Loading...
Fluidic operation of a polymer-based nanosensor chip for analysing single molecules
Vaidyanathan, Swarnagowri ; Gamage, Sachindra ; Dathathreya, Kavya ; Kryk, Renee ; Manoharan, Anishkumar ; Zhao, Zheng ; Zhang, Lulu ; Choi, Junseo ; Park, Daniel ; Park, Sunggook ... show 1 more
Vaidyanathan, Swarnagowri
Gamage, Sachindra
Dathathreya, Kavya
Kryk, Renee
Manoharan, Anishkumar
Zhao, Zheng
Zhang, Lulu
Choi, Junseo
Park, Daniel
Park, Sunggook
Citations
Altmetric:
Abstract
Most medical diagnostic tests are expensive, involve slow turnaround times from centralized laboratories and require highly specialized equipment with seasoned technicians to carry out the assay. To facilitate realization of precision medicine at the point of care, we have developed a mixed-scale nanosensor chip featuring high surface area pillar arrays where solid-phase reactions can be performed to detect and identify nucleic acid targets found in diseased patients. Products formed can be identified and detected using a polymer nanofluidic channel. To guide delivery of this platform, we discuss the operation of various components of the device and simulations (COMSOL) used to guide the design by investigating parameters such as pillar array loading, and hydrodynamic and electrokinetic flows. The fabrication of the nanosensor is discussed, which was performed using a silicon (Si) master patterned with a combination of focused ion beam milling and photolithography with deep reactive ion etching. The mixed-scale patterns were transferred into a thermoplastic via thermal nanoimprint lithography, which facilitated fabrication of the nanosensor chip making it appropriate for in vitro diagnostics. The results from COMSOL were experimentally verified for hydrodynamic flow using Rhodamine B as a fluorescent tracer and electrokinetic flow using single fluorescently labelled oligonucleotides (single-stranded DNAs, ssDNAs).
Description
Date
2022-06-27
Journal Title
Journal ISSN
Volume Title
Publisher
Cambridge University Press
Collections
Research Projects
Organizational Units
Journal Issue
Keywords
Plastic nanofluidics, Hydrodynamic flow, Electrokinetic flow, In vitro diagnostics
Citation
Vaidyanathan, S., et al. (2022). Fluidic operation of a polymer-based nanosensor chip for analysing single molecules. Flow, 2, E14. doi:10.1017/flo.2022.8