Loading...
Thumbnail Image
Publication

Ground-penetrating-radar response to fracture-fluid salinity: Why lower frequencies are favorable for resolving salinity changes

Tsoflias, Georgios P.
Becker, Matthew W.
Citations
Altmetric:
Abstract
Time-lapse ground-penetrating-radar (GPR) surveys exploit signal-amplitude changes to monitor saline tracers in fractures and to identify groundwater flow paths. However, the relationships between GPR signal amplitude, phase, and frequency with fracture aperture and fluid electrical conductivity are not well understood. We used analytical modeling, numerical simulations, and field experiments of multifrequency GPR to investigate these relationships for a millimeter-scale-aperture fracture saturated with water of varying salinity. We found that the response of lower-frequency radar signals detects changes in fluid salinity better than the response of higher-frequency signals. Increasing fluid electrical conductivity decreases low-frequency GPR signal wavelength, which improves its thin-layer resolution capability. We concluded that lower signal frequencies, such as 50MHz , and saline tracers of up to 1S∕m conductivity are preferable when using GPR to monitor flow in fractured rock. Furthermore, we found that GPR amplitude and phase responses are detectable in the field and predictable by EM theory and modeling; therefore, they can be related to fracture aperture and fluid salinity for hydrologic investigations of fractured-rock flow and transport properties.
Description
This is the published version. Reuse is subject to Society of Exploration Geophysicists terms of use and conditions.
Date
2008-08-26
Journal Title
Journal ISSN
Volume Title
Publisher
Society of Exploration Geophysicists
Research Projects
Organizational Units
Journal Issue
Keywords
ground penetrating radar, groundwater, surveying
Citation
Georgios P. Tsoflias and Matthew W. Becker (2008). ”Ground-penetrating-radar response to fracture-fluid salinity: Why lower frequencies are favorable for resolving salinity changes.” Geophysics, 73(5), J25-J30. http://dx.doi.org/10.1190/1.2957893
Embedded videos