Loading...
Thumbnail Image
Publication

Decellularized cartilage as a chondroinductive material for cartilage tissue engineering

Renth, Amanda
Citations
Altmetric:
Abstract
Cartilage defects, whether caused by osteoarthritis, joint trauma, or other disease, have provoked a wide variety of tissue engineering scaffold strategies in recent years. Traditionally, cartilage tissue engineering scaffolds have utilized synthetic polymer components to form hydrogels or other porous matrices. However, components found within the extracellular matrix (ECM) such as collagen, glycosaminoglycans (GAGs), and ECM-based matrices have emerged as an essential subset of biomaterials for tissue engineering scaffolds. The objective of this research was to develop and evaluate decellularized cartilage (DCC) as a chondroinductive material for cartilage tissue engineering applications. This work was successful in developing a decellularization method for hyaline cartilage fragments that removed 99% of cells, while retaining 87% of GAGs and also in determining a method to produce a homogenous nanopowder of DCC. Additionally, this research was the first to examine the ability of DCC to induce chondrogenesis in stem cells by quantifying gene expression of chondrogenic markers. The results demonstrate for the first time that DCC can indeed upregulate chondrogenic markers and may be a new chondroinductive material that can provide microenvironmental cues and signaling to promote stem cell differentiation in cartilage regeneration.
Description
Date
2013-12-31
Journal Title
Journal ISSN
Volume Title
Publisher
University of Kansas
Research Projects
Organizational Units
Journal Issue
Keywords
Biomedical engineering, Cartilage tissue engineering, Decellularized cartilage, Raw materials
Citation
DOI
Embedded videos