Loading...
Thumbnail Image
Publication

Targeted gene silencing of CCL2 inhibits triple negative breast cancer progression by blocking cancer stem cell renewal and M2 macrophage recruitment

Fang, Wei Bin
Yao, Min
Brummer, Gage
Acevedo, Diana S.
Alhakamy, Nabil A.
Berkland, Cory J.
Cheng, Nikki
Citations
Altmetric:
Abstract
Triple negative breast cancers are an aggressive subtype of breast cancer, characterized by the lack of estrogen receptor, progesterone receptor and Her2 expression. Triple negative breast cancers are non-responsive to conventional anti-hormonal and Her2 targeted therapies, making it necessary to identify new molecular targets for therapy. The chemokine CCL2 is overexpressed in invasive breast cancers, and regulates breast cancer progression through multiple mechanisms. With few approaches to target CCL2 activity, its value as a therapeutic target is unclear. In these studies, we developed a novel gene silencing approach that involves complexing siRNAs to TAT cell penetrating peptides (Ca-TAT) through non-covalent calcium cross-linking. Ca-TAT/siRNA complexes penetrated 3D collagen cultures of breast cancer cells and inhibited CCL2 expression more effectively than conventional antibody neutralization. Ca-TAT/siRNA complexes targeting CCL2 were delivered to mice bearing MDA-MB-231 breast tumor xenografts. In vivo CCL2 gene silencing inhibited primary tumor growth and metastasis, associated with a reduction in cancer stem cell renewal and recruitment of M2 macrophages. These studies are the first to demonstrate that targeting CCL2 expression in vivo may be a viable therapeutic approach to treating triple negative breast cancer.
Description
Date
2016-06-07
Journal Title
Journal ISSN
Volume Title
Publisher
Impact Journals
Research Projects
Organizational Units
Journal Issue
Keywords
CCL2, TAT cell penetrating peptide, Breast cancer, Macrophage, Cancer stem cell
Citation
Fang, W. B., Yao, M., Brummer, G., Acevedo, D., Alhakamy, N., Berkland, C., & Cheng, N. (2016). Targeted gene silencing of CCL2 inhibits triple negative breast cancer progression by blocking cancer stem cell renewal and M2 macrophage recruitment. Oncotarget, 7(31), 49349.
Embedded videos