Loading...
Thumbnail Image
Publication

The Reliability and Validity of Measuring Devices for Measuring Mechanical Power

Bradford, Luke
Citations
Altmetric:
Abstract
The Reliability and Validity of Measuring Devices for Measuring Mechanical Power The primary purpose of this paper is to validate a 3-D motion capture system as a reliable and valid measurement tool to be used in the practical setting for measuring bar velocity and mechanical power output. One resistance-trained, male college student participated in this study, performing ten sets of one repetition at loads of 30, 40, 50, 60, 70, and 80% of his 1 repetition maximum (1 RM) for the barbell back squat exercise. Each repetition was simultaneously recorded with a 3-D camera (EliteForm PowerTracker; EliteForm, Lincoln, Nebraska), a tether based position transducer (gold standard), and a tether-based external dynamometer. Power values were derived using the bar velocity and the system mass (external load + 88% of body mass). Both Mean and Peak Velocity and Mean and Peak Power values were used to compare the measurement devices. In addition to linear regression, and correlation data, Bland-Altman plots (Tukey mean difference analyses) were created to measure agreement in the relative difference of values from each system. There were significant correlations (r .80) between all 3 methods, but were highest in mean velocity and peak velocity. Mean velocity and mean power are shown to be within the limits of agreement when comparing the 3-D camera system and LPT, while peak velocity and peak power are outside of the limits of agreement. However, a comparison of 3-D camera system and external dynamometer, shows that all 4 variables were within 95% limits of agreement. Overall, the technology in question offers a reliable means of assessing velocity and power measurements in the practical setting.
Description
Date
2017-08-31
Journal Title
Journal ISSN
Volume Title
Publisher
University of Kansas
Research Projects
Organizational Units
Journal Issue
Keywords
Kinesiology, Physical education, Linear Position Transducer, Power, Technology
Citation
DOI
Embedded videos