
Yang, Sihyung
Braissant, Olivier
Boykin, David W.
Brun, Reto
Wang, Michael Zhuo
Citations
Altmetric:
Abstract
Human African trypanosomiasis (HAT, also called sleeping sickness), a neglected tropical disease endemic to sub-Saharan Africa, is caused by the parasites Trypanosoma brucei gambiense and T. brucei rhodesiense. Current drugs against this disease have significant limitations, including toxicity, increasing resistance, and/or a complicated parenteral treatment regimen. DB829 is a novel aza-diamidine that demonstrated excellent efficacy in mice infected with T. b. rhodesiense or T. b. brucei parasites. The current study examined the pharmacokinetics, in vitro and in vivo activity against T. b. gambiense, and time of drug action of DB829 in comparison to pentamidine. DB829 showed outstanding in vivo efficacy in mice infected with parasites of T. b. gambiense strains, despite having higher in vitro 50% inhibitory concentrations (IC50s) than against T. b. rhodesiense strain STIB900. A single dose of DB829 administered intraperitoneally (5 mg/kg of body weight) cured all mice infected with different T. b. gambiense strains. No cross-resistance was observed between DB829 and pentamidine in T. b. gambiense strains isolated from melarsoprol-refractory patients. Compared to pentamidine, DB829 showed a greater systemic exposure when administered intraperitoneally, partially contributing to its improved efficacy. Isothermal microcalorimetry and in vivo time-to-kill studies revealed that DB829 is a slower-acting trypanocidal compound than pentamidine. A single dose of DB829 (20 mg/kg) administered intraperitoneally clears parasites from mouse blood within 2 to 5 days. In summary, DB829 is a promising preclinical candidate for the treatment of first- and second-stage HAT caused by both Trypanosoma brucei subspecies.
Description
Date
2013-11
Journal Title
Journal ISSN
Volume Title
Publisher
American Society for Microbiology
Collections
Research Projects
Organizational Units
Journal Issue
Keywords
Citation
Wenzler et. al. "Pharmacokinetics, Trypanosoma brucei gambiense Efficacy, and Time of Drug Action of DB829, a Preclinical Candidate for Treatment of Second-Stage Human African Trypanosomiasis" Antimicrob. Agents Chemother. November 2013 vol. 57 no. 11 5330-5343
http://dx.doi.org/10.1128/AAC.00398-13