Loading...
Overexpression of Nrf2 Protects against Microcystin-Induced Hepatotoxicity in Mice
Lu, Yuan-Fu ; Liu, Jie Jerry ; Wu, Kai Connie ; Fan, Fang ; Klaassen, Curtis D.
Lu, Yuan-Fu
Liu, Jie Jerry
Wu, Kai Connie
Fan, Fang
Klaassen, Curtis D.
Citations
Altmetric:
Abstract
Oxidative stress and glutathione (GSH) depletion are implicated in mycocystin hepatotoxicity. To investigate the role of nuclear factor erythroid 2-related factor 2 (Nrf2) in microcystin-induced liver injury, Nrf2-null, wild-type, and Keap1-hepatocyte knockout (Keap1-HKO) mice were treated with microcystin (50 μg/kg, i.p.). Blood and liver samples were collected 8 h thereafter. Microcystin increased serum alanine aminotransferase and aspartate aminotransferase activities, and caused extensive inflammation and necrosis in Nrf2-null and wild-type mice, but not in Keap1-HKO mice. Oxidative stress and inflammation are implicated in microcystin-induced hepatotoxicity, as evidenced by increased lipid peroxidation and increased expression of pro-inflammatory genes, such as neutrophil-specific chemokines mKC and MIP-2, and pro-inflammatory cytokines IL-1β and IL-6. The increased expression of these pro-inflammatory genes was attenuated in Keap1-HKO mice. Nrf2 and Nqo1 mRNA and protein were higher in Keap1-HKO mice at constitutive levels and after microcystin. To further investigate the mechanism of the protection, hepatic GSH and the mRNA of GSH-related enzymes were determined. Microcystin markedly depleted liver GSH by 60–70% in Nrf2 and WT mice but only 35% in Keap1-HKO mice. The mRNAs of GSH conjugation and peroxide reduction enzymes, such as Gstα1, Gstα4, Gstμ, and Gpx2 were higher in livers of Keap1-HKO mice, together with higher expression of the rate-limiting enzyme for GSH synthesis (Gclc). Organic anion transport polypeptides were increased by microcystin with the most increase in Keap1-HKO mice. In conclusion, this study demonstrates that higher basal levels of Nrf2 and GSH-related genes in Keap1-HKO mice prevented microcystin-induced oxidative stress and liver injury.
Description
Date
2014-02-25
Journal Title
Journal ISSN
Volume Title
Publisher
Public Library of Science
Collections
Research Projects
Organizational Units
Journal Issue
Keywords
Chemokines, Gene expression, Glutathione, Hepatocytes, Inflammation, Necrosis, Oxidative stress, Toxicity
Citation
Lu Y-F, Liu J, Wu KC, Qu Q, Fan F, et al. (2014) Overexpression of Nrf2 Protects against Microcystin-Induced Hepatotoxicity in Mice. PLoS ONE 9(3): e93013. http://dx.doi.org/10.1371/journal.pone.0093013