Loading...
Global discretization of continuous attributes as preprocessing for machine learning
Chmielewski, Michal R. ; Grzymala-Busse, Jerzy W.
Chmielewski, Michal R.
Grzymala-Busse, Jerzy W.
Citations
Altmetric:
Abstract
Real-life data usually are presented in databases by real numbers. On the other hand, most inductive learning methods require a small number of attribute values. Thus it is necessary to convert input data sets with continuous attributes into input data sets with discrete attributes. Methods of discretization restricted to single continuous attributes will be called local, while methods that simultaneously convert all continuous attributes will be called global. in this paper, a method of transforming any local discretization method into a global one is presented. A global discretization method, based on cluster analysis is presented and compared experimentally with three known local methods, transformed into global. Experiments include tenfold cross-validation and leaving-one-out methods for ten real-life data sets.
Description
Date
1996-11
Journal Title
Journal ISSN
Volume Title
Publisher
ELSEVIER SCIENCE INC
Research Projects
Organizational Units
Journal Issue
Keywords
Computer science, Artificial intelligence
Citation
Chmielewski, MR; GrzymalaBusse, JW. Global discretization of continuous attributes as preprocessing for machine learning. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING. November 1996. 15(4):319-331.