Loading...
Generalized FLIC: Learning with Misclassification for Binary Classifiers
Choudhury Arunabha
Choudhury Arunabha
Citations
Altmetric:
Abstract
This work formally introduces a generalized fuzzy logic and interval clustering (FLIC) technique which, when integrated with existing supervised learning algorithms, improves their performance. FLIC is a method that was first integrated with neural network in order to improve neural network's performance in drug discovery using high throughput screening (HTS). This research strictly focuses on binary classification problems and generalizes the FLIC in order to incorporate it with other machine learning algorithms. In most binary classification problems, the class boundary is not linear. This pose a major problem when the number of outliers are significantly high, degrading the performance of the supervised learning function. FLIC identifies these misclassifications before the training set is introduced to the learning algorithm. This allows the supervised learning algorithm to learn more efficiently since it is now aware of those misclassifications. Although the proposed method performs well with most binary classification problems, it does significantly well for data set with high class asymmetry. The proposed method has been tested on four well known data sets of which three are from UCI Machine Learning repository and one from BigML. Tests have been conducted with three well known supervised learning techniques: Decision Tree, Logistic Regression and Naive Bayes. The results from the experiments show significant improvement in performance. The paper begins with a formal introduction to the core idea this research is based upon. It then discusses a list of other methods that have either inspired this research or have been referred to, in order to formalize the techniques. Subsequent sections discuss the methodology and the algorithm which is followed by results and conclusion.
Description
Date
2014-12-31
Journal Title
Journal ISSN
Volume Title
Publisher
University of Kansas
Collections
Research Projects
Organizational Units
Journal Issue
Keywords
Computer science, Binary Classifiers, Clustering, Data Mining, Fuzzy Logic, Machine Learning, Supervised Learning