Loading...
Thumbnail Image
Publication

The Influence of the Phonological Neighborhood Clustering-Coefficient on Spoken Word Recognition

Chan, Kit Ying
Vitevitch, Michael S.
Citations
Altmetric:
Abstract
Clustering coefficient—a measure derived from the new science of networks—refers to the proportion of phonological neighbors of a target word that are also neighbors of each other. Consider the words bat, hat, and can, all of which are neighbors of the word cat; the words bat and hat are also neighbors of each other. In a perceptual identification task, words with a low clustering coefficient (i.e., few neighbors are neighbors of each other) were more accurately identified than words with a high clustering coefficient (i.e., many neighbors are neighbors of each other). In a lexical decision task, words with a low clustering coefficient were responded to more quickly than words with a high clustering coefficient. These findings suggest that the structure of the lexicon, that is the similarity relationships among neighbors of the target word measured by clustering coefficient, influences lexical access in spoken word recognition. Simulations of the TRACE and Shortlist models of spoken word recognition failed to account for the present findings. A framework for a new model of spoken word recognition is proposed.
Description
This article may not exactly replicate the final version published in the APA journal. It is not the copy of record.
Date
2009-12
Journal Title
Journal ISSN
Volume Title
Publisher
American Psychological Association
Research Projects
Organizational Units
Journal Issue
Keywords
Citation
Chan, Kit Ying, and Michael S. Vitevitch. “The Influence of the Phonological Neighborhood Clustering-Coefficient on Spoken Word Recognition.” Journal of experimental psychology. Human perception and performance 35.6 (2009): 1934–1949. PMC.
Embedded videos