Loading...
Oscillation estimates of eigenfunctions via the combinatorics of noncrossing partitions
Hur, Vera Mikyoung ; Johnson, Mathew A. ; Martin, Jeremy L.
Hur, Vera Mikyoung
Johnson, Mathew A.
Martin, Jeremy L.
Citations
Altmetric:
Abstract
We study oscillations in the eigenfunctions for a fractional Schrödinger operator on the real line. An argument in the spirit of Courant's nodal domain theorem applies to an associated local problem in the upper half plane and provides a bound on the number of nodal domains for the extensions of the eigenfunctions. Using the combinatorial properties of noncrossing partitions, we turn the nodal domain bound into an estimate for the number of sign changes in the eigenfunctions. We discuss applications in the periodic setting and the Steklov problem on planar domains.
Description
Date
2017-09
Journal Title
Journal ISSN
Volume Title
Publisher
Diamond Open Access Journals
Collections
Research Projects
Organizational Units
Journal Issue
Keywords
Citation
Hur, V. M., Johnson, M. A., Martin, J. L., (2017) Oscillation estimates of eigenfunctions via the combinatorics of noncrossing partitions, Discrete Analysis 2017:13, 20 pp, 10.19086/da.2102, arXiv:1609.02189 [math.SP]