Loading...
Climate Warming Can Accelerate Carbon Fluxes without Changing Soil Carbon Stocks
Ziegler, Susan E. ; Benner, Ronald ; Billngs, Sharon A. ; Edwards, Kate A. ; Philben, Michael ; Zhu, Xinbiao ; Laganière, Jerome
Ziegler, Susan E.
Benner, Ronald
Billngs, Sharon A.
Edwards, Kate A.
Philben, Michael
Zhu, Xinbiao
Laganière, Jerome
Citations
Altmetric:
Abstract
Climate warming enhances multiple ecosystem C fluxes, but the net impact of changing C fluxes on soil organic carbon (SOC) stocks over decadal to centennial time scales remains unclear. We investigated the effects of climate on C fluxes and soil C stocks using space-for-time substitution along a boreal forest climate gradient encompassing spatially replicated sites at each of three latitudes. All regions had similar SOC concentrations and stocks (5.6 to 6.7 kg C m−2). The three lowest latitude forests exhibited the highest productivity across the transect, with tree biomass:age ratios and litterfall rates 300 and 125% higher than those in the highest latitude forests, respectively. Likewise, higher soil respiration rates (~55%) and dissolved organic C fluxes (~300%) were observed in the lowest latitude forests compared to those in the highest latitude forests. The mid-latitude forests exhibited intermediate values for these indices and fluxes. The mean radiocarbon content (Δ14C) of mineral-associated SOC (+9.6‰) was highest in the lowest latitude forests, indicating a more rapid turnover of soil C compared to the mid- and highest latitude soils (Δ14C of −35 and −30‰, respectively). Indicators of the extent of soil organic matter decomposition, including C:N, δ13C, and amino acid and alkyl-C:O-alkyl-C indices, revealed highly decomposed material across all regions. These data indicate that the lowest latitude forests experience accelerated C fluxes that maintain relatively young but highly decomposed SOC. Collectively, these observations of within-biome soil C responses to climate demonstrate that the enhanced rates of SOC loss that typically occur with warming can be balanced on decadal to centennial time scales by enhanced rates of C inputs.
Description
Date
2017-02-03
Journal Title
Journal ISSN
Volume Title
Publisher
Frontiers Media
Research Projects
Organizational Units
Journal Issue
Keywords
Citation
Ziegler SE, Benner R, Billings SA, Edwards KA, Philben M, Zhu X and Laganière J. (2017) Climate Warming Can Accelerate Carbon Fluxes without Changing Soil Carbon Stocks. Front. Earth Sci. 5:2. doi: 10.3389/feart.2017.00002