Multi-dose Formulation Development for a Quadrivalent Human Papillomavirus Virus-Like Particle-Based Vaccine: Part II- Real-time and Accelerated Stability Studies (Dataset)
Sharma, Nitya ; Jerajani, Kaushal ; Wan, Ying ; Kumru, Ozan S. ; Pullagurla, Swathi R. ; Ogun, Oluwadara ; Mapari, Shweta ; Brendle, Sarah ; Christensen, Neil D. ; Batwal, Saurabh ... show 7 more
Sharma, Nitya
Jerajani, Kaushal
Wan, Ying
Kumru, Ozan S.
Pullagurla, Swathi R.
Ogun, Oluwadara
Mapari, Shweta
Brendle, Sarah
Christensen, Neil D.
Batwal, Saurabh
Citations
Altmetric:
Abstract
This work describes Part 2 of multi-dose formulation development of a Human Papillomavirus (HPV) Virus-Like Particles (VLPs) containing vaccine (see Part 1 in companion paper). Storage stability studies with candidate multi-dose formulations containing individual or combinations of seven different antimicrobial preservatives (APs) were performed with quadrivalent HPV VLP (6, 11, 16, 18) antigens adsorbed to aluminum-salt adjuvant (Alhydrogel®). Real-time (up to two years, 2-8°C) and accelerated (months at 25 and 40°C) stability studies identified eight lead candidates as measured by antigen stability (competitive ELISA employing conformational serotype-specific mAbs), antimicrobial effectiveness (modified European Pharmacopeia assay), total protein content (SDS-PAGE), and AP concentration (RP-UHPLC). The AH-adsorbed HPV18 VLP component was most sensitive to AP-induced destabilization. Optimal quadrivalent antigen storage stability while maintaining antimicrobial effectiveness was observed with 2-phenoxyethanol, benzyl alcohol, chlorobutanol, and 2-phenoxyethanol + benzyl alcohol combination. Interestingly, for single-AP containing multi-dose formulations, this rank-ordering of storage stability did not correlate with previously reported biophysical measurements of AP-induced antigen destabilization. Moreover, other APs (e.g., m-cresol, phenol, parabens) described by others for inclusion in multi-dose HPV VLP formulations showed suboptimal stability. These results suggest that each HPV VLP vaccine candidate (e.g., different serotypes, expression systems, processes, adjuvants) will require customized multi-dose formulation development.
Description
This is the dataset for the article Multi-dose Formulation Development for a Quadrivalent Human Papillomavirus Virus-Like Particle-Based Vaccine: Part II- Real-time and Accelerated Stability Studies, published in 2022 in the Journal of Pharmaceutical Sciences (Elsevier).
Date
2022-11-21
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Collections
Research Projects
Organizational Units
Journal Issue
Keywords
Vaccine, Human Papillomavirus, Virus-Like Particles, Multi-dose, Formulations, Preservatives, Stability
Citation
This work describes Part 2 of multi-dose formulation development of a Human Papillomavirus (HPV) Virus-Like Particles (VLPs) containing vaccine (see Part 1 in companion paper). Storage stability studies with candidate multi-dose formulations containing individual or combinations of seven different antimicrobial preservatives (APs) were performed with quadrivalent HPV VLP (6, 11, 16, 18) antigens adsorbed to aluminum-salt adjuvant (Alhydrogel®). Real-time (up to two years, 2-8°C) and accelerated (months at 25 and 40°C) stability studies identified eight lead candidates as measured by antigen stability (competitive ELISA employing conformational serotype-specific mAbs), antimicrobial effectiveness (modified European Pharmacopeia assay), total protein content (SDS-PAGE), and AP concentration (RP-UHPLC). The AH-adsorbed HPV18 VLP component was most sensitive to AP-induced destabilization. Optimal quadrivalent antigen storage stability while maintaining antimicrobial effectiveness was observed with 2-phenoxyethanol, benzyl alcohol, chlorobutanol, and 2-phenoxyethanol + benzyl alcohol combination. Interestingly, for single-AP containing multi-dose formulations, this rank-ordering of storage stability did not correlate with previously reported biophysical measurements of AP-induced antigen destabilization. Moreover, other APs (e.g., m-cresol, phenol, parabens) described by others for inclusion in multi-dose HPV VLP formulations showed suboptimal stability. These results suggest that each HPV VLP vaccine candidate (e.g., different serotypes, expression systems, processes, adjuvants) will require customized multi-dose formulation development.